A FOURIER MULTIPLIER THEOREM ON THE BESOV-LIPSCHITZ SPACES

Yong-Kum Cho* and Dohie Kim

Abstract

We consider Fourier multiplier operators whose symbols satisfy a generalization of Hörmander's condition and establish their Sobolev-type mapping properties on the homogeneous BesovLipschitz spaces by making use of a continuous characterization of Besov-Lipschitz spaces. As an application, we derive Sobolev-type imbedding theorem

1. Introduction

The purpose of this paper is to study Fourier multiplier operators whose symbols satisfy a generalization of Hörmander's condition on the homogeneous Besov-Lipschitz spaces. To be more specific, we shall deal with the operators T_{α}, defined as $\left(T_{\alpha} f\right)^{\wedge}=m_{\alpha} \hat{f}$, where the symbols m_{α} satisfy the following condition:

Given a positive integer $\ell, m_{\alpha} \in C^{\ell}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and

$$
\begin{equation*}
\sup _{R>0}\left[R^{-n+2 \alpha+2|\sigma|} \int_{R<|\xi|<2 R}\left|\partial_{\xi}^{\sigma} m_{\alpha}(\xi)\right|^{2} d \xi\right] \leq A_{\sigma} \quad(|\sigma| \leq \ell) . \tag{1.1}
\end{equation*}
$$

When $\alpha=0$, it is known as the Hörmander condition (see [4], [8]). Typical examples are given by the symbols of singular integrals R_{j}. When $\alpha \neq 0$, a typical example is given by $m_{\alpha}(\xi)=|\xi|^{-\alpha}$, the symbol

[^0]of the Riesz potential I_{α} which satisfies the condition (1.1) for every positive integer ℓ. Another example is the symbol of a differential operator ∂^{σ} of order $|\sigma|=\alpha$ when $\alpha>0$.

Let \widehat{O} denote the class of Schwartz function φ on \mathbb{R}^{n} such that its Fourier transform $\widehat{\varphi}$ has support in $\{1 / 2 \leq|\xi| \leq 2\}$ and $|\widehat{\varphi}(\xi)| \geq c>0$ for $3 / 5 \leq|\xi| \leq 5 / 3$. Given any $\varphi \in \widehat{O}$, we recall ([3], [7], [9]) that the homogeneous Besov-Lipschitz spaces $\dot{B}_{p, r}^{\alpha}$ are the spaces of tempered distribution f on \mathbb{R}^{n}, modulo polynomials, such that the quasi-norms

$$
\begin{equation*}
\|f\|_{\dot{B}_{p, r}^{\alpha}}=\left(\sum_{j \in \mathbb{Z}}\left(2^{j \alpha}\left\|f * \varphi_{2^{-j}}\right\|_{p}\right)^{r}\right)^{1 / r} \quad(\alpha \in \mathbb{R}, 0<p, r \leq \infty) \tag{1.2}
\end{equation*}
$$

are finite.
Our principal result reads as
Theorem 1.1. Given $\alpha \in \mathbb{R}, 0<p<\infty$ and $0<r \leq \infty$, let β be any real with $\beta<\alpha$ and let p_{*} be determined by

$$
\beta-n / p_{*}=\alpha-n / p \quad\left(0<p_{*} \leq \infty\right)
$$

If m_{α} satisfies the condition (1.1) with $\ell>n(1 / p+1 / 2)$, then

$$
\begin{equation*}
\left\|T_{\alpha} f\right\|_{\dot{B}_{p *, r}^{\beta}} \leq C\|f\|_{\dot{B}_{p, r}^{0},} \tag{1.3}
\end{equation*}
$$

As an application, upon taking $m_{\alpha}(\xi)=|\xi|^{-\alpha}$ and using the fact $\dot{B}_{p, r}^{\alpha}=I_{\alpha}\left(\dot{B}_{p, r}^{0}\right)$, we obtain the Sobolev imbedding result (see [2], [5], [6])

Corollary 1.1. Given reals $\alpha>\beta$ and $0<p<\infty, 0<r \leq \infty$, let $0<p_{*} \leq \infty$ be determined from $\beta-n / p_{*}=\alpha-n / p$. Then

$$
\dot{B}_{p, r}^{\alpha} \hookrightarrow \dot{B}_{p_{*}, r}^{\beta} .
$$

In what follows, the letter C will denote a positive constant which may differ in each occurrence and may depend on the parameters but not on the variable quantities involved. As usual, the Fourier transform of an integrable function ϕ on \mathbb{R}^{n} will be defined as

$$
\widehat{\phi}(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} \phi(x) d x \quad\left(\xi \in \mathbb{R}^{n}\right) .
$$

2. Preliminaries

The main ingredient in proving Theorem 1.1 is a continuous characterization of Besov-Lipschitz spaces. Established by Bui et. el. [1], it is given as

$$
\begin{equation*}
\|f\|_{\dot{B}_{p, r}^{\alpha}} \approx\left(\int_{0}^{\infty}\left(t^{-\alpha}\left\|u_{\lambda}^{*}(\cdot, t)\right\|_{p}\right)^{r} \frac{d t}{t}\right)^{1 / r} \quad(\lambda>n / p) \tag{2.1}
\end{equation*}
$$

where $u(x, t)=\left(f * \varphi_{t}\right)(x), \varphi \in \widehat{O}$ and u_{λ}^{*} denotes the Peetre maximal function of u defined by

$$
u_{\lambda}^{*}(x, t)=\sup _{y \in \mathbb{R}^{n}}|u(y, t)|\left(1+\frac{|y-x|}{t}\right)^{-\lambda}
$$

We now set up a few basic estimates that will be used later on. Let K_{α} denote the distribution whose Fourier transform is m_{α}.

Lemma 2.1. Let ψ, ζ be Schwartz functions on \mathbb{R}^{n} such that $\widehat{\psi}, \widehat{\zeta}$ have compact support away from the origin. Assume that m_{α} satisfies (1.1). If $\lambda>0$ and $\ell>\lambda+n / 2$, then for $t>0$,

$$
\int_{\mathbb{R}^{n}}\left(1+\frac{|z|}{t}\right)^{\lambda}\left|\left(K_{\alpha} * \psi_{t}\right)(z)\right| d z \leq C t^{\alpha}
$$

Proof. Dilating the functions $\widehat{\psi}, \widehat{\zeta}$ appropriately, we may assume both have support in $\{1 / 2 \leq|\xi| \leq 2\}$. We choose μ so that $\mu>n / 2$ and $\lambda+\mu \leq \ell$. By the Cauchy-Schwartz inequality,

$$
\begin{aligned}
& {\left[\int_{\mathbb{R}^{n}}\left(1+\frac{|z|}{t}\right)^{\lambda}\left|\left(K_{\alpha} * \psi_{t}\right)(z)\right| d z\right]^{2}} \\
& \quad \leq \int_{\mathbb{R}^{n}}\left(1+\frac{|z|}{t}\right)^{-2 \mu} d z \int_{\mathbb{R}^{n}}\left(1+\frac{|z|}{t}\right)^{2(\lambda+\mu)}\left|\left(K_{\alpha} * \psi_{t}\right)(z)\right|^{2} d z \\
& \quad \leq C t^{n} \int_{\mathbb{R}^{n}}\left(1+\frac{|z|}{t}\right)^{2 \ell}\left|\left(K_{\alpha} * \psi_{t}\right)(z)\right|^{2} d z \\
& \quad=C t^{2 n} \int_{\mathbb{R}^{n}}(1+|z|)^{2 \ell}\left|\left(K_{\alpha} * \psi_{t}\right)(t z)\right|^{2} d z
\end{aligned}
$$

Applying the binomial theorem and the Plancherel theorem, the integral in (2.2) is easily seen to be bounded by

$$
\begin{aligned}
t^{-2 n} & \sum_{|\sigma| \leq \ell} C_{\sigma} \int_{\mathbb{R}^{n}}\left|\partial_{\xi}^{\sigma}\left[m_{\alpha}\left(\frac{\xi}{t}\right) \widehat{\psi}(\xi)\right]\right|^{2} d \xi \\
& \leq C t^{-2 n} \sum_{|\sigma| \leq \ell} t^{n-2|\sigma|} \int_{1 / t \leq|\xi| \leq 2 / t}\left|\left(\partial_{\xi}^{\sigma} m_{\alpha}\right)(\xi)\right|^{2} d \xi \\
& \leq C t^{-2 n+2 \alpha},
\end{aligned}
$$

where the last inequality is due to the hypothesis (1.1) on m_{α}. Inserting this estimate into (2.2), we obtain the desired estimate.

Lemma 2.2. Given $\alpha \in \mathbb{R}$ and a positive integer ℓ, assume that m_{α} satisfies the condition (1.1). Let $\varphi, \psi \in \widehat{O}$. For a tempered distribution f on \mathbb{R}^{n}, set $u(x, t)=\left(f * \varphi_{t}\right)(x)$. If $\ell>\lambda+n / 2$ and $\Phi=\varphi * \psi$, then for all $x, y \in \mathbb{R}^{n}, t>0$,

$$
\left|\left(T_{\alpha} f * \Phi_{t}\right)(y)\right| \leq C t^{\alpha}\left(1+\frac{|y-x|}{t}\right)^{\lambda} u_{\lambda}^{*}(x, t) \quad(\lambda>0) .
$$

Proof. In view of the representation

$$
\left(T_{\alpha} f * \Phi_{t}\right)(y)=\int_{\mathbb{R}^{n}} u(y-z)\left(K_{\alpha} * \psi_{t}\right)(z) d z
$$

the estimate is an immediate consequence of Lemma 2.1.

3. Proof of Theorem 1.1

Proof. Choose $\varphi, \psi \in \widehat{O}$. Let $\Phi=\varphi * \psi$ and

$$
u(x, t)=\left(f * \varphi_{t}\right)(x), \quad U(x, t)=\left(T_{\alpha} f * \Phi_{t}\right)(x)
$$

It follows easily from the estimate of Lemma 2.2 that

$$
\begin{equation*}
U_{\lambda}^{*}(x, t) \leq C t^{\alpha} u_{\lambda}^{*}(x, t), \quad U_{\lambda}^{*}(x, t) \leq C t^{\alpha-n / p}\left\|u_{\lambda}^{*}(\cdot, t)\right\|_{p} . \tag{3.1}
\end{equation*}
$$

Fix $t>0$. Normalizing if necessary, we may assume $C=1$ in both estimates of (3.1). With $A=\left\|u_{\lambda}^{*}(\cdot, t)\right\|_{p}$, it follows that for any $q>p$,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left[U_{\lambda}^{*}(x, t)\right]^{q} d x & =q \int_{0}^{A t^{\alpha-n / p}}\left|\left\{U_{\lambda}^{*}(\cdot, t)>s\right\}\right| s^{q-1} d s \\
& \leq C t^{\alpha q} \int_{0}^{A t^{-n / p}}\left|\left\{u_{\lambda}^{*}(\cdot, t)>s\right\}\right| s^{q-1} d s \\
& \leq C t^{\alpha q}\left\|u_{\lambda}^{*}(\cdot, t)\right\|_{p}^{p} \int_{0}^{A t^{-n / p}} s^{q-p-1} d s \\
& =C t^{q(\alpha-n / p+n / q)}\left\|u_{\lambda}^{*}(\cdot, t)\right\|_{p}^{q},
\end{aligned}
$$

where the second inequality follows from Chebychev's inequality. Thus

$$
\begin{equation*}
t^{-(\alpha-n / p+n / q)}\left\|U_{\lambda}^{*}(\cdot, t)\right\|_{q} \leq C\left\|u_{\lambda}^{*}(\cdot, t)\right\|_{p} . \tag{3.2}
\end{equation*}
$$

Upon setting $\beta=\alpha-n / p+n / q, q=p_{*},(3.2)$ gives

$$
\int_{0}^{\infty}\left(t^{-\beta}\left\|U_{\lambda}^{*}(\cdot, t)\right\|_{p_{*}}\right)^{r} \frac{d t}{t} \leq \int_{0}^{\infty}\left(\left\|u_{\lambda}^{*}(\cdot, t)\right\|_{p}\right)^{r} \frac{d t}{t}
$$

which yields the desired result in view of (2.1).

References

[1] H-Q. Bui, M. Paluszyński and M. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119, pp. 219-246 (1996)
[2] M. Frazier and B. Jawerth, A discrete transform and decompositions of distributions, J. Funct. Anal. 93, pp. 34-170 (1990)
[3] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS 79, Amer. Math. Soc., 1992
[4] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, NJ, 2004
[5] B. Jawerth, Some observation on Besov and Lizorkin-Triebel spaces, Math. Scand. 40, pp. 94-104 (1977)
[6] J. Johnsen and W. Sickel, A direct proof of Sobolev embeddings for quasihomogeneous Lizorkin-Triebel spaces with mixed norms, J. Funct. Spaces Appl. 5, pp. 183-198 (2007)
[7] J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13, pp. 123-130 (1975)
[8] E. M. Stein, Harmonic Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993
[9] H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Ark. Mat. 11, pp. 13-64 (1973)

Department of Mathematics
College of Natural Science
Chung-Ang University
Seoul 156-756, Korea
E-mail: ykcho@cau.ac.kr

[^0]: Received January 22, 2008.
 2000 Mathematics Subject Classification: Primary 42B15, 42B35, 46E35
 Key words and phrases: Fourier multiplier, Sobolev imbedding, Besov-Lipschitz spaces.
 *Corresponding author.

