COEFFICIENT INEQUALITIES FOR HARMONIC EXTERIOR MAPPINGS

Sook Heui Jun

Abstract

The purpose of this paper is to study harmonic univalent mappings defined in $\Delta=\{z:|z|>1\}$ that map ∞ to ∞. Some coefficient estimates are obtained in a normalized class of mappings.

1. Introduction

Let Σ be the class of all complex-valued, harmonic, orientation-preserving, univalent mappings, for which $f(\infty)=\lim _{z \rightarrow \infty} f(z)$ exists as ∞,

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}+A \log |z| \tag{1.1}
\end{equation*}
$$

of $\Delta=\{z:|z|>1\}$, where

$$
h(z)=z+\sum_{k=1}^{\infty} a_{k} z^{-k} \text { and } g(z)=\sum_{k=1}^{\infty} b_{k} z^{-k}
$$

are analytic in Δ and $A \in \mathbb{C}$. Hengartner and Schober[3] show that the Jacobian $\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}$ is positive, and

$$
a(z)=\frac{\overline{f_{\bar{z}}}}{f_{z}}=\frac{2 z g^{\prime}(z)+\bar{A}}{2 z h^{\prime}(z)+A}
$$

is analytic in Δ and satisfies $|a(z)|<1$.
The coefficient problem for this class appears to be difficult. In the full class Σ, a few estimates are known only for lower order coefficients: $|A| \leq$ 2 and $\left|b_{1}\right| \leq 1$ hold for the full class Σ, and $\left|b_{2}\right| \leq \frac{1}{2}\left(1-\left|b_{1}\right|^{2}\right) \leq \frac{1}{2}$ holds if $A=0$. These coefficient bounds[3] are all sharp and a consequence of Schwarz's lemma. If we restrict our attention to some subclass of Σ, we

[^0]can obtain good results; for $f \in \Sigma$ with $f(\Delta)=\Delta,\left|1+b_{1}\right| \leq 1,\left|b_{n}\right| \leq \frac{1}{n}$ for $n \geq 2$, and $\left|a_{n}\right| \leq \frac{1}{n}$ for all n.. These sharp coefficient bounds are obtained by Jun[4]. In this paper, we shall consider the subclass
$$
\Sigma_{c}=\{f \in \Sigma: f \text { is convex in the direction of the imaginary axis }\}
$$
of Σ. In order to get some coefficient estimates of harmonic univalent mappings in Σ_{c}, we will consider the analytic univalent function $h+$ g, and the meromorphic function $F(\zeta)=-\frac{1}{\zeta}+\zeta$ which is the minus reciprocal of the square-root transform of the Koebe function.

2. Mappings which are convex in the direction of the imaginary axis

Definition 1. A set D is called convex in the direction of the imaginary axis if every line parallel to the imaginary axis has a connected intersection with D.

Definition 2. A mapping f is convex in the direction of the imaginary axis if $f(\Delta)$ is convex in the direction of the imaginary axis.

Let Σ_{c} be the class of all mappings $f \in \Sigma$ which is convex in the direction of the imaginary axis.

Theorem 2.1. If $f=h+\bar{g}+A \log |z| \in \Sigma_{c}$ with $\Re\{A\}=0$, then the analytic function $h+g$ is conformal univalent in Δ.

Proof. Since f is univalent, there exists a mapping $z=z(w)$ such that $f(z(w))=w$ and $z(f(z))=z$. Thus we have $h+g=f-A \log |z|+i 2 \Im\{g\}$ and

$$
\begin{equation*}
h(z(w))+g(z(w))=w+i \phi(w) \tag{2.1}
\end{equation*}
$$

where $\phi(w)=i A \log |z(w)|+2 \Im\{g(z(w))\}$ is a continuous real valued function. Since $a(z)=\frac{2 z g^{\prime}(z)-A}{2 z h^{\prime}(z)+A}$ satisfies $|a(z)|<1$, we have $h^{\prime}(z)+$ $g^{\prime}(z) \neq 0$ in Δ. Thus $h+g$ is conformal, and the mapping $h(z(w))+$ $g(z(w))=w+i \phi(w)$ is locally univalent since $z(w)$ is 1-1. If $w_{1}+$ $i \phi\left(w_{1}\right)=w_{2}+i \phi\left(w_{2}\right)$ with $w_{1} \neq w_{2}\left(w_{1}=u_{1}+i v_{1}, w_{2}=u_{2}+i v_{2}\right)$, then $u_{1}=u_{2}=u$ and $v_{1}+\phi\left(u+i v_{1}\right)=v_{2}+\phi\left(u+i v_{2}\right)$. The real valued function $\psi(v)=v+\phi(u+i v)$, which is defined on some interval I since f is convex in the direction of the imaginary axis, is not strictly monotonic and therefore not locally 1-1. Thus $w+i \phi(w)=h+g$ is 1-1 and so conformal univalent.

Lemma 2.2. If $f=h+\bar{g}+A \log |z| \in \Sigma$ with $\Re\{A\}=0$ is convex in the direction of the imaginary axis, then the analytic function $h+g$ is also convex in the direction of the imaginary axis.

Proof. Let $D=f(\Delta)$. The image of D under the mapping $w+i \phi(w)$ defined as in (2.1) is convex in the direction of the imaginary axis since the mapping $w+i \phi(w)$ maps vertical lines into themselves.. Therefore $w+i \phi(w)=h(z(w))+g(z(w))$ is also convex in the direction of the imaginary axis.

Sharp coefficient bounds of the analytic univalent function $H(z)=$ $z+\sum_{n=0}^{\infty} c_{n} z^{-n}$ in Δ are known only for $1 \leq n \leq 3:\left|c_{1}\right| \leq 1[2]$, $\left|c_{2}\right| \leq \frac{2}{3}[5],\left|c_{3}\right| \leq \frac{1}{2}+e^{-6}$ [1]. From these, we can easily get the lower order coefficient bounds for the harmonic univalent mapping $f \in \Sigma_{c}$ with $\Re\{A\}=0$ as follows;

$$
\left|a_{1}+b_{1}\right| \leq 1,\left|a_{2}+b_{2}\right| \leq \frac{2}{3},\left|a_{3}+b_{3}\right| \leq \frac{1}{2}+e^{-6}
$$

In the following Theorem 2.3, we obtain the coefficient bounds for all orders.

Theorem 2.3. Let $f=h+\bar{g}+A \log |z| \in \Sigma_{c}$ with $\Re\{A\}=0$. If $h+g$ is real on the real axis, then

$$
\begin{aligned}
& \left|a_{1}+b_{1}\right| \leq 1 \\
& \left|a_{n}+b_{n}\right| \leq \frac{2 \sqrt{2}}{n} \quad \text { for } n>1
\end{aligned}
$$

Proof. Let $G(\zeta)=h(1 / \zeta)+g(1 / \zeta)$ on $0<|\zeta|<1$. Then the function $G(\zeta)=\frac{1}{\zeta}+\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) \zeta^{k}$ is regular univalent and convex in the direction of the imaginary axis by Theorem 2.1 and Lemma 2.2. $G(\zeta)$ is also real on the real axis. Thus, on $|\zeta|=r(0<r<1)$,

$$
\Im\left\{\zeta G^{\prime}(\zeta)\right\}=-\frac{\partial}{\partial \theta} \Re\left\{G\left(r e^{i \theta}\right)\right\} \begin{cases}>0 & \text { for } 0<\theta<\pi \\ <0 & \text { for } \pi<\theta<2 \pi\end{cases}
$$

Therefore

$$
\Re\left\{\frac{-\zeta^{2} G^{\prime}(\zeta)}{1-\zeta^{2}}\right\}>0 \text { for }|\zeta|<1
$$

Let $F(\zeta)=-\frac{1}{\zeta}+\zeta=-\frac{1}{\zeta}+\sum_{k=0}^{\infty} \alpha_{k} \zeta^{k}$. Then $\Re\left\{\frac{\zeta G^{\prime}(\zeta)}{F(\zeta)}\right\}>0$ and thus there exists a bounded regular function $\omega(\zeta)$, with $\omega(0)=0$ and $|\omega(\zeta)|<$

1 in $|\zeta|<1$, such that

$$
\frac{\zeta G^{\prime}(\zeta)}{F(\zeta)}=\frac{1+\omega(\zeta)}{1-\omega(\zeta)}, \omega^{\prime}(0)=0
$$

This implies that

$$
\left[\zeta F(\zeta)+\zeta^{2} G^{\prime}(\zeta)\right] \omega(\zeta)=\zeta^{2} G^{\prime}(\zeta)-\zeta F(\zeta)
$$

Let $G(\zeta)=\frac{1}{\zeta}+\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) \zeta^{k}=\frac{1}{\zeta}+\sum_{k=0}^{\infty} c_{k} \zeta^{k}$, then we have

$$
\begin{aligned}
& {\left[-2+\sum_{k=0}^{\infty}\left(k c_{k}+\alpha_{k}\right) \zeta^{k+1}\right] \omega(\zeta)=\sum_{k=0}^{\infty}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1}} \\
& {\left[-2+\sum_{k=0}^{n-1}\left(k c_{k}+\alpha_{k}\right) \zeta^{k+1}\right] \omega(\zeta)} \\
& =\sum_{k=0}^{n}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1}-\sum_{k=n}^{\infty}\left(k c_{k}+\alpha_{k}\right) \omega(\zeta) \zeta^{k+1} \\
& \quad+\sum_{k=n+1}^{\infty}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1} \\
& =\sum_{k=0}^{n}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1}+\sum_{k=n+2}^{\infty} \beta_{k} \zeta^{k}
\end{aligned}
$$

where $\sum_{k=n+2}^{\infty} \beta_{k} \zeta^{k}$ converges in $|\zeta|<1$. Let $\zeta=r e^{i \theta}(r<1)$. Then integrations give

$$
\begin{aligned}
4+\sum_{k=0}^{n-1}\left|k c_{k}+\alpha_{k}\right|^{2} & \geq 4+\sum_{k=0}^{n-1}\left|k c_{k}+\alpha_{k}\right|^{2} r^{2 k+2} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|-2+\sum_{k=0}^{n-1}\left(k c_{k}+\alpha_{k}\right) \zeta^{k+1}\right|^{2} d \theta \\
& \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|-2+\sum_{k=0}^{n-1}\left(k c_{k}+\alpha_{k}\right) \zeta^{k+1}\right|^{2}|\omega(\zeta)|^{2} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=0}^{n}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1}+\sum_{k=n+2}^{\infty} \beta_{k} \zeta^{k}\right|^{2} d \theta \\
& \geq \sum_{k=0}^{n}\left|k c_{k}-\alpha_{k}\right|^{2} r^{2 k+2}
\end{aligned}
$$

$$
\begin{gather*}
4+\sum_{k=0}^{n-1}\left|k c_{k}+\alpha_{k}\right|^{2} \geq \sum_{k=0}^{n}\left|k c_{k}-\alpha_{k}\right|^{2} \\
\left|n c_{n}-\alpha_{n}\right|^{2} \leq 4+\sum_{k=0}^{n-1}\left(\left|k c_{k}+\alpha_{k}\right|^{2}-\left|k c_{k}-\alpha_{k}\right|^{2}\right) \\
=4+4 \sum_{k=0}^{n-1} k \Re\left\{c_{k} \bar{\alpha}_{k}\right\} . \tag{2.2}
\end{gather*}
$$

From (2.2) with $n=1$, we obtain

$$
\left|c_{1}-1\right|^{2} \leq 4,\left|c_{1}-1\right| \leq 2
$$

and, for $n>1$,

$$
\begin{equation*}
n^{2}\left|c_{n}\right|^{2} \leq 4+4\left|c_{1}\right| \leq 16 \tag{2.3}
\end{equation*}
$$

Since the analytic function $h+g$ is univalent in Δ by Theorem 2.1, we have

$$
\sum_{k=1}^{\infty} k\left|a_{k}+b_{k}\right|^{2} \leq 1
$$

by the area theorem. From this we get

$$
\begin{equation*}
\left|a_{1}+b_{1}\right| \leq 1 . \tag{2.4}
\end{equation*}
$$

We now write

$$
\left|a_{n}+b_{n}\right| \leq \frac{2 \sqrt{2}}{n} \text { for } n>1,
$$

by (2.3) and (2.4).

References

[1] P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. 61 (1955), 116-136.
[2] T. H. Gronwall, Some remarks on conformal representation, Ann. of Math. 16 (1914-15), 72-76.
[3] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
[4] S. H. Jun, Univalent harmonic mappings on $\Delta=\{z:|z|>1\}$, Proc. Amer. Math. Soc. 119 (1993), 109-114.
[5] M. Schiffer, Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48-55.

Department of Mathematics
Seoul Women's University
Seoul 139-774, Korea
E-mail: shjun@swu.ac.kr

[^0]: Received October 17, 2007.
 2000 Mathematics Subject Classification: 30C45, 30C50.
 Key words and phrases: harmonic, univalent mappings.
 This work was supported by a research grant from Seoul Women's University (2007).

