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SOME APRIORI ESTIMATES FOR THE
QUASI-GEOSTROPHIC EQUATION

WoNJOON KM

ABSTRACT. We present a new apriori estimates for the surface quasi-
geostrophic equation. This apriori estimates give a new blow-up
criterion which is different from the known Beale-Kato-Majda type
criterion.

1. Introduction

We consider the quasi-geostrophic equations in the whole 2-dimensional
domain 2 = R2,
@H V)0 =0 = VA1 in QxR
(1Y) (&)§ o "V NN *
0(x,0) = by(x) in

where 6 and v, respectively, are the surface temperature and the velocity
of the flow. A = (—=A)z is the pseudo-differential operator defined in

Fourier space by (—A)2u(k) = [k|a(k) and V* is the orthogonal deriv-
ative operator defined by (—0,, 0;). The surface quasi-geostrophic equa-
tion describes the dynamics of large eddies in the atmosphere and ocean.
For the geophysical meaning of the surface quasi-geostrophic equation,
see [9]. The main mathematical interest in the surface quasi-geostrophic
equation lies in the similarities with the 3D Euler equations. V+6 plays
the similar role of the vorticity for the 3D Euler equations. This direction
of the research was first initiated by Constantin, Majda and Tabak[5].
Weak solutions have been constructed by Resnick[10]. The following
Beale-Kato-Majda[l] type blow up criterion for the quasi-geostrophic
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equation has been proved by Constantin, Majda and Tabak[5].

-
limsup ||0(¢)||gm = oo if and only if / |V+0(t) || dt = .
t—T* 0

This criterion has been refined in [2] using Triebel-Lizorkin space. Hy-
perbolic saddle collapse blow-up was one of the possible singularity for-
mation scenario for the solutions of the quasi-geostrophic equation. The
hyperbolic saddle type scenario for the quasi-geostrophic equation has
been excluded by Cordoba[6](see [4] for numerical simulations).

Following the method presented in [3], we have

THEOREM 1. Let § € C([0, T); H™(R?)) be a classical solution to the
2D quasi-geostrophic equations with m > 2. Suppose that there exists
an absolute constant €y > 0 such that for some ty with 0 <ty < T,

(1.2) up (T = 1) V(1) ey < 0

to<t

Then 6 € C([0, T + 6); H™(R?)) for some ¢ > 0.

REMARK 1. The Theorem 1 implies that if T* is the first time of
singularity, then we have the following blow-up rate

€0

li VO) || oo (m2y = 7o
1331313” Ol pe@e) 2

Our blow-up estimate has an advantage over BKM type criterion[5| in
the sense that their estimates cannot exclude the possibility that blow-up
rate behaves like o((T* —t)71), e.g.,

IVO()]| oo g2y ~ O (1/ (T7 = £)[log(T™ = 1)])) ,

since 1/(tlogt) is not integrable near origin. In contrast, our estimate
(1.2) does not allow such blow-up rate.

2. Proof of Theorem 1

In this section we present the proofs of Theorem 1. The following
commutator estimate is useful for the proof of Theorem 1 and the proof of
the following proposition can be found in [8](see also [7]). The space H*?
denotes a subspace of LP(2), equipped with the norm || f||gs» = ||A®f]|,-
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PROPOSITION 1. Suppose that s > 0 and p € (1, ). If f, g € S,
then

1A*(F9) = FAgllp < CAIV fllpn |9l =202 + 1]

1 1 1 1 1
where — 4+ = = = + — = =,
p1 + D2 p3 + P4 p

H?®P3 HgHPzL) )

Proof of Theorem 1. We first take V® operator on the both sides of
quasi-geostrophic equation, where o = (ay, ap, arz) is a multi-index with
la| = 32 a; < m. Let t < T. Multiplying (1.1) by (T — t)V*6(t),
integrating over R?, and summing over « for |a| < m, we have

1d

5 (0100 )45 Wl = ~T0) 3= [ 97((@9)0) 90 = RS

laj<m

Due to the commutator estimates Proposition 1, the righthand side is
estimated as follows:
(2.3)
2
RHS < C(T =) (1A () lle 10 [z + IVOE oo 10| g [10CE) 1) -

Since we have Av(t) = V40(¢) and [[v(t)|| gm = [|0(t)]| g, (2.3) reduces
to the following

(2.4) RHS < C(T = 1) [V8(0)|. 10(0)]1%

Thus we have

3o (=010l ) + (5 - Cr -0 19001 ) 10 <o

We choose € = 15, where C' is the absolute constant in (2.4). Tt is

straightforward, from the assumption (1.2), that
1d 2 1 2
ey m) 2110)13,. < 0.
e (Y ] R

Therefore, integrating in time from ¢y to 7 for any 7 € (¢y,T'), we obtain

1 T
(2.5)  sup (T'—1) ||9llim+§/ 16117 dt < (T — to) 10(to) [ 77m -

to<t<T to

Since ft,'OF 10|13, dt is finite, the conclusion is immediate from BKM type
criterion. 0O
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