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A FOURIER MULTIPLIER THEOREM ON THE

BESOV-LIPSCHITZ SPACES

Yong-Kum Cho∗ and Dohie Kim

Abstract. We consider Fourier multiplier operators whose sym-
bols satisfy a generalization of Hörmander’s condition and establish
their Sobolev-type mapping properties on the homogeneous Besov-
Lipschitz spaces by making use of a continuous characterization of
Besov-Lipschitz spaces. As an application, we derive Sobolev-type
imbedding theorem.

1. Introduction

The purpose of this paper is to study Fourier multiplier operators

whose symbols satisfy a generalization of Hörmander’s condition on the

homogeneous Besov-Lipschitz spaces. To be more specific, we shall deal

with the operators Tα, defined as (Tαf )̂ = mαf̂ , where the symbols mα

satisfy the following condition:

Given a positive integer `, mα ∈ C` (Rn \ {0}) and

(1.1) sup
R>0

[
R−n+2α+2|σ|

∫

R<|ξ|<2R

∣∣∂σ
ξ mα(ξ)

∣∣2dξ

]
≤ Aσ (|σ| ≤ `) .

When α = 0 , it is known as the Hörmander condition (see [4], [8]).

Typical examples are given by the symbols of singular integrals Rj.

When α 6= 0 , a typical example is given by mα(ξ) = |ξ|−α , the symbol
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of the Riesz potential Iα which satisfies the condition (1.1) for every pos-

itive integer `. Another example is the symbol of a differential operator

∂σ of order |σ| = α when α > 0 .

Let Ô denote the class of Schwartz function ϕ on Rn such that its

Fourier transform ϕ̂ has support in {1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ c > 0

for 3/5 ≤ |ξ| ≤ 5/3 . Given any ϕ ∈ Ô , we recall ([3], [7], [9]) that the

homogeneous Besov-Lipschitz spaces Ḃα
p, r are the spaces of tempered

distribution f on Rn, modulo polynomials, such that the quasi-norms

(1.2) ‖f‖Ḃα
p, r

=

(∑

j∈Z

(
2jα ‖f ∗ ϕ2−j‖p

)r
)1/r

(α ∈ R , 0 < p, r ≤ ∞)

are finite.

Our principal result reads as

Theorem 1.1. Given α ∈ R , 0 < p < ∞ and 0 < r ≤ ∞ , let β be

any real with β < α and let p∗ be determined by

β − n/p∗ = α− n/p (0 < p∗ ≤ ∞) .

If mα satisfies the condition (1.1) with ` > n(1/p + 1/2) , then

(1.3) ‖Tαf‖Ḃβ
p∗, r

≤ C ‖f‖Ḃ0
p, r

.

As an application, upon taking mα(ξ) = |ξ|−α and using the fact

Ḃα
p, r = Iα(Ḃ0

p, r) , we obtain the Sobolev imbedding result (see [2], [5],

[6])

Corollary 1.1. Given reals α > β and 0 < p < ∞ , 0 < r ≤ ∞ ,

let 0 < p∗ ≤ ∞ be determined from β − n/p∗ = α− n/p . Then

Ḃα
p, r ↪→ Ḃβ

p∗, r .

In what follows, the letter C will denote a positive constant which

may differ in each occurrence and may depend on the parameters but

not on the variable quantities involved. As usual, the Fourier transform

of an integrable function φ on Rn will be defined as

φ̂(ξ) =

∫

Rn

e−iξ·x φ(x) dx (ξ ∈ Rn) .
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2. Preliminaries

The main ingredient in proving Theorem 1.1 is a continuous charac-

terization of Besov-Lipschitz spaces. Established by Bui et. el. [1], it is

given as

(2.1) ‖f‖Ḃα
p, r

≈
(∫ ∞

0

(
t−α‖u∗λ(·, t)‖p

)r dt

t

)1/r

(λ > n/p) ,

where u(x, t) = (f ∗ ϕt)(x) , ϕ ∈ Ô and u∗λ denotes the Peetre maximal

function of u defined by

u∗λ(x, t) = sup
y∈Rn

|u(y, t)|
(

1 +
|y − x|

t

)−λ

.

We now set up a few basic estimates that will be used later on. Let

Kα denote the distribution whose Fourier transform is mα.

Lemma 2.1. Let ψ, ζ be Schwartz functions on Rn such that ψ̂, ζ̂

have compact support away from the origin. Assume that mα satisfies

(1.1). If λ > 0 and ` > λ + n/2 , then for t > 0 ,

∫

Rn

(
1 +

|z|
t

)λ

|(Kα ∗ ψt)(z)| dz ≤ C tα .

Proof. Dilating the functions ψ̂, ζ̂ appropriately, we may assume

both have support in {1/2 ≤ |ξ| ≤ 2} . We choose µ so that µ > n/2

and λ + µ ≤ ` . By the Cauchy-Schwartz inequality,
[∫

Rn

(
1 +

|z|
t

)λ

|(Kα ∗ ψt)(z)| dz

]2

≤
∫

Rn

(
1 +

|z|
t

)−2µ

dz

∫

Rn

(
1 +

|z|
t

)2(λ+µ)

|(Kα ∗ ψt)(z)|2 dz

≤ C tn
∫

Rn

(
1 +

|z|
t

)2`

|(Kα ∗ ψt)(z)|2 dz

= C t2n

∫

Rn

(1 + |z|)2` |(Kα ∗ ψt)(tz)|2 dz .(2.2)
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Applying the binomial theorem and the Plancherel theorem, the integral

in (2.2) is easily seen to be bounded by

t−2n
∑

|σ|≤`

Cσ

∫

Rn

∣∣∣∣∂σ
ξ

[
mα

(
ξ

t

)
ψ̂(ξ)

]∣∣∣∣
2

dξ

≤ C t−2n
∑

|σ|≤`

tn−2|σ|
∫

1/t≤|ξ|≤2/t

∣∣(∂σ
ξ mα

)
(ξ)

∣∣2 dξ

≤ C t−2n+2α ,

where the last inequality is due to the hypothesis (1.1) on mα. Inserting

this estimate into (2.2), we obtain the desired estimate.

Lemma 2.2. Given α ∈ R and a positive integer `, assume that mα

satisfies the condition (1.1). Let ϕ, ψ ∈ Ô . For a tempered distribution

f on Rn, set u(x, t) = (f ∗ ϕt)(x) . If ` > λ + n/2 and Φ = ϕ ∗ ψ , then

for all x, y ∈ Rn , t > 0 ,

∣∣(Tαf ∗ Φt) (y)
∣∣ ≤ C tα

(
1 +

|y − x|
t

)λ

u∗λ(x, t) (λ > 0) .

Proof. In view of the representation

(Tαf ∗ Φt) (y) =

∫

Rn

u(y − z)(Kα ∗ ψt)(z) dz ,

the estimate is an immediate consequence of Lemma 2.1.

3. Proof of Theorem 1.1

Proof. Choose ϕ, ψ ∈ Ô . Let Φ = ϕ ∗ ψ and

u(x, t) = (f ∗ ϕt)(x) , U(x, t) = (Tαf ∗ Φt)(x) .

It follows easily from the estimate of Lemma 2.2 that

(3.1) U∗
λ(x, t) ≤ C tα u∗λ(x, t) , U∗

λ(x, t) ≤ C tα−n/p ‖u∗λ(·, t)‖p .
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Fix t > 0 . Normalizing if necessary, we may assume C = 1 in both

estimates of (3.1). With A = ‖u∗λ(·, t)‖p , it follows that for any q > p ,

∫

Rn

[U∗
λ(x, t)]q dx = q

∫ A tα−n/p

0

∣∣{U∗
λ(·, t) > s

}∣∣ sq−1 ds

≤ C tαq

∫ A t−n/p

0

∣∣{u∗λ(·, t) > s
}∣∣ sq−1 ds

≤ C tαq ‖u∗λ(·, t)‖p
p

∫ A t−n/p

0

sq−p−1 ds

= C tq(α−n/p+n/q) ‖u∗λ(·, t)‖q
p ,

where the second inequality follows from Chebychev’s inequality. Thus

(3.2) t−(α−n/p+n/q) ‖U∗
λ(·, t)‖q ≤ C ‖u∗λ(·, t)‖p .

Upon setting β = α− n/p + n/q , q = p∗ , (3.2) gives
∫ ∞

0

(
t−β ‖U∗

λ(·, t)‖p∗

)r dt

t
≤

∫ ∞

0

(
‖u∗λ(·, t)‖p

)r dt

t
,

which yields the desired result in view of (2.1).
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