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A BOUNDARY CONTROL PROBLEM FOR THE

TIME-DEPENDENT 2D NAVIER–STOKES EQUATIONS

Hongchul Kim∗ and Seon-Gyu Kim

Abstract. In this paper, a boundary control problem for a flow
governed by the time-dependent two dimensional Navier-Stokes equa-
tions is considered. We derive a mathematical formulation and a
relevant process for an appropriate control along the part of the
boundary to minimize the drag due to the flow.

After showing the existence of an optimal solution, the first order
optimality conditions are derived. The strict differentiability of the
state solution in regard to the control parameter shall be exposed rig-
orously, and the necessary conditions along with the system for the
optimal solution shall be deduced in conjunction with the evaluation
of the first order Gateaux derivative to the performance functional.

1. Introduction

In this paper, we are concerned with a boundary control problem for
a flow which is governed by the time-dependent two dimensional Navier-
Stokes equations. Let us describe the boundary control problem for a
time-dependent Navier-Stokes system that models the drag minimization
in a flow domain. For practical purposes, we assume that the boundary Γ
of the flow domain Ω is composed of two disjoint parts ; the homogeneous
part Γ0 and the non-homogeneous control part Γc such that Γ = Γ0∪Γc .
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We consider a two dimensional flow over the time interval [0, T ] in
the physical flow domain Ω with the control effected over the part Γc :

d~u

dt
− ν∆~u + (~u · ∇)~u +∇p = ~f in (0, T )× Ω ,(1.1)

∇ · ~u = 0 in (0, T )× Ω(1.2)

along with the Dirichlet boundary condition

(1.3) ~u =

{
~g on (0, T )× Γc

~0 on (0, T )× Γ0 ,

and an initial condition

(1.4) ~u(0, x) = ~u0(x) for x ∈ Ω .

Here, the vector field ~u(t, x) = (u1(t, x), u2(t, x)) denotes the velocity
of the two dimensional flow, p the pressure, and ν > 0 the inverse
of the Reynolds number whenever the variables are appropriately non-
dimensionalized. We will use the time variable by t, the state variable by
x in the flow domain Ω, and the boundary variable by s for consistency.
In our problem, the control parameter is the boundary velocity ~g along
Γc. For the compatibility in the whole system (1.1)–(1.4), the control
parameter ~g should satisfy

(1.5)

∫

Γc

~g · ~n ds = 0 ,

where ~n is the unit outward normal vector along the boundary Γc, and

(1.6) ~u0(x) = ~g(0, x) for x ∈ Γc .

In order to keep the balance between the initial and boundary conditions
in (1.3)–(1.4) together, it is natural to assume that ~u0 satisfies

(1.7) ∇ · ~u0 = 0 in Ω, ~u0 = ~0 on Γ0, and

∫

Γc

~u0 · ~n ds = 0 .

One could examine several physically meaningful objective functionals
for the boundary control in practices, e.g., seeking the desired velocity
tracking over the special region of the flow body Ω as in [9], or pursuing
an optimal drag reduction profile.

The modeling boundary control problem we are concerned with is
stated as follows :
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Find the boundary control ~g along Γc and a velocity field ~u
such that the performance functional

(1.8) J (~u,~g) = 2ν

∫ T

0

∫

Ω

D(~u) : D(~u) dxdt +
α

2

∫ T

0

∫

Γc

|~g|2 dsdt

is minimized subject to (~u,~g) satisfying the time-dependent
two dimensional Navier-Stokes equations (1.1)–(1.7) with its
compatibility between the initial and boundary conditions.

In (1.8), we denote the deformation tensor due to the flow by D(~u) =
1
2
(∇~u + (∇~u)T ) and α a nonnegative constant which is regarded as a

valuable parameter in times. This choice of nonnegative parameter may
be needed in general purposes. For this reason, it would be helpful to
refer some special occasions remarked in [13]. Especially, for α = 0, the
functional (1.8) represents the rate of energy dissipation associated with
the deformation followed by the flow. Physically, except for an additive
constant, this can be identified with the viscous drag of the flow.

The motivation for our choice of the functional can be described by the
following consideration. Under the constitutive laws, the stress tensor S
due to the Newtonian fluid is given by

S = −pI + 2νD(~u) .

Suppose the flow body Ω is immersed in the flow. Then the total force
acting on the fluid body during the time interval (0, T ) is given by

~F =

∫ T

0

∫

∂Ω

S · ~n dsdt ,

where ~n denotes the unit normal vector along the boundary, which points
into the body([6]). Since the component F~u, of the force acting in the
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direction of the velocity vector field ~u, is given by ~u · ~F , using the inte-
gration by parts and the solenoidal condition (1.2), we have

F~u = ~u · ~F
=

∫ T

0

∫

∂Ω

~u · S · ~n ds

= 2ν

∫ T

0

∫

Ω

D(~u) : D(~u) dxdt−
∫ T

0

∫

Ω

p(∇ · ~v) dxdt

+ ν

∫ T

0

∫

Ω

~v · ∇(∇ · ~v) dxdt

= 2ν

∫ T

0

∫

Ω

D(~u) : D(~u) dxdt .

Thus, the first term in the performance functional (1.8) stands for the
viscous drag forced by the flow, or kinematic dissipation energy inside
of the domain as in our case.

The plan of the study is as follows. In the rest of this section, we intro-
duce some notations and preliminary results that will be useful in what
follows. In section 2, we give a precise description of the model bound-
ary control problem, and then state and prove some results concerning
the existence of an optimal solution. In section 3, we will examine the
differentiability with respect to the control parameter for the concerned
velocity as well as the functional. As a result, the first order necessary
conditions can be found through a direct sensitivity analysis. In section
4, we organize the first order necessary conditions, which is identified in
section 3, into the optimality system. For completeness of discussion,
some suggestions for an algorithm to achieve an optimal control shall be
proposed with some closing remarks.

1.1. Notations and Preliminaries. Throughout this paper, C de-
notes generic constants whose values depend on the context. Let Ω be
a bounded open connected set in RI 2 with C2 boundary. We denote by
Hs(O), s ∈ IR, the standard Sobolev space of order s in regards the
set O, which is either the flow domain Ω, or its boundary Γ, or part of
its boundary. Whenever m is a nonnegative integer, the inner product
over Hm(O) is denoted by (f, g)m, and (f, g) denotes the inner product
over H0(O) = L2(O). Hence, we associate Hm(O) with its natural norm

‖f‖m =
√

(f, f)m. In fact, Hm(O) is defined as the closure of C∞(O)
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in the norm

‖f‖2
m =

∑

|α|≤m

∫

O
|
( ∂

∂x

)α

f(x)|2 dx .

The closure of C∞
0 (O) under the norm ‖ · ‖m will be denoted by Hm

0 (O).
For details about these spaces, see, e.g., [2], [5], [7] and [14].

We will use boldface notations for spaces of vector-valued functions.
For example, Hs(Ω) = [Hs(Ω)]2 denotes the space of RI 2-valued func-
tions such that each component belongs to Hs(Ω). Of special interest is
the space

H1(Ω) =

{
vj ∈ L2(Ω)

∣∣∣ ∂vj

∂xk

∈ L2(Ω) for j, k = 1, 2

}

equipped with the norm ‖~v‖1 = (
2∑

k=1

‖vk‖2
1)

1/2. Whenever Γ0 ⊂ Γ

has positive measure, we shall denote the space with the homogeneous
boundary condition along Γ0 by H1

Γ0
(Ω) = {~v ∈ H1(Ω) |~v = ~0 on Γ0},

and we let H1
0(Ω) = H1

Γ(Ω).
We define the space of infinitely differentiable solenoidal vector fields

by
V(Ω) = { ~u ∈ C∞(Ω̄) | ∇ · ~u = 0 in Ω , ~u = ~0 on Γ0} ,

and its completion in L2(Ω) and H1(Ω) by

H = { ~u ∈ L2(Ω) | ∇ · ~u = 0 in Ω , ~u = ~0 on Γ0} ,

and
V = { ~u ∈ H1

Γ0
(Ω) | ∇ · ~u = 0 in Ω } ,

respectively. Also, we will denote the space of solenoidal vector fields
equipped with the homogeneous boundary condition along the whole
boundary Γ by

V0(Ω) = {~u ∈ C∞
0 (Ω) | ∇ · ~u = 0 in Ω } ,

and its completion by

H0 = {~u ∈ L2(Ω) | ∇ · ~u = 0 in Ω, ~u = ~0 on Γ }
and

V0 = {~u ∈ H1
0(Ω) |∇ · ~u = 0 in Ω } .

It is well-known that H is the closure of V(Ω) in the space L2(Ω), V the
closure of V(Ω) in the space H1(Ω), and H0 and V0 the closure of V0(Ω).
The norm on H shall be defined by |~u|. We also define the norm on V by
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the seminorm ||~u|| = |∇~u|. According to the Poincare’s inequality([5]),
this seminorm is equivalent to H1-norm. We also note that H1-norm of
the vector ~v is given by

(1.9) ‖~v‖2
1 = |~v|2 + ‖~v‖2 .

Let us denote the dual space of V by V∗ and the duality between
V∗ and V by < ·, · >V∗ . Since V is densely embedded in H, we have
the canonical framework for the weak formulation in the sense that the
following inclusions imply dense embedding :

V ⊂ H ⊂ V∗ .

For the traces to the control boundary Γc, we will define γ0
c : H1

Γ0
(Ω) →

H1/2(Γc) by γ0
c (~u) = ~u

∣∣∣
Γc

and γ1
c : H1

Γ0
(Ω) → H−1/2(Γc) by γ1

c (~u) =

∂~u

∂~n

∣∣∣
Γc

.

In order to define a weak form for the Navier-Stokes equations, we
introduce the continuous bilinear form

(1.10) a(~u,~v) = 2ν

∫

Ω

D(~u) : D(~v) dx ∀ ~u,~v ∈ H1(Ω) ,

and the trilinear form on H1(Ω)×H1(Ω)×H1(Ω)

(1.11) b(~w; ~u,~v) =

∫

Ω

(~w · ∇)~u · ~v dx =
2∑

i,j=1

∫

Ω

wj

(
∂ui

∂xj

)
vi dx .

Here D(~u) : D(~v) denotes the tensor product
2∑

i,j=1

Dij(~u)Dij(~v), where

Dij(~u) = 1
2
(∂ui/∂xj+∂uj/∂xi). Obviously, a(·, ·) is a continuous bilinear

form on H1(Ω) × H1(Ω) and b(·; ·, ·) is a continuous trilinear form on
H1(Ω)×H1(Ω)×H1(Ω), which can be verified by the Sobolev embedding
of H1(Ω) ⊂ L4(Ω) and Hölder’s inequality. For details, one may refer
[2], [5] and [14]. We also have the coercivity property

(1.12) a(~v,~v) ≥ C‖~v‖2
1 ∀~v ∈ H1

Γ0
(Ω) .

It is worthwhile to notice that

2∇ ·D(~u) = ∆~u +∇(∇ · ~u) .
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If we take a dot product with ~v and then integration, we obtain by
Green’s formula

2

∫

Γ

~v ·D(~u)~n ds =

∫

Ω

∆~u · ~v dx + 2

∫

Ω

D(~u) : ∇~v dx .

Since D(~u) is a symmetric tensor, we have
∫

Ω

D(~u) : ∇~v dx =

∫

Ω

D(~u) : D(~v) dx .

Hence, for ~v ∈ V ∩H1
0(Ω), it follows that

(1.13) 2

∫

Ω

D(~u) : D(~v) dx = −
∫

Ω

∆~u ·∆~v dx =

∫

Ω

∇~u : ∇~v dx .

Related to the duality pairing < ·, · >V∗ , we will make use of the
following operators:

A : V −→ V∗ ,

which is defined by

(1.14) < A~u,~v >V∗= a(~u,~v) ∀ ~u, ~v ∈ V ,

and

B : V ×V −→ V∗

defined by

(1.15) < B(~u,~v), ~w >V∗= b(~u;~v, ~w) ∀ ~u, ~v, ~w ∈ V .

If we encounter no other confusion, we will denote B(~u, ~u) by B(~u),
and V∗ will be dropped out in the duality between V∗ and V so that
< ·, · >V∗=< ·, · >.

For the operator B and its associated trilinear form b(·; ·, ·), the fol-
lowing results will be widely used in the sequel.

Lemma 1.1

(i) The map B : V → V∗ ; (~u 7→ B(~u)) is differentiable, and we have

(1.16) B ′(~u;~v) =
d

dτ
B(~u + τ~v, ~u + τ~v)

∣∣∣
τ=0

= B(~u,~v) + B(~v, ~u) .

Furthermore, if we represent the corresponding adjoint of B ′(·; ·)
by B ′(·; ·)∗ so that

< B ′(~u;~v)∗, ~w >= < B ′(~u; ~w), ~v > ,
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then it follows

(1.17) < B ′(~u;~v)∗, ~w >=

∫

Ω

2∑
i,j=1

wj

(
∂ui

∂xj

vi − ui
∂vj

∂xi

)
dx ∀ ~w ∈ V0 .

(ii) The trilinear form b(·; ·, ·) has the following properties:

(1.18) (orthogonality) b(~u;~v,~v) = 0 ∀ ~u ∈ V0 , ∀~v ∈ H1(Ω) ,

{ | b(~u;~v, ~w)| ≤ C‖~u‖‖~v‖‖~w‖ ∀ ~u, ~v, ~w ∈ V ,

| b(~u;~v, ~w)| ≤ C‖~u‖‖~v‖|~w|1/2‖~w‖1/2 ∀ ~u, ~v, ~w ∈ V .
(1.19)

Moreover, for ~u ∈ V, ~v ∈ V ∩H2(Ω), and ~w ∈ H, we have

| b(~u;~v, ~w)| ≤ C |~u|1/2‖~u‖1/2‖~v‖1/2|A~v|1/2|~w|
≤ C‖~u‖‖~v‖1/2|A~v|1/2|~w| .

(1.20)

Proof : The estimates (1.19) and (1.20) can be obtained by applying the
Poincare’s inequality to the results listed in [4] and [14]. For (1.17), by
taking the test function ~w in V0, we have

< B ′(~u; ~w), ~v > = < B(~w, ~u), ~v > + < B(~u, ~w), ~v >

=

∫

Ω

2∑
i,j=1

(
wj

∂ui

∂xj

vi + ui
∂wj

∂xi

vj

)
dx

=

∫

Ω

2∑
i,j=1

wj

(∂ui

∂xj

vi − ui
∂vj

∂xi

)
dx

−
∫

Ω

(∇ · ~u)~w · ~v dx−
∫

Γ

(~w · ~v)~u · ~n ds

=

∫

Ω

2∑
i,j=1

wj

(∂ui

∂xj

vi − ui
∂vj

∂xi

)
dx .

Hence (1.17) follows.

From (1.16), it follows that B ′(~u;~v) corresponds to the linearized form
for the nonlinear convective term B(~u) = (~u · ∇)~u in the ~v-direction, so
that

(1.21) B ′(~u;~v) = (~u · ∇)~v + (~v · ∇)~u .
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On the while, one can see from (1.17) that its adjoint B ′(~u;~v)∗ is repre-
sented by

(1.22) B ′(~u;~v)∗ = (∇~u)t~v − (~u · ∇)~v ,

where (∇~u)t denotes the transpose of the tensor. The following skew-
symmetric condition ensues from the orthogonality property (1.18) :

(1.23) b(~u;~v, ~w) = − b(~u; ~w,~v) ∀ ~u ∈ V ∩H1
0(Ω) , ∀~v , ~w ∈ H1(Ω) .

Final remarks is in the order. Let X be a Banach space defined on a
domain Ω. For the time-dependent system, we shall denote the function
space C(0, T ; X) to be the class of functions y(t, x) such that for a fixed
x ∈ Ω, t 7→ y(t, x) is a continuous function over [0, T ], while y(t) ≡ y(t, ·)
belongs to X. For 1 ≤ p ≤ ∞, Lp(0, T ; X) denotes the completion of
C(0, T ; X) with respect to the norm

‖y‖Lp(0,T ;X) =
( ∫ T

0

‖y(t)‖p
X dt

)1/p

.

For a reflexive Banach space X, we will use the notion L∞(0, T ; X) to
denote the dual space of L1(0, T ; X). In most cases, X will be Hilbert
spaces.

2. Existence results

We shall project the system (1.1)–(1.7) into the dual space of the
solenoidal vector fields as in [1] and [4]. For the boundary control prob-
lem (1.8), we will show the existence of an optimal solution.

2.1. The mathematical setting of the problem. We first note that

L2(Ω) = H0 ⊕H⊥
0 ,

where

H⊥
0 = {~u ∈ L2(Ω) | ~u = ∇φ for some φ ∈ H1(Ω) } .

If ~u ∈ H0, from

∫

Ω

~u ·∇φ dx =

∫

Γ

φ~u ·~n ds−
∫

Ω

(∇·~u)φ dx, it follows that
∫

Ω

~u · ∇φ dx = 0 for every φ ∈ H1(Ω). On the other hand, if ~u ∈ L2(Ω)

satisfies ~u = ~0 on Γ and

∫

Ω

~u · ∇φ dx = 0 for all φ ∈ H1(Ω), then by the
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Green’s formula we have ∇ · ~u = 0 in Ω, so that ~u ∈ H0. This justifies
the orthogonal decomposition of L2(Ω).

By P , we define the orthogonal projector P : L2(Ω) → H0. It is
obvious that the operator in (1.14) corresponds to A = P(−∆), and
the operator in (1.15) to B(~u,~v) = P((~u · ∇)~v). In perspective points
of view, the major advantage we can get by applying the projector P
to the Navier-Stokes system is that the pressure term can be excluded,
so that it is reduced to the system only the velocity concerned. After
finding the velocity, the pressure then can be retrieved by applying de
Rham’s lemma. For details, see, e.g., [4], [6] or [10].

According to this formulation, the Navier-Stokes system (1.1)–(1.4)
can be written by





d~u

dt
+ νA~u + B(~u) = P ~f in (0, T )× Ω ,

∇ · ~u = 0 in (0, T )× Ω ,

~u = ~g on (0, T )× Γc ,

~u = ~0 on (0, T )× Γ0 ,

~u(0, x) = ~u0(x) ∀x ∈ Ω .

(2.1)

For consistency in the mathematical formulation, we assume the body

force satisfies ∇ · ~f = 0 in (0, T )× Ω, so that P ~f = ~f in (2.1).

Ahead of presenting the well-posedness of the system (1.1)–(1.7) as
well as the relevant regularity results, we need to pay some careful at-
tention to the compatibility conditions between the boundary and initial
conditions. From (1.6) and (1.7), the initial data ~u0 must satisfy the con-
ditions

(2.2) ~u0 ∈ V , ~u0(s) = ~g(0, s) ∀ s ∈ Γc, and

∫

Γc

~u0 · ~n ds = 0 .

For the boundary vector fields in our need, we use the space

W = {~g ∈ H
1/2
0 (Γc) |

∫

Γc

~g · ~n ds = 0 } .

Then, W is a closed subspace of H1/2(Γc), and the boundary condition
~g, which is comprised the control parameter in our case, belongs to the
space W ≡ L2(0, T ;W).
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For the norm of ~g in W , one may take

‖~g‖Γc =

(∫ T

0

|~g|2Γc
dt

)1/2

,

where | · |Γc denotes the H1/2-norm on Γc. We let H−1/2(Γc) denote

the dual space of H
1/2
0 (Γc), and < ·, · >Γc denote the duality between

H−1/2(Γc) and H
1/2
0 (Γc). When ~s ∗ ∈ H

−1/2
0 (Γc), from the definition for

the dual norm, the norm of ~s ∗ in H−1/2(Γc) is given by

|~s ∗|−1/2,Γc = sup
~h∈H

1/2
0 (Γc)

< ~s ∗,~h >Γc

|~h|Γc

.

In [8], it is shown that

|~s ∗|−1/2,Γc = sup
~v∈H1

Γ0
(Ω)

< ~s ∗, γ0
c (~v) >Γc

‖~v‖1

can be used as an alternative equivalent norm for the space H−1/2(Γc).
Since the dual space of W = L2(0, T ;W) is W ∗ = L2(0, T ;W ∗), the
duality between W ∗ and W can be given by

< ~s ∗,~h >W ∗=

∫ T

0

< ~s ∗, γ0
c (~v) >Γc dt

for ~v ∈ L2(0, T ;H1
Γ0

(Ω)) with γ0
c (~v) = ~h.

In the following theorem, we present some classical results concerning
the well-posedness and the regularity result for the time-dependent two
dimensional Navier-Stokes system.

Theorem 2.1 Let Ω be a bounded domain with the C2 boundary. Let
~u0 and ~g satisfy the compatibility conditions (1.5)–(1.7).

(i) Let ~f ∈ L2(0, T ;H). Then, the system (2.1) has a unique solution
~u which belongs to X ≡ L2(0, T ;V)∩L∞(0, T ;H), and the system
is well posed in a sense

(2.3) ‖~u‖2
X ≤ C

(
‖~g‖2

Γc
+ ‖~u0‖2 + ‖~f‖2

L2(0,T ;H)

)
.

Moreover,
d~u

dt
belongs to L2(0, T ;V∗).

(ii) Let ~f and
d~f

dt
∈ L2(0, T ;H) with ~f(0, ·) ∈ H, ~u0 ∈ V ∩ H2(Ω),

and for each 0 ≤ t ≤ T , ~g ∈ L2(0, T ;W ∩ H3/2(Γc)). Then the
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solution ~u of the system (2.1) belongs to L2(0, T ;H2(Ω)), and
d~u

dt
to L2(0, T ;V) ∩ L∞(0, T ;H).

For proof, one may follow the compactness argument by employing the
Galerkin approximation method as in [11], [12] and [14]. The condition
and the result on regularity in (ii) are standard.

Based on this preliminary facts, we show the existence result for the
boundary control problem in the next section.

2.2. Existence of an optimal solution. We provide a precise formu-
lation for the control problem (1.8) and prove the existence of an optimal
solution. To comply with our discussion in the previous section, we set
the admissible family of sets by

Uad = {(~u,~g) ∈ L2(0, T ;V)× L2(0, T ;W) | J (~u,~g) < ∞,

(~u,~g) satisfies (2.1) with ~u0 satisfies (2.2)} .

Then the boundary control problem we are concerned with can be
stated in the following way :

Given ~u0 ∈ V along with the compatibility condition (2.2),
find (~u,~g) ∈ Uad such that the boundary control ~g minimizes
the performance functional

(2.4) J (~u,~g) = 2ν

∫ T

0

∫

Ω

D(~u) : D(~u) dxdt +
α

2

∫ T

0

∫

Γc

|~g|2 dsdt .

The first term in (2.4) expresses the energy dissipation forced by the
deformation due to the flow and the second part represents the driven
control along the control boundary Γc.

We now turn to the question of the existence of an optimal solution.

Theorem 2.2 Let ~f ∈ L2(0, T ;H) and ~u0 ∈ V be given. Suppose ~u0

satisfies the compatibility condition

∫

Γc

~u0 · ~n ds = 0. Then, there exists

at least one optimal solution (~u,~g) ∈ Uad which minimizes the functional
(2.4), and ~u = ~u(~g) satisfies γ0

c (~u) = ~g and ~u(0, x) = ~u0(x), ∀x ∈ Ω.
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Proof : An admissible solution can be found by first setting ĝ(t, ·) =
γ0

c (~u0) for 0 ≤ t ≤ T , and then by solving the system




dû

dt
+ νAû + B(û) = ~f in (0, T )× Ω ,

∇ · û = 0 in (0, T )× Ω ,

û = ĝ on (0, T )× Γc ,

û = ~0 on (0, T )× Γ0 ,

û(0, x) = ~u0(x) ∀x ∈ Ω .

According to Theorem 2.1, the solution (û, ĝ) exists and belongs to Uad.
Since the set of admissible solutions Uad is not empty and the set

of the values assumed by the functional is bounded from below, there
exists a minimizing sequence ~gm ∈ W , and the corresponding sequence
for the velocity ~um = ~u(~gm), where ~u = ~um is a solution of the system
(2.1) with ~g = ~gm. Then since the sequence ~gm is uniformly bounded in
L2(0, T ;W), by (2.3) the corresponding sequence ~um is also uniformly
bounded in L2(0, T ;V) ∩ L∞(0, T ;H). Thus one can extract from the
sequence {(~um, ~gm)} a subsequence (denoted again by the same notation)
in L2(0, T ;V)× L2(0, T ;W) which converges weakly to (~u,~g).

Hence one can write

~gm → ~g weakly in L2(0, T ;H1/2(Γc)) ,
~um → ~u weakly in L2(0, T ;V) ,
~um → ~u strongly in L2(0, T ;H) ,
~um → ~u weakstarly in L∞(0, T ;H) .

Since J (·, ·) is coercive and strongly continuous by (1.12) and (2.3), the
performance functional J is lower semicontinuous. Hence passing to the
limit in Uad, we have

J (~u,~g) ≤ lim inf
n→∞

J (~um, ~gm) ,

so that the functional is minimized at (~u,~g).
To complete the proof, it remains to show that (~u,~g) belongs to the

admissible set Uad. First of all, we need to note: a priori estimate by
using the compactness argument in the fractional time order Sobolev
space yields the strong convergence of ~um to ~u in L2(0, T ;H) as stated
above, see [4] and [14] for details.
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Note that for ~w ∈ L2(0, T ;V), we have

b(~um; ~w, ~um)− b(~u; ~w, ~u)
= b(~um − ~u; ~w, ~um − ~u) + b(~um − ~u; ~w, ~u) + b(~u; ~w, ~um − ~u) .

Using (1.19), the strong convergence of ~um to ~u in L2(0, T ;H), and the
Sobolev embedding H1(Ω) ⊂ L4(Ω), we have for every ~w ∈ L2(0, T ;V)

< B(~um, ~um), ~w > = − < B(~um, ~w), ~um >

−→ − < B(~u, ~w), ~u > = < B(~u, ~u), ~w > .

Hence ~u satisfies the equation

d~u

dt
+ νA~u + B(~u) = ~f .

Since ~gm = γ0
c (~um) weakly converges to ~g and the lifting ~um of ~gm

strongly converges to ~u in L2(0, T ;V), by the continuity of the trace([5])
it follows that γ0

c (~u) = ~g, which implies that ~u = ~u(~g).

Finally, we need to show that ~u(0, ·) = ~u0. Note that ~um ∈ L2(0, T ;V)
is a solution of an initial problem for the parabolic system

(2.5)





d

dt
~um = ~f − νA~um − B(~um) on L2(0, T ;V∗) ,

~um(0) = ~u0 for every m.

Since C1(0, T ) × V0(Ω) is dense in L2(0, T ;V0), multiplying (2.5) by

a trial function φ(t)~ζ such that φ ∈ C1(0, T ) with φ(T ) = 0 and ~ζ ∈ V0,
and taking integration by parts, we have

−
∫ T

0

< ~um, φ′(τ)~ζ > dτ = < ~u0, φ(0)~ζ > +

∫ T

0

< ~f, φ(τ)~ζ > dτ

− ν

∫ T

0

a(~um, φ(τ)~ζ) dτ −
∫ T

0

b(~um; ~um, φ(τ)~ζ) dτ .

After passing to the limit and integrating of the first term by parts, this
yields

< (~u(0)− ~u0), ~ζ > φ(0) = 0 ∀ ~ζ ∈ V0 .

Hence, if we choose φ with φ(0) 6= 0, it follows ~u(0) = ~u0.
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3. Sensitivity Analysis

We investigate the question of what relations characterizes an opti-
mal solution. For this purpose, we examine the differentiability for the
performance functional as well as the corresponding velocity vector field
with respect to the control parameter. Our ultimate goal is to derive
the necessary conditions for an optimal solution. By Theorem 2.1, the
solution ~u for the system (2.1) can be described as a function of the
control parameter. For this reason, the functional J (·, ·) can be casted
equivalently into the functional

(3.1) J (~g) = J (~u(~g), ~g) for ~g ∈ W .

Let us investigate the rate of variation of J (~g) with respect to the

control parameter ~g. The rate of variation at ~g in the direction of ~h can
be measured as a directional semi-derivative

(3.2) dJ (~g;~h) =
d

dτ
J (~g + τ~h)

∣∣∣
τ=0

.

This derivation for J (~g) is said to be Gateaux-differentiable if

◦ dJ (~g;~h) exists for every ~h,

◦ ~h 7→ dJ (~g;~h) is linear and continuous.

When the functional J is Gateaux-differentiable, the rate of variation

dJ (~g;~h) is called the Gateaux-derivative at ~g in the ~h-direction. Before
proving differentiability, we recall the following inequalities which are
now classical.

Lemma 3.1

(i) (Gronwall’s Lemma) Let φ and ψ be real continuous functions
over the interval [t0, t1] with ψ(τ) ≥ 0 for all τ ∈ [t0, t1]. Suppose
for some constant C

φ(t) ≤ C +

∫ t

t0

φ(τ)ψ(τ) dτ ∀ t ∈ [t0, t1] ,

then it follows that

(3.3) φ(t) ≤ C exp
( ∫ t

t0

ψ(τ) dτ
)

∀ t ∈ [t0, t1].

(ii) (Young’s inequality) Let φ be a continuous function such that
φ(0) = 0 and φ is strictly increasing over [0,∞), and let ψ be an



72 Hongchul Kim and Seon-Gyu Kim

inverse function of φ, then for every positive constants a and b we
have

(3.4) ab ≤
∫ a

0

φ(τ) dτ +

∫ b

0

ψ(τ) dτ .

Of special interest to us, we need the following specific variations of
(3.3) and (3.4).

Lemma 3.2

(i) (Gronwall’s inequality) Let φ and ψ be continuous functions and
let r(t) be continuously differentiable function over the interval
[t0, t1]. Suppose that ψ(t) ≥ 0 and r′(t) ≥ 0 for all t ∈ [t0, t1],
and that

(3.5) φ(t) ≤ r(t) +

∫ t

t0

φ(τ)ψ(τ) dτ ∀ t ∈ [t0, t1] ,

then it follows that

(3.6) φ(t) ≤ r(t) exp
( ∫ t

t0

ψ(τ) dτ
)

∀ t ∈ [t0, t1].

(ii) (Young’s inequality) Let a and b be positive constants. Let ε > 0
be given. For 1 < p < ∞, we have

(3.7) ab ≤ 1

p
(ε1/p a)p +

1

q

( b

ε1/p

)q

, (
1

p
+

1

q
= 1) .

Proof : (ii) is directly obtained by taking φ(τ) = ετ p−1 in (3.4).

Let us show (i). If we put R(t) = r(t) +

∫ t

t0

φ(τ)ψ(τ) dτ , then from

φ(t) ≤ R(t), it follows that R ′(t) ≤ r ′(t) + ψ(t)R(t), and the following
differential inequality is derived as a result :

(3.8)
d

dt
(R(t) exp(−

∫ t

t0

ψ(τ) dτ)) ≤ r ′(t) exp(−
∫ t

t0

ψ(τ) dτ) .

Let us put χ(t) = exp(−
∫ t

t0

ψ(τ) dτ). Then, χ(t0) = 1 and χ ′(t) =

−ψ(t)χ(t) ≤ 0, for χ(t) ≥ 0 and ψ(t) ≥ 0 for all t. Hence, χ(t) ≤
χ(t0) = 1 and (3.8) leads to

(3.9)
d

dt
(R(t)χ(t)) ≤ r ′(t) .
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Since R(t0)χ(t0) = R(t0) = r(t0), taking integration in (3.9), we have

R(t)χ(t) ≤ r(t) ∀ t ∈ [t0, t1] ,

so that

φ(t) ≤ R(t) ≤ r(t) exp(

∫ t

t0

ψ(τ) dτ) .

Young’s inequality (3.7) is mainly used to detach one positive constant
from the multiplied constants and to modulate the size of the constant
by imposing appropriate weights.

3.1. Sensitivity for the state solution. We show that the state so-
lution ~u is strictly differentiable with respect to the control parameter.

Theorem 3.3 Let Ω ⊂ RI 2 be a bounded domain with C2 boundary.

Let ~f ∈ L2(0, T ;H) and ~u0 ∈ V be given. Suppose ~u0 satisfies the
compatibility conditions (2.2). Then, the mapping

~u : L2(0, T ;W) → L2(0, T ;V) ;
(

~g 7→ ~u(~g)
)

is differentiable. Furthermore, if we represent the Gateaux-derivative of

~u at ~g in the ~h-direction by ŵ(~h) ≡ d~u(~g;~h), then ŵ(~h) is the solution
of the linearized equations





dŵ

dt
+ νAŵ + B ′(~u(~g); ŵ) = ~0 in (0, T )× Ω ,

∇ · ŵ = 0 in (0, T )× Ω ,

ŵ = ~h on (0, T )× Γc ,

ŵ = ~0 on (0, T )× Γ0 ,

ŵ(0, x) = ~0 ∀ x ∈ Ω ,

(3.10)

and ŵ = ŵ(~h) belongs to L∞(0, T ;H) ∩ L2(0, T ;V).
Proof : If the data are good enough, the time-dependent linearized two
dimensional Navier-Stokes system is well posed(see [11] and [14] for de-
tails), and the solution ŵ belongs to L∞(0, T ;H) ∩ L2(0, T ;V).

To show that ~u(~g) is strictly differentiable, we need to prove

(3.11) ‖~u(~g + τ~h)− ~u(~g)− τŵ(~h)‖L2(0,T ;V) ≤ C |τ |k for some k > 1 .
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If we set ~r = ~u(~g + τ~h)− ~u(~g)− τŵ(~h), where ŵ is a solution of the
system (3.10), it is obvious that ~r is a solution of the system





d~r

dt
+ νA~r + B(~u(~g + τ~h))− B(~u(~g))

−τB ′(~u(~g); ŵ(~h)) = ~0 in (0, T )× Ω ,

∇ · ~r = 0 in (0, T )× Ω ,

~r = ~0 on (0, T )× Γ ,

~r(0, x) = ~0 ∀x ∈ Ω .

(3.12)

Let us denote ~u(~g+τ~h)−~u(~g) ≡ ũ. Obviously, ũ satisfies the following
nonlinear system





dũ

dt
+ νAũ + B ′(~u(~g); ũ) + B(ũ) = ~0 in (0, T )× Ω ,

∇ · ũ = 0 in (0, T )× Ω ,

ũ = τ~h on (0, T )× Γc ,

ũ = ~0 on (0, T )× Γ0 ,

ũ(0, x) = ~0 ∀x ∈ Ω .

(3.13)

If we set

(3.14) B(~u(~g + τ~h))− B(~u(~g))− B ′(~u(~g); ũ) = ~ξ ,

then the system (3.12) is converted into the homogeneous system





d~r

dt
+ νA~r + B ′(~u(~g);~r) = − ~ξ in (0, T )× Ω ,

∇ · ~r = 0 in (0, T )× Ω ,

~r = ~0 on (0, T )× Γ ,

~r(0, x) = ~0 ∀x ∈ Ω .

(3.15)

At this point, one cannot say the well-posedness of this system, since ~ξ
contains the term ũ. Assuming momentarily ũ ∈ L2(0, T ;V), we observe
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that for ~v ∈ L2(0, T ;V0),

| < ~ξ,~v > | = | < (B(~u + τ~h), ~v > − < B(~u(~g), ~v >

− < B ′(~u(~g); ũ), ~v > |
= | b(~u(~g + τ~h); ~u(~g + τ~h), ~v)− b(~u(~g); ~u(~g), ~v)

− b(~u(~g); ũ, ~v)− b(ũ; ~u(~g), ~v)|
= | b(ũ; ũ, ~v)| from the orthogonality (1.18)

≤ C‖ũ‖2‖~v‖ from (1.19) .

Hence, we have

(3.16) ‖~ξ‖V∗ ≤ C‖ũ‖2 , whenever ũ belongs to L2(0, T ;V) .

In order to estimate ‖~r‖, we take a weak product with A~r in (3.15).

Then, using the facts ~r(t, ·) ∈ V0 and B ′(~u;~r) = B(~u,~r) + B(~r, ~u), it
follows that

(3.17)
1

2

d

dt
‖~r‖2 + ν |A~r|2 + b(~u;~r,A~r) + b(~r; ~u,A~r) =< ~ξ,A~r > .

Note that by applying the Young’s inequality, we obtain

| < ~ξ,A~r > | ≤ ‖~ξ‖V∗|A~r| ≤ α1‖~ξ‖
2

V∗ + β1|A~r|2
for some appropriate chosen positive constants α1 and β1. Similarly,
using the first inequality in (1.20) and (3.7), we have

| b(~u;~r,A~r)| ≤ C‖~u‖‖~r‖1/2|A~r|3/2 ≤ α2‖~u‖4‖~r‖2 + β2|A~r|2 ,

| b(~r; ~u,A~r)| ≤ C‖~r‖‖~u‖1/2|A~u|1/2|A~r|1/2

≤ α3‖~u‖|A~u|‖~r‖2 + β3|A~r|2
for some constants αi and βi. One can take βi , (i = 1, 2, 3), sufficiently
small, so that δ = 2ν − (β1 + β2 + β3) > 0. Combining all this results in
(3.17), the following inequality is obtained :

(3.18)
d

dt
‖~r‖2 + δ|A~r|2 ≤ α‖~ξ‖2

V∗ + β(‖~u‖4 + ‖~u‖|A~r|)‖~r‖2 ,

where α, β and δ are all positive. Hence, from the Gronwall’s inequality
in Lemma 3.2, we obtain

(3.19) ‖~r‖2 ≤ α(t)‖~ξ‖2

V∗ ,



76 Hongchul Kim and Seon-Gyu Kim

where α(t) is a bounded function of t. Consequently, combined with
(3.16), we can derive

(3.20) ‖~r‖2
L2(0,T ;V) =

∫ T

0

‖~r‖2 dt ≤ C

∫ T

0

‖ũ‖4 dt

for some constant C > 0.

It remains to estimate ‖ũ‖, where ũ is a solution for the system (3.13)
with the non-homogeneous boundary condition. To show that ũ belongs
to L2(0, T ;V), let us decompose ũ as ũ1 + ũ2, where ũ1 is a solution
of the linearized system with the non-homogeneous boundary condition
along Γc





dũ1

dt
+ νAũ1 + B ′(~u(~g); ũ1) = 0 in (0, T )× Ω ,

∇ · ũ1 = 0 in (0, T )× Ω ,

ũ1 = τ~h on (0, T )× Γc ,

ũ1 = ~0 on (0, T )× Γ0 ,

ũ1(0, x) = ~0 ∀x ∈ Ω .

(3.21)

Then, ũ2 corresponds to the solution of the following nonlinear system
with the homogeneous boundary condition





dũ2

dt
+ νAũ2 + B ′(ũ1 + ~u(~g); ũ2)

+B(ũ2) = −B(ũ1) in (0, T )× Ω ,

∇ · ũ2 = 0 in (0, T )× Ω ,

ũ2 = ~0 on (0, T )× Γ ,

ũ2(0, x) = ~0 ∀x ∈ Ω .

(3.22)

Since the linearized system (3.21) is well posed, we have

(3.23) ‖ũ1‖L2(0,T ;V) ≤ C |τ |‖~h‖Γc

for some constant C > 0.
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To evaluate ‖ũ2‖, taking a weak product with Aũ2 in (3.22), then we
obtain

1

2

d

dt
‖ũ2‖2 + ν |Aũ2|+ b(ũ2, ũ1 + ~u(~g),Aũ2)

+b(ũ1 + ~u(~g), ũ2,Aũ2) + b(ũ2, ũ2,Aũ2) = −b(ũ1, ũ1,Aũ2) .
(3.24)

It is worthwhile to notice the followings :

|b(ũ1, ũ1,Aũ2)| ≤ C |ũ1|‖ũ1‖|Aũ1|1/2|Aũ2|
≤ α1|ũ1|2‖ũ1‖2|Aũ1|+ β1|Aũ2|2

≤ α1|τ |2‖~h‖2
Γc
|ũ1|2|Aũ1|2 + β1|ũ2|2 ,

and
|b(ũ2, ũ2,Aũ2)| ≤ C |ũ2|1/2‖ũ2‖|Aũ2|3/2

≤ α2|ũ2|2‖ũ2‖2 + β2|Aũ2|2 .

The constants listed above are all positive, which the values depend on
the context. Above estimates are all obtained by using (3.6) and the
second inequality in (1.20). Analogously from the other two terms for
the trilinear forms in (3.24), one can separate the term |Aũ2|2 from the
others. Hence, from (3.24) one can introduce the following differential
inequality for ‖ũ2‖2 :

(3.25)
d

dt
‖ũ2‖2 ≤ α|τ |2‖~h‖2

Γc
+ βψ(t)‖ũ2‖2

for some appropriate constant α and β. Here, ψ(t) is a nonnegative
bounded function. Again by the Gronwall’s inequality, it follows that

(3.26) ‖ũ2‖2 ≤ α(t)|τ |2‖~h‖2
Γc

,

where α(t) > 0 is bounded. Thus, combining this result with (3.23), we
have

‖ũ‖2
L2(0,T ;V) =

∫ T

0

‖ũ1 + ũ2‖2 dt

≤ C

∫ T

0

(‖ũ1‖2 + ‖ũ2‖2) dt

≤ C |τ |2‖~h‖2
Γc

.

(3.27)

Consequently, joining (3.27) to (3.20), the following result is followed :

(3.28) ‖~r‖2
L2(0,T ;V) ≤

∫ T

0

‖~r‖2 dt ≤ C

∫ T

0

‖ũ‖4 dt ≤ C |τ |4
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for some constant C > 0. Therefore, k = 2 in (3.11) is derived, and it
completes the proof.

Remark : By taking a weak product with ũ in (3.13) and using the sec-
ond inequality of (1.19), one can also show that ũ belongs to L∞(0, T ;H)

and its essential bound is given by |ũ|L∞(0,T ;H) ≤ C |τ |‖~h‖Γc . Hence,
along with (3.27), one can say that the nonlinear system (3.13) is well
posed and the solution ũ belongs to L∞(0, T ;H) ∩ L2(0, T ;V).

3.2. Sensitivity for the performance functional. In this section,
we will examine the differentiability of the performance functional. As a
result, we will get a first order necessary conditions for the optimal solu-
tion to the problem. For this purpose, we need the following preliminary
result.

Lemma 3.4 Let Ω ⊂ RI 2 be a bounded domain with C2-boundary. Let

~u0 ∈ V and ~h ∈ W = L2(0, T ;W) be given. Suppose ŵ ≡ ŵ(~h) is a
solution of the system (3.10), then for every ~e ∈ L2(0, T ;H), we have

(3.29)

∫ T

0

∫

Ω

~e · ŵ(~h) dxdt =

∫ T

0

∫

Γc

− ν
∂ ~w

∂~n
· ~h dsdt ,

where ~w = ~w(~e) is the solution of the adjoint linearized homogeneous
problem





−d~w

dt
+ νA~w + B ′(~u(~g); ~w)∗ = ~e in (0, T )× Ω ,

∇ · ~w = 0 in (0, T )× Ω ,

~w = ~0 on (0, T )× Γ ,

~w(T, x) = ~0 ∀ x ∈ Ω .

(3.30)

Proof : We note that since ~e ∈ L(0, T ;H), the linearized system (3.30)
has a solution in L∞(0, T ;H) ∩ L2(0, T ;V)(c.f. [11], [14]). To begin
with, we provide some noticeable facts. Since ŵ(0, x) = 0 = ~w(T, x) for

all x ∈ Ω, we have

∫

Ω

~w(t, x) · ŵ(t, x)
∣∣∣
T

t=0
dx = 0.
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Also, since the traces ŵ
∣∣∣
Γc

= ~h and ~w
∣∣∣
Γc

= ~0, the Green’s 2nd identity

yields

< A~w, ŵ > − < Aŵ, ~w >

= − < γ1
c (~w), γ0

c (ŵ) >Γc + < γ1
c (ŵ), γ0

c (~w) >Γc

= − < γ1
c (~w),~h >Γc .

Now, we replace ~e by the left hand equation for ~w in (3.30) and take
integration by parts with respect to the time variable. Considering all
of the above respects, we obtain

∫ T

0

∫

Ω

~e · ŵ(~h) dxdt

=

∫ T

0

<
(
− d~w

dt
+ νA~w + B ′(~u; ~w)∗

)
, ŵ > dt

=

∫ T

0

< −d~w

dt
, ŵ > dt +

∫ T

0

< νA~w, ŵ > dt +

∫ T

0

< B ′(~u, ~w)∗, ŵ > dt

=

∫ T

0

<
dŵ

dt
, ~w > dt +

∫ T

0

< νAŵ, ~w > dt

−
∫ T

0

< νγ1
c (~w),~h >Γc dt +

∫ T

0

< B ′(~u; ŵ), ~w > dt

=

∫ T

0

<
(dŵ

dt
+ νAŵ + B ′(~u; ŵ)

)
, ~w > dt−

∫ T

0

< νγ1
c (~w),~h >Γc dt

=

∫ T

0

− < νγ1
c (~w),~h >Γc dt =

∫ T

0

∫

Γc

− ν
∂ ~w

∂~n
· ~h dsdt .

We are now ready to examine the differential structure for the per-
formance functional.

Theorem 3.5 Let (~u,~g) ∈ Uad be an optimal pair for the boundary
control problem (2.4) with ~u = ~u(~g). Then the Gateaux-derivative of the

functional J at ~g in the ~h-direction is given by

(3.31) dJ (~g;~h) =

∫ T

0

< ~σ(w̃) + α~g,~h >Γc dt ,
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where w̃ is the solution of the adjoint linearized system



−dw̃

dt
+ νAw̃ + B ′(~u; w̃)∗ = 2νA~u in (0, T )× Ω ,

∇ · w̃ = 0 in (0, T )× Ω ,

w̃ = ~0 on (0, T )× Γ ,

w̃(T, x) = ~0 ∀x ∈ Ω ,

(3.32)

and the vector field ~σ = −νγ1
c (w̃) acting along the control part Γc is

defined by

(3.33)

∫

Γc

~σ · ~v ds = <

(
−dw̃

dt
+ νAw̃ + B′(~u; w̃)∗ + 2νA~u

)
, ~v >

for every ~v ∈ H1
0(Ω).

Proof : We need to recall Theorem 3.3 that the state solution ~u = ~u(~g)
is differentiable and its differential is given by

d~u(~g;~h) = ŵ(~h) ,

where ŵ = ŵ(~h) is the solution of the linearized system (3.10). Also,
from (1.13), it is followed∫

Ω

D(~u) : D(ŵ) dx = −1

2

∫

Ω

∆~u · ŵ dx .

If we evaluate the Gateaux-derivative of J at ~g in the ~h-direction,
then by Lemma 3.4 we have

dJ (~g;~h) = 4ν

∫ T

0

∫

Ω

D(~u(~g)) : D(d~u(~g;~h)) dxdt + α

∫ T

0

∫

Γc

~g · ~h dsdt

= 4ν

∫ T

0

∫

Ω

D(~u(~g)) : D(ŵ(~h)) dxdt + α

∫ T

0

∫

Γc

~g · ~h dsdt

=

∫ T

0

∫

Ω

(−2ν∆~u) · ŵ(~h) dxdt + α

∫ T

0

∫

Γc

~g · ~h dsdt

=

∫ T

0

∫

Γc

− ν
∂w̃

∂~n
· ~h dsdt + α

∫ T

0

∫

Γc

~g · ~h dsdt ,

where w̃ is the solution of the adjoint linearized system (3.32). Hence,
the Gateaux-derivative to the functional J can be given by

(3.34) dJ (~g;~h) =

∫ T

0

∫

Γc

(
− ν

∂w̃

∂~n
+ α~g

)
· ~h dsdt .



Boundary control for time-dependent 2D Navier-Stokes equations 81

The formulation for the control action ~σ expressed in (3.33) can be iden-
tified by taking analogous procedure as shown in the proof of Lemma
3.4. It is implicitly used that the γ0

c has a continuous lifting in H1(Ω).

As a result of Theorem 3.5, we can say that the functional J is
Gateaux-differentiable in the space W = L2(0, T ;W), and the Gateaux-
differential corresponds to the gradient of the functional J , so that in
the duality pairing between W∗ and W the differential framework for J
can be understood by

(3.35) dJ (~g;~h) =< ∇J (~g),~h >W∗=

∫ T

0

< ~σ(w̃) + α~g,~h >Γc dt .

Hence, compared with (3.34), the gradient can be written by

(3.36) ∇J (~g) = α~g − ν
∂w̃

∂~n
along (0, T )× Γc .

4. The optimality system and some remarks on algorithm

In the previous section, with the aid of the strict differentiability of
the velocity field we have derived the differential structure of the first
order for the performance functional. In this procedure, the differential
for ~u = ~u(~g) has basically contributed to determine the form of the
adjoint system (3.32) through the relation (3.29). The relation (3.29)
practically plays the role of transferring the derivation terms of J in Ω
to the boundary control actuator.

Suppose ~g ∈ W is a minimizer for J . Since we do not have any
constraint on the control space, it is necessary to have

dJ (~g;~h) =
d

dτ
J (~g + τ~h)

∣∣∣
τ=0

= 0 ∀~h ∈ W .

Hence, the minimizer ~g should satisfy the equation

(4.1) α~g − ν
∂w̃

∂~n
= ~0 along (0, T )× Γc .

This can be regarded as a first order necessary conditions for the mini-
mizer. Thus, we have close at hand the optimality system that is needed
to obtain the solution of the optimal control problem.

We have to solve
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◦ the Navier-Stokes system : seek ~u = ~u(~g) ∈ L2(0, T ;V) satisfying



d~u

dt
+ νA~u + B(~u) = ~f in (0, T )× Ω ,

~u = ~g on (0, T )× Γc ,

~u = ~0 on (0, T )× Γ0 ,

~u(0, x) = ~u0(x) ∀x ∈ Ω ;

(4.2)

◦ the adjoint system : seek w̃ = w̃(~u) ∈ L2(0, T ;V0) satisfying




−dw̃

dt
+ νAw̃ + B ′(~u; w̃)∗ = 2νA~u in (0, T )× Ω ,

w̃ = ~0 on (0, T )× Γ ,

w̃(T, x) = ~0 ∀x ∈ Ω ;

(4.3)

◦ the boundary control equation : seek ~g ∈ L2(0, T ;W) satisfying

(4.4) α~g − ν
∂w̃

∂~n
= ~0 along (0, T )× Γc .

Remark : According to (1.22), the first equation in the adjoint system
(4.3) constitutes a weak formulation of the equation

−dw̃

dt
− ν ∆w̃ + (∇~u)tw̃ − (~u · ∇)w̃ +∇q̃ = −2ν ∆~u .

In this expression, q̃ corresponds to the adjoint variable for the pressure
p in the state equation (1.1). This is also identified by de Rham’s lemma.
We also remark that the adjoint system has to be solved by backward
time steps.

Since w̃ is a function of ~u which is the solution of nonlinear systems
(1.1)–(1.7), the equation (4.1) is inevitably nonlinear. Hence, one can
solve it with the aid of deliberately designed numerical algorithm. As
suggested in [3], we recommend to examine Fletcher-Powell method,
when we are available the Gateaux-derivative of the first order of the
functional to be minimized. Of course, it is not so simple finding an
efficient algorithm to implement this kind of problem. Even though one
may propose an effective algorithm depended on purely theoretical basis,
the ongoing practices seem to be another problem.

For the sake of completeness, we provide a basic algorithm based on
the gradient method :
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◦ ( step I : initialization) given ~g(0) ∈ W , solve ~u(0) = ~u(~g(0)), and
then find w̃(0) = w̃(~u(0)).

◦ ( step II : update) given ρ > 0, set ~g(1) = ~g(0) − ρ (α~g(0) −
νγ1

c (w̃
(0))).

◦ ( step III : iteration) recursively, evaluate the following until sat-
isfactory

~g(n+1) = ~g(n) − ρ (α~g(n) − νγ1
c (w̃

(n))) ,

where ~u(n) = ~u(~g(n)) and w̃(n) = w̃(~u(n)).

It is evident that we have to solve the state system (4.2) and the ad-
joint system (4.3) at each iterations, so that the numerical tasks required
are quite massive.
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