Korean J. Math. 16 (2008), No. 1, pp. 85-90

A FOURIER MULTIPLIER THEOREM ON THE
BESOV-LIPSCHITZ SPACES

YonG-KuM CHO* AND DoOHIE KiMm

ABSTRACT. We consider Fourier multiplier operators whose sym-
bols satisfy a generalization of Hormander’s condition and establish
their Sobolev-type mapping properties on the homogeneous Besov-
Lipschitz spaces by making use of a continuous characterization of
Besov-Lipschitz spaces. As an application, we derive Sobolev-type
imbedding theorem.

1. Introduction

The purpose of this paper is to study Fourier multiplier operators
whose symbols satisfy a generalization of Hormander’s condition on the
homogeneous Besov-Lipschitz spaces. To be more specific, we shall deal
with the operators T, defined as (T, f)"= m,f , where the symbols m,,
satisfy the following condition:

Given a positive integer £, m, € C*(R™\ {0}) and
(11)  sup [R—"“a”"’ / |07ma(€)|"de| < As (o] < 0).

R>0 R<|¢|<2R
When a = 0, it is known as the Hérmander condition (see [4], [8]).

Typical examples are given by the symbols of singular integrals R;.
When « # 0, a typical example is given by m, (&) = [£|7, the symbol
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of the Riesz potential I, which satisfies the condition (1.1) for every pos-
itive integer /. Another example is the symbol of a differential operator
07 of order |o] = a when a > 0.

Let O denote the class of Schwartz function @ on R™ such that its
Fourier transform @ has support in {1/2 < |¢| < 2} and |p(§)| > ¢ >0
for 3/5 < |¢| < 5/3. Given any ¢ € O, we recall ([3], [7], [9]) that the
homogeneous Besov-Lipschitz spaces B® are the spaces of tempered

p’ T
distribution f on R™, modulo polynomials, such that the quasi-norms

~\ L/
02) 15l = (X ("W el,) ) @eR0<pr<o)
JEZ
are finite.

Our principal result reads as

THEOREM 1.1. Given a € R, 0 < p < oo and 0 <r < o0, let 3 be
any real with 3 < o and let p, be determined by

B—n/p.=a-n/p  (0<p.<o0).
If m,, satisfies the condition (1.1) with ¢ > n(1/p+ 1/2), then

(1.3) 1Tafllgs., < CNfllgg, -

As an application, upon taking m,(§) = [£|7® and using the fact
B, = I1,(B),), we obtain the Sobolev imbedding result (see [2], [5],

[6])
COROLLARY 1.1. Given reals a > 3 and 0 <p < o0, 0 <r < o0,
let 0 < p. < oo be determined from (3 —n/p, =« —n/p. Then
o >
By, — B, ,.

In what follows, the letter C' will denote a positive constant which
may differ in each occurrence and may depend on the parameters but
not on the variable quantities involved. As usual, the Fourier transform
of an integrable function ¢ on R™ will be defined as

©=[ o er).

<)
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2. Preliminaries

The main ingredient in proving Theorem 1.1 is a continuous charac-
terization of Besov-Lipschitz spaces. Established by Bui et. el. [1], it is
given as

o 1r
@0 Wl ~ ([ @ lseon) F) o,

where u(z,t) = (f *¢;)(z), ¢ € O and u} denotes the Peetre maximal
function of u defined by

-\
— X
wj(z,t) = sup |uy, t)| (1 Ll ') .
yEeR” t

We now set up a few basic estimates that will be used later on. Let
K, denote the distribution whose Fourier transform is m,,.

LEMMA 2.1. Let 9, ¢ be Schwartz functions on R™ such that QZ, E
have compact support away from the origin. Assume that m,, satisfies
(1.1). If A\>0 and £ > X+ n/2, then for t >0,

/n (”’%)AV(%*%)(Z)\ dz < Cte.

Proof. Dilating the functions QZ, E appropriately, we may assume

both have support in {1/2 < |£] < 2}. We choose p so that p > n/2
and A+ pu < /. By the Cauchy-Schwartz inequality,

/n (”%)AK%*%)@)! dz 2
= /n (1 * %)Zud'z/n (1 + %)ww (Ko #10)(2) | dz

||

< Ct" / (1+ 7)2e|(1r<a*¢t)<z)|2 dz

(29) —C / (14 |22 (K 5 ) (t2) 2 d
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Applying the binomial theorem and the Plancherel theorem, the integral
in (2.2) is easily seen to be bounded by

e e ()5

lo|<e
S DL / [(9gma) (©) de
o] <¢ 1/t<e|<2/t

< C t72n+2a

2

dg

Y

where the last inequality is due to the hypothesis (1.1) on m,. Inserting
this estimate into (2.2), we obtain the desired estimate. O

LEMMA 2.2. Given a € R and a positive integer ¢, assume that m,,
satisfies the condition (1.1). Let @, € O . For a tempered distribution
fonR" set u(x,t) = (f*p)(x). If £ >X+n/2 and & = ¢ *1), then
for all x,y €e R",t >0,

A
(Tof =) (y)| < Ct* (1+ ly ; x') uy(z,t) (A>0).
Proof. In view of the representation

(Tof +B0) () = / uly — 2)(Ka* ) (2) d2 |

n

the estimate is an immediate consequence of Lemma 2.1. Il

3. Proof of Theorem 1.1

Proof. Choose ¢, ¢ € O.Let & = @ * 1) and

u(@,t) = (fx@)(x), Ulz,t) = (Tof * Pe)(x).
It follows easily from the estimate of Lemma 2.2 that

(81)  Uilet) < Ct*ui(et), Uilet) < CL7 |lui (1))

p -
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Fix ¢t > 0. Normalizing if necessary, we may assume C' = 1 in both

estimates of (3.1). With A = [Ju}(-,¢)||, , it follows that for any ¢ > p,

[
Ate—n/p
/n (U5 (z, )] dx:q/o H{UK(,t) > s} 77" ds
At—n/p
< Ctaq/ [{ur(-,t) > s}| s* ds
0

Ag—n/p
< (a0 ||uf\(',t)||§/0 771 g

= Cen I s (o)
where the second inequality follows from Chebychev’s inequality. Thus
(3.2) t- oD UL, < C i), -

Upon setting 8 =a —n/p+n/q, ¢ = p., (3.2) gives

[ s nn,) § < [ (o) 5

which yields the desired result in view of (2.1). O
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