HYPONORMALITY OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE.

Jongrak Lee

ABSTRACT. In this paper we consider the hyponormality of Toeplitz operators T_{φ} on the Bergman space $L_a^2(\mathbb{D})$ with symbol in the case of function $f + \overline{g}$ with polynomials f and g. We present some necessary conditions for the hyponormality of T_{φ} under certain assumptions about the coefficients of φ .

1. Introduction

A bounded linear operator A on a Hilbert space is said to be hyponormal if its selfcommutator $[A^*, A] := A^*A - AA^*$ is positive semi-definite. Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C} , dA the area measure on the complex plane \mathbb{C} . The space $L^2(\mathbb{D})$ is a Hilbert space with the inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{\mathbb{D}} f(z) \overline{g(z)} dA(z).$$

The Bergman space $L_a^2(\mathbb{D})$ is the subspace of $L^2(\mathbb{D})$ consisting of all analytic functions on \mathbb{D} . Let $L^{\infty}(\mathbb{D})$ be the space of bounded area measureable function on \mathbb{D} . For $\varphi \in L^{\infty}(\mathbb{D})$, the multiplication operator M_{φ} on the Bergman space are defined by $M_{\varphi}(f) = \varphi \cdot f$, where f is in L_a^2 . If P denotes the orthogonal projection of $L^2(\mathbb{D})$ onto the Bergman space L_a^2 , the Toeplitz operator T_{φ} on the Bergman space is defined by

$$T_{\varphi}(f) = P(\varphi \cdot f),$$

where φ is measurable and f is in L_a^2 . It is clear that those operators are bounded if φ is in $L^{\infty}(\mathbb{D})$. The Hankel operator $H_{\varphi}: L_a^2 \longrightarrow L_a^{2^{\perp}}$ is defined by

$$H_{\varphi}(f) = (I - P)(\varphi \cdot f).$$

Received November 3, 2007.

2000 Mathematics Subject Classification: Primary 47B20, 47B35.

Key words and phrases: Bergman space, Toeplitz operators, hyponormal operators.

Let $H^2(\mathbb{T})$ denote the Hardy space of the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. For a given $\psi \in L^{\infty}(\mathbb{T})$, the Toeplitz operator on the Hardy space is the operator T_{ψ} on $H^2(\mathbb{T})$ defined by $T_{\psi}f = P_+(\psi \cdot f)$, where f is in $H^2(\mathbb{T})$ and P_+ denotes the orthogonal projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$.

Basic properties of the Bergman space and the Hardy space can be found in [1] and [3]. The hyponormality of Toeplitz operators on the Hardy space has been studied by C. Cowen [2], T. Nakazi and K. Takahashi [7], K. Zhu [9], W.Y. Lee [4], [5], [6] and others. In [2], Cowen characterized the hyponormality of Toeplitz operator T_{φ} on $H^2(\mathbb{T})$ by properties of the symbol $\varphi \in L^{\infty}(\mathbb{T})$. It also exploited the fact that functions in $H^{2^{\perp}}$ are conjugates of functions in zH^2 . For the Bergman space, $L_a^{2^{\perp}}$ is much larger than the conjugates of functions in zL_a^2 , and no dilation theorem(similar to Sarason's theorem) is available. Indeed it is quite difficult to determine the hyponormality of T_{φ} . In fact the study of hyponormal Toeplitz operators on the Bergman space seems to be scarce from the literature. In [10], it was shown that if $\varphi(z) = a_{-m}\overline{z}^m + a_{-N}\overline{z}^N + a_m z^m + a_N z^N \quad (0 < m < N)$ and if $a_m \overline{a_N} = a_{-m} \overline{a_{-N}}$, then

 T_{φ} is hyponormal \iff

$$\begin{cases} \frac{1}{N+1}(|a_N|^2 - |a_{-N}|^2) \ge \frac{1}{m+1}(|a_{-m}|^2 - |a_m|^2) & \text{if } |a_{-N}| \le |a_N| \\ N^2(|a_{-N}|^2 - |a_N|^2) \le m^2(|a_m|^2 - |a_{-m}|^2) & \text{if } |a_N| \le |a_{-N}|. \end{cases}$$

In this paper we study the hyponormality of Toeplitz operators T_{φ} on the Bergman space $L_a^2(\mathbb{D})$ with symbols in the case of function $\varphi = \overline{g} + f$ with polynomial f and g. We will now consider the hyponormality of Toeplitz operators on the Bergman space with a symbol in the class of functions $\overline{g} + f$, where f and g are polynomials. Since the hyponormality of operators is translation invariant we may assume that f(0) = g(0) = 0. We shall list the well-known properties of Toeplitz operators T_{φ} on the Bergman space.

If f, g are in $L^{\infty}(\mathbb{D})$ then we can easily check that

$$(i) T_{f+g} = T_f + T_g$$

(ii)
$$T_f^* = T_{\overline{f}}$$

(iii)
$$T_{\overline{f}}T_g = T_{\overline{f}g}$$
 if f or g is analytic.

These properties enable to us establish several consequences of hyponormality.

PROPOSITION 1.1. ([8]) Let f, g be bounded and analytic in the $\overline{g} + f \in L^{\infty}(\mathbb{D})$. Then the followings are equivalent.

- (i) $T_{\overline{g}+f}$ is hyponormal.
- (ii) $H_{\overline{g}}^* H_{\overline{g}} \le H_{\overline{f}}^* H_{\overline{f}}$.
- (iii) $||(I-P)(\overline{g}k)|| \le ||(I-P)(\overline{f}k)||$ for any k in L_a^2 .
- $(\mathrm{iv}) \ ||\overline{g}k||^2 ||P(\overline{g}k)||^2 \leq ||\overline{f}k||^2 ||P(\overline{f}k)||^2 \text{ for any } k \text{ in } L^2_a.$
- (v) $H_{\overline{g}} = CH_{\overline{f}}$ where C is of norm less than or equal to one.

Let s,t be nonnegative integers and P be the orthogonal projection. Then we have

(1.1)
$$P(\overline{z}^t z^s) = \begin{cases} \frac{s-t+1}{s+1} z^{s-t}, & \text{if } s \ge t \\ 0, & \text{if } s < t. \end{cases}$$

2. Main results

In this section we establish some necessary conditions for the hyponormality of Toeplitz operator T_{φ} on the Bergman space L_a^2 under certain additional assumption concerning the polynomial symbol φ .

In [11], it was shown that if $f(z) = a_m z^m + a_N z^N$, $g(z) = a_{-m} z^m + a_{-N} z^N$ (0 < m < N) and $|a_N| < |a_{-N}|$, then the hyponormality of $T_{\overline{q}+f}$ implies that

$$N^{2}(|a_{-N}|^{2}-|a_{N}|^{2}) \leq m^{2}(|a_{m}|^{2}-|a_{-m}|^{2}).$$

The following Theorem gives a necessary condition for hyponormality of $T_{\overline{g}+f}$ when m=1 and N=2.

Theorem 2.1. Let $\varphi(z) = \overline{g(z)} + f(z)$, where

$$f(z) = a_1 z + a_2 z^2$$
 and $g(z) = a_{-1} z + a_{-2} z_{-}^2$

If T_{φ} is hyponormal, then

(i)
$$2(|a_2|^2 - |a_{-2}|^2) \ge 3(|a_{-1}|^2 - |a_1|^2)$$

(ii)
$$\left(\frac{1}{2}(|a_1|^2 - |a_{-1}|^2) + \frac{1}{3}(|a_2|^2 - |a_{-2}|^2)\right)\left(\frac{1}{12}(|a_1|^2 - |a_{-1}|^2) + \frac{1}{4}(|a_2|^2 - |a_{-2}|^2)\right) \ge \frac{1}{9}|\overline{a_1}a_2 - \overline{a_{-1}}a_{-2}|_{\cdot}^2$$

Proof. Let T_{φ} is hyponormal operator. Observe that

$$\begin{split} \left\langle M_{\overline{f}}(c_0+c_1z), M_{\overline{f}}(c_0+c_1z) \right\rangle &= |a_1|^2 \Big(\frac{1}{2}|c_0|^2 + \frac{1}{3}|c_1|^2\Big) + \\ &|a_2|^2 \Big(\frac{1}{3}|c_0|^2 + \frac{1}{4}|c_1|^2\Big) + \frac{2}{3} Re(\overline{a_1}a_2c_0\overline{c_1}). \end{split}$$

Similarly, we have

$$\langle M_{\overline{g}}(c_0 + c_1 z), M_{\overline{g}}(c_0 + c_1 z) \rangle = |a_{-1}|^2 \left(\frac{1}{2} |c_0|^2 + \frac{1}{3} |c_1|^2 \right) + |a_{-2}|^2 \left(\frac{1}{3} |c_0|^2 + \frac{1}{4} |c_1|^2 \right) + \frac{2}{3} Re(\overline{a_{-1}} a_{-2} c_0 \overline{c_1}).$$

It follows that

$$\langle T_{\overline{f}}(c_0 + c_1 z), T_{\overline{f}}(c_0 + c_1 z) \rangle = \frac{1}{4} |a_1|^2 |c_1|_{\cdot}^2$$

Similarly, we have

$$\langle T_{\overline{g}}(c_0 + c_1 z), T_{\overline{g}}(c_0 + c_1 z) \rangle = \frac{1}{4} |a_{-1}|^2 |c_1|_{\cdot}^2$$

Hence

$$\left\langle H_{\overline{f}}(c_0 + c_1 z), H_{\overline{f}}(c_0 + c_1 z) \right\rangle = |a_1|^2 \left(\frac{1}{2} |c_0|^2 + \frac{1}{12} |c_1|^2 \right) + |a_2|^2 \left(\frac{1}{3} |c_0|^2 + \frac{1}{4} |c_1|^2 \right) + \frac{2}{3} Re(\overline{a_1} a_2 c_0 \overline{c_1}).$$

Similarly, we have

$$\langle H_{\overline{g}}(c_0 + c_1 z), H_{\overline{g}}(c_0 + c_1 z) \rangle = |a_{-1}|^2 \left(\frac{1}{2} |c_0|^2 + \frac{1}{12} |c_1|^2 \right) + |a_{-2}|^2 \left(\frac{1}{3} |c_0|^2 + \frac{1}{4} |c_1|^2 \right) + \frac{2}{3} Re(\overline{a_{-1}} a_{-2} c_0 \overline{c_1}).$$

Hence if T_{φ} is hyponormal, then

$$\begin{aligned}
&(2.1) \\
&\langle (H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}})(c_0 + c_1 z), (c_0 + c_1 z) \rangle \\
&= (|a_1|^2 - |a_{-1}|^2) \left(\frac{1}{2} |c_0|^2 + \frac{1}{12} |c_1|^2\right) + (|a_2|^2 - |a_{-2}|^2) \left(\frac{1}{3} |c_0|^2 + \frac{1}{4} |c_1|^2\right) \\
&+ \frac{2}{3} Re(\overline{a_1} a_2 c_0 \overline{c_1} - \overline{a_{-1}} a_{-2} c_0 \overline{c_1}) \ge 0.
\end{aligned}$$

Since $Re(\overline{a_1}a_2c_0\overline{c_1} - \overline{a_{-1}}a_{-2}c_0\overline{c_1}) \ge -|\overline{a_1}a_2 - \overline{a_{-1}}a_{-2}||c_0\overline{c_1}|$, it follows from (2.1) that

$$(|a_{1}|^{2} - |a_{-1}|^{2}) \left(\frac{1}{2}|c_{0}|^{2} + \frac{1}{12}|c_{1}|^{2}\right) + (|a_{2}|^{2} - |a_{-2}|^{2}) \left(\frac{1}{3}|c_{0}|^{2} + \frac{1}{4}|c_{1}|^{2}\right) - \frac{2}{3}|\overline{a_{1}}a_{2} - \overline{a_{-1}}a_{-2}||c_{0}\overline{c_{1}}| \ge 0.$$

There are two cases to consider.

Case 1) If $c_1 = 0$, then

$$3(|a_1|^2 - |a_{-1}|^2) + 2(|a_2|^2 - |a_{-2}|^2) \ge 0.$$

Case 2) If $c_1 \neq 0$, then we have that

$$\left| \frac{c_0}{c_1} \right|^2 \left(\frac{1}{2} (|a_1|^2 - |a_{-1}|^2) + \frac{1}{3} (|a_2|^2 - |a_{-2}|^2) \right) - \frac{2}{3} \left| \frac{c_0}{c_1} \right| |\overline{a_1} a_2 - \overline{a_{-1}} a_{-2}|
+ \frac{1}{12} (|a_1|^2 - |a_{-1}|^2) + \frac{1}{4} (|a_2|^2 - |a_{-2}|^2) \ge 0.$$

Since $\frac{1}{2}(|a_1|^2-|a_{-1}|^2)+\frac{1}{3}(|a_2|^2-|a_{-2}|^2)\geq 0$, it follows that

$$\left(\frac{1}{2}(|a_{1}|^{2} - |a_{-1}|^{2}) + \frac{1}{3}(|a_{2}|^{2} - |a_{-2}|^{2})\right)\left(\frac{1}{12}(|a_{1}|^{2} - |a_{-1}|^{2}) + \frac{1}{4}(|a_{2}|^{2} - |a_{-2}|^{2})\right) \ge \frac{1}{9}|\overline{a_{1}}a_{2} - \overline{a_{-1}}a_{-2}|_{\cdot}^{2}$$

This completes the proof.

The following Theorem gives a necessary condition for hyponormality of $T_{\overline{g}+f}$ when m>1 and N=m+1.

THEOREM 2.2. Let
$$\varphi(z) = \overline{g(z)} + f(z)$$
, where

$$f(z) = a_m z^m + a_{m+1} z^{m+1}$$
 and $g(z) = a_{-m} z^m + a_{-(m+1)} z^{m+1}$.

If T_{φ} is hyponormal, then (i) $(m+1)(|a_{m+1}|^2 - |a_{-(m+1)}|^2) \ge (m+2)(|a_{-m}|^2 - |a_m|^2)$.

(ii)
$$\left(\frac{1}{m+1}(|a_m|^2 - |a_{-m}|^2) + \frac{1}{m+2}(|a_{m+1}|^2 - |a_{-(m+1)}|^2)\right)\left(\frac{1}{m+2}(|a_m|^2 - |a_{-m}|^2) + \frac{1}{m+3}(|a_{m+1}|^2 - |a_{-(m+1)}|^2)\right) \ge \frac{1}{(m+2)^2}|\overline{a_m}a_{m+1} - \overline{a_{-m}}a_{-(m+1)}|^2$$

Proof. Let T_{φ} be a hyponormal operator. Observe that

$$\langle M_{\overline{f}}(c_0 + c_1 z), M_{\overline{f}}(c_0 + c_1 z) \rangle$$

$$= |a_m|^2 \left(\frac{1}{m+1} |c_0|^2 + \frac{1}{m+2} |c_1|^2 \right) +$$

$$|a_{m+1}|^2 \left(\frac{1}{m+2} |c_0|^2 + \frac{1}{m+3} |c_1|^2 \right) + \frac{2}{m+2} Re(\overline{a_m} a_{m+1} c_0 \overline{c_1}).$$

Similarly, we have

$$\langle M_{\overline{g}}(c_0 + c_1 z), M_{\overline{g}}(c_0 + c_1 z) \rangle$$

$$= |a_{-m}|^2 \left(\frac{1}{m+1} |c_0|^2 + \frac{1}{m+2} |c_1|^2 \right) +$$

$$|a_{-(m+1)}|^2 \left(\frac{1}{m+2} |c_0|^2 + \frac{1}{m+3} |c_1|^2 \right) + \frac{2}{m+2} Re(\overline{a_{-m}} a_{-(m+1)} c_0 \overline{c_1}).$$

It follows that

$$\left\langle T_{\overline{f}}(c_0 + c_1 z), T_{\overline{f}}(c_0 + c_1 z) \right\rangle = 0$$

Similarly, we have

$$\langle T_{\overline{a}}(c_0 + c_1 z), T_{\overline{a}}(c_0 + c_1 z) \rangle = 0$$

Hence

$$\langle H_{\overline{f}}(c_0 + c_1 z), H_{\overline{f}}(c_0 + c_1 z) \rangle$$

$$= |a_m|^2 \left(\frac{1}{m+1} |c_0|^2 + \frac{1}{m+2} |c_1|^2 \right) +$$

$$|a_{m+1}|^2 \left(\frac{1}{m+2} |c_0|^2 + \frac{1}{m+3} |c_1|^2 \right) + \frac{2}{m+2} Re(\overline{a_m} a_{m+1} c_0 \overline{c_1}).$$

Similarly, we have

$$\langle H_{\overline{g}}(c_0 + c_1 z), H_{\overline{g}}(c_0 + c_1 z) \rangle$$

$$= |a_{-m}|^2 \left(\frac{1}{m+1} |c_0|^2 + \frac{1}{m+2} |c_1|^2 \right) +$$

$$|a_{-(m+1)}|^2 \left(\frac{1}{m+2} |c_0|^2 + \frac{1}{m+3} |c_1|^2 \right) + \frac{2}{m+2} Re(\overline{a_{-m}} a_{-(m+1)} c_0 \overline{c_1}).$$

Hence if T_{φ} is hyponormal, then

$$\langle (H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}})(c_0 + c_1 z), (c_0 + c_1 z) \rangle$$

$$= (|a_m|^2 - |a_{-m}|^2) \left(\frac{1}{m+1} |c_0|^2 + \frac{1}{m+2} |c_1|^2 \right)$$

$$+ (|a_{m+1}|^2 - |a_{-(m+1)}|^2) \left(\frac{1}{m+2} |c_0|^2 + \frac{1}{m+3} |c_1|^2 \right)$$

$$+ \frac{2}{m+2} Re(\overline{a_m} a_{m+1} c_0 \overline{c_1} - \overline{a_{-m}} a_{-(m+1)} c_0 \overline{c_1}) \ge 0.$$

Since

$$Re(\overline{a_m}a_{m+1}c_0\overline{c_1} - \overline{a_{-m}}a_{-(m+1)}c_0\overline{c_1}) \ge -|\overline{a_m}a_{m+1} - \overline{a_{-m}}a_{-(m+1)}||c_0\overline{c_1}|,$$

it follow from (2.2) that

$$(|a_{m}|^{2} - |a_{-m}|^{2}) \left(\frac{1}{m+1}|c_{0}|^{2} + \frac{1}{m+2}|c_{1}|^{2}\right) + (|a_{m+1}|^{2} - |a_{-(m+1)}|^{2})$$

$$\left(\frac{1}{m+2}|c_{0}|^{2} + \frac{1}{m+3}|c_{1}|^{2}\right) - \frac{2}{m+2}|\overline{a_{m}}a_{m+1} - \overline{a_{-m}}a_{-(m+1)}||c_{0}\overline{c_{1}}|$$

$$> 0$$

There are two cases to consider.

Case 1) If $c_1 = 0$, then

$$(m+2)(|a_m|^2 - |a_{-m}|^2) + (m+1)(|a_{m+1}|^2 - |a_{-(m+1)}|^2) \ge 0.$$

Cases 2) If $c_1 \neq 0$, then we have that

$$\left| \frac{c_0^2}{c_1^2} \right| \left(\frac{1}{m+1} (|a_m|^2 - |a_{-m}|^2) + \frac{1}{m+2} (|a_{m+1}|^2 - |a_{-(m+1)}|^2) \right)
- \frac{2}{m+2} \left| \frac{c_0}{c_1} \right| |\overline{a_m} a_{m+1} - \overline{a_{-m}} a_{-(m+1)}| + \frac{1}{m+2} (|a_m|^2 - |a_{-m}|^2)
+ \frac{1}{m+3} (|a_{m+1}|^2 - |a_{-(m+1)}|^2) \ge 0.$$

Since $\frac{1}{m+1}(|a_m|^2-|a_{-m}|^2)+\frac{1}{m+2}(|a_{m+1}|^2-|a_{-(m+1)}|^2)>0$, it follows that

$$\left(\frac{1}{m+1}(|a_m|^2 - |a_{-m}|^2) + \frac{1}{m+2}(|a_{m+1}|^2 - |a_{-(m+1)}|^2)\right)
\left(\frac{1}{m+2}(|a_m|^2 - |a_{-m}|^2) + \frac{1}{m+3}(|a_{m+1}|^2 - |a_{-(m+1)}|^2)\right)
\ge \frac{1}{(m+2)^2}|\overline{a_m}a_{m+1} - \overline{a_{-m}}a_{-(m+1)}|^2.$$

This completes the proof.

References

- 1. S. Axler, Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, Vol. I, Pitman Research Notes in Mathematics, Vol 171, Longman, 1988, pp. 1–50.
- 2. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812.
- 3. R. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
- 4. D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. **348** (1996), 4153–4174.
- 5. I.S. Hwang and W.Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. **354** (2002), 2461–2474.
- 6. I.S. Hwang, I.H. Kim and W.Y. Lee, Hyponormality of Toeplitz operators with polynomial symbol, Math. Ann 313 (1999), 247-261.
- 7. T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753–769.
- 8. H. Sadraoui, Hyponormality of Toeplitz operators and Composition operators, Thesis, Purdue University (1992).
- 9. K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations and Operator Theory **21** (1995), 376–381.
- 10. I.S. Hwang, Hyponormal Toeplitz operators on the Bergman space, J. Korean Math. Soc 42 (2005), 387-403.
- 11. I.S. Hwang and J.R.Lee, Hyponormal Toeplitz operators on the Bergman space. II, Bull. Korean Math. Soc 44 (2007), 517–522.

Department of Mathematics Sungkyunkwan University Suwon 440-746, Korea

E-mail: jjonglak@skku.ac.kr