NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER IN A HILBERT SPACE

RAKJOONG KIM

Abstract. Let H be a Hilbert space. Assume that $0 \leq \alpha, \beta \leq 1$ and $r(t) > 0$ in $I = [0, T]$. By means of the fixed point theorem of Leray-Schauder type the existence principles of solutions for two point boundary value problems of the form

$$(r(t)x'(t))' + f(t, x(t), r(t)x'(t)) = 0, \quad t \in I$$

$$x(0) = x(T) = 0$$

are established where f satisfies for positive constants a, b and c

$$|f(t, x, y)| \leq a|x|^{\alpha} + b|y|^{\beta} + c \quad \text{for all } (t, x, y) \in I \times H \times H.$$

1. Introduction

In this paper, we are concerned with the Dirichlet boundary value problems of the type:

$$(r(t)x'(t))' + f(t, x(t), r(t)x'(t)) = 0, \quad t \in I = [0, T]$$

$$x(0) = x(T) = 0$$

where $r(t) \in C(I, (0, \infty))$, $T > 0$ is constant, H is a Hilbert space and $f : I \times H \times H \to H$.

We will use the following notation throughout this paper: $|x|_0 = \sup_{t \in I} |x(t)|$ for $x \in C(I, H)$, $|x|_1 = \max_{t \in I} \{|x|_0, |x'\|^2_{0}\}$ for $x \in C^1(I, H)$ where $|\cdot|$ is the norm induced by the inner product $\langle \cdot, \cdot \rangle$.
and \(\|x\|_{L^2}^2 = \int_0^T \langle x(t), x(t) \rangle \, dt \). By a solution of (1), (2), we define \(x \in C^1(I, H) \) satisfying (1), (2).

The differential equation \(x''(t) + kx'(t) + f(t, x(t), x'(t)) = 0, x(0) = x(\pi) = 0 \) was studied by Mawhin[3] for the case \(H = R^n \), where references to the corresponding literature are also given. Also Mawhin[4] and Hai[2] dealt with the same problem for the case that \(H \) is a Hilbert space. The purpose of this paper is to establish some existence results and uniqueness of differential equation (1)-(2) which extend their results.

Definition 1. A function \(f : I \times H \times H \to H \) is called a \(L^1 \)-Carathéodory function if the following conditions are valid:

(i) \(t \to f(t, x, y) \) is measurable for each \((x, y) \in H \times H \),

(ii) \((x, y) \to f(t, x, y) \) is continuous for a.e. \(t \in I \),

(iii) for any \(\gamma > 0 \) there exists \(h_\gamma \in L^1(I, R) \) such that

\[
|f(t, x, y)| \leq h_\gamma(t) \quad \text{a.e. } t \in I,
\]

and for all \(x, y \) with \(\max\{|x|_0, |y|_0\} \leq \gamma \).

Hereafter we assume that the function \(f \) is a \(L^1 \)-Carathéodory function. Our existence principles will be proved by means of the following fixed point theorem[4] of Leray-Schauder type.

Proposition. [Nonlinear Alternative] Assume \(\Omega \) is a relatively open subset of a convex set \(C \) in a Banach Space \(E \). Let \(F : \overline{\Omega} \to C \) be a compact map with \(p^* \in \Omega \). Then either

A1. \(F \) has a fixed point in \(\overline{\Omega} \), or
A2. there exist a \(u \in \partial \Omega \) and a \(\lambda \in (0, 1) \) such that \(u = (1 - \lambda)p^* + \lambda Fu \).

2. Existence Principles

Lemma 1[1]. Let \(X, Y \) be positive constants and \(\sigma \geq 0 \). Then the inequality

\[
(\sigma + 1)XY^\sigma \leq X^{\sigma + 1} + \sigma Y^{\sigma + 1}
\]
is valid where the equality holds if and only if \(X = Y \).

Put \(A = \max_{t \in [0, T]} r(t) \), \(B = \min_{t \in [0, T]} r(t) \) and denote \(I_h \) by \(I_h = \int_0^T h(s) \, ds \) for a integrable function \(h \) on \(I \).

Theorem 2. Suppose that there exists a constant \(M > 0 \), independent of \(\lambda \), with

\[
|x|_1 \leq M
\]

for any solution of

\[
(3_\lambda) \quad (r(t)x'(t))' + \lambda f(t, x(t), r(t)x'(t)) = 0, \\
x(0) = x(T) = 0
\]

for each \(\lambda \in (0, 1) \) and \(t \in I = [0, T] \). Then the differential equation (1) satisfying (2) has at least one solution in \(C^1(I, H) \).

Proof. We find a priori bounds of solutions of (3_\lambda). To solve (3_\lambda) is equivalent to find \(x(t) \in C^1(I, H) \) such that for \(\lambda \in (0, 1) \)

\[
(4) \quad x(t) = \lambda Fx(t),
\]

where

\[
(5) \quad Fx(t) = \int_0^t \frac{1}{r(s)} \left[C + \int_s^T f(u, x(u), r(u)x'(u)) \, du \right] \, ds,
\]

\[
C = -I_1^{-1/r} \int_0^T \frac{1}{r(s)} \int_s^T f(u, x(u), r(u)x'(u)) \, du \, ds.
\]

By standard argument we can show that \(F : C^1(I, H) \to C^1(I, H) \) is completely continuous. Assume that there exists a constant \(M > 0 \), independent of \(\lambda \), such that

\[
|x|_1 \leq M
\]

is valid for any solution of (3_\lambda), \(\lambda \in (0, 1) \). Choose then

\[
(6) \quad \Omega = \{ x \in C^1(I, H) : |x|_1 < M \}.
\]

We apply Proposition with \(p^* = 0 \). Then A2 of Proposition cannot be occurred. Therefore \(F \) has a fixed point \(x \in C^1(I, H) \) in \(\overline{\Omega} \) by A1. \(\square \)
Theorem 3. Assume that there exist nonnegative real numbers a, b, c such that for all $(t, x, y) \in I \times H \times H$

\[(7) \quad |f(t,x,y)| \leq a|x|^\alpha + b|y|^{\beta} + c\]

where $0 \leq \alpha, \beta < 1$. Then the differential equation (1) satisfying (2) has at least one solution in $C^1(I, H)$.

Proof. Assume that $0 \leq \alpha, \beta < 1$. We find a suitable bounded open set $\Omega \subseteq C^1(I, H)$ such that all solutions of (3λ) belong to Ω but for any $\lambda \in (0, 1)$ λF has no fixed point in $\partial \Omega$. Note that the equation (4) is equivalent to $(r(t)x'(t))' + \lambda f(t, x(t), r(t)x'(t)) = 0$. Consider the inner product (3λ) with $x(t)$.

\[(8) \quad \langle (r(t)x'(t))', x(t) \rangle + \langle \lambda f(t, x(t), r(t)x'(t)), x(t) \rangle = 0.\]

From this we can immediately deduce

\[
\langle x'(t), x(t) \rangle = \frac{1}{r(t)} \int_t^T \{\langle \lambda f(u, x(u), r(u)x'(u)), x(u) \rangle - r(u)|x'(u)|^2 \} \, du,
\]

from which we get

\[(9) \quad |x(t)|^2 \leq \int_0^t \frac{2}{r(s)} \int_s^T \{\langle \lambda f(u, x(u), r(u)x'(u)), x(u) \rangle - \frac{1}{A} |r(u)x'(u)|^2 \} \, du \, ds.\]

So it follows that for all $\lambda \in (0, 1)$

\[
|\langle \lambda f(u, x(u), r(u)x'(u)), x(u) \rangle| \leq a|x(u)|^{1+\alpha} + b|x(u)||r(u)x'(u)|^{\beta} + c|x(u)|.
\]

Applying Lemma 1 with

\[
\sigma = \frac{\beta}{2 - \beta}, \quad X = \frac{b}{\sigma + 1} (\sigma A)^{\sigma/(\sigma+1)} |x(u)|, \quad Y = \left(\frac{|r(u)x'(u)|^2}{\sigma A}\right)^{1/(\sigma+1)}
\]
to $b|x(u)||r(u)x'(u)|^\beta$ we then obtain for all $\lambda \in (0, 1)$
\[
(\lambda f(u, x(u), r(u)x'(u)), x(u)) \\
\leq a|x(u)|^{1+\alpha} + C|x(u)|^{2-\beta} + c|x(u)| + \frac{1}{A}|r(u)x'(u)|^2
\]
where $C = \frac{2-\beta}{2} \left(\frac{4\beta}{2} \right)^{\beta/(2-\beta)} b^{2/(2-\beta)}$. Thus (9) is reduced to
\[
|x(t)|^2 \leq 2T \frac{1}{r} \left\{ a|x|^{1+\alpha} + C|x|^\frac{2-\beta}{2} + c|x| \right\}, \quad t \in I.
\]
So there exists a $R > 0$ such that
\[
(10) \quad |x|_0 \leq R.
\]
From the fact that
\[
\frac{1}{2} \frac{d}{dt} |r(t)x'(t)|^2 = \langle (r(t)x'(t))', r(t)x'(t) \rangle \\
= -\langle \lambda f(t, x(t), r(t)x'(t)), r(t)x'(t) \rangle
\]
it is clear that by means of (10)
\[
\left| \frac{d}{dt} \int_0^{r(t)x'(t)} du \right| \leq (aR^\alpha + b|r(t)x'(t)|^\beta + c) |r(t)x'(t)|.
\]
Dividing both sides by $(aR^\alpha + b|r(t)x'(t)|^\beta + c) |r(t)x'(t)|$ we obtain
\[
\left| \frac{d}{dt} \int_0^{r(t)x'(t)} du \right| \frac{du}{aR^\alpha + bu^\beta + c} \leq 1.
\]
By means of the condition (2) there exists $t_0 \in (0, T)$ such that $x'(t_0) = 0$. Integrating
\[
\frac{d}{dt} \int_0^{r(t)x'(t)} du \frac{du}{aR^\alpha + bu^\beta + c} \quad \text{over } [t_0, t] \quad \text{for } 0 \leq t_0 < t \leq T
\]
we have
\[
(11) \quad \int_0^{r(t)x'(t)} \frac{du}{aR^\alpha + bu^\beta + c} < T.
\]
On the other hand, since
\[\int_{0}^{\infty} \frac{du}{aR^\alpha + bu^\beta + c} = \infty \]
there exists a \(R_1 > 0 \) such that
\[T \leq \int_{0}^{R_1} \frac{du}{aR^\alpha + bu^\beta + c}. \]

From (11) and (12) we obtain \(|x'|_0 \leq R_1/B \). Put \(M = \max \{R, R_1/B\} \). Then the inequality \(|x|_1 \leq M \) is valid for each solution of \((3\lambda) \), \(\lambda \in (0, 1) \) satisfying (2). If therefore we take
\[\Omega = B_{M+1}(0) = \{x \in C^1(I, H) : |x|_1 < M + 1\} \]
our theorem is proved by Theorem 2.

Remark. Even though \(a = c = 0 \) Theorem 3 is valid.

Theorem 4. Assume that there exist nonnegative real numbers \(a, b, c \) such that for all \((t, x, y) \in I \times H \times H \)
\[|f(t, x, y)| \leq a|x| + b|y| + c, \]
\[T(4a + b^2A)I_{1/r} < 2. \]

are valid. Then the differential equation (1) satisfying (2) has at least one solution in \(C^1(I, H) \).

Proof. The most part of proof is similar to that of Theorem 3. We sketch briefly the process of proof. It is obvious that for all \(\lambda \in (0, 1) \)
\[\langle \lambda f(u, x(u), r(u)x'(u)), x(u) \rangle \leq \left(a + \frac{b^2A}{4} \right) |x(u)|^2 + c|x(u)| + \frac{1}{A} |r(u)x'(u)|^2. \]
Thus from (9) we have
\[|x(t)|^2 \leq 2T I_{1/r} \left\{ \left(a + \frac{b^2A}{4} \right) |x|^2_0 + c|x|_0 \right\}, \quad t \in I \]
for all \(\lambda \in (0, 1) \). So we obtain
\[
|x|_0 \leq R
\]
where
\[
R = \frac{4cT_1}{2 - T(4a + b^2A)I_{1/r}}.
\]
Note that \(R > 0 \) by (14). The rest part of proof is the same as that of Theorem 3. □

Remark. In the case of \(|f(t, x, y)| \leq a|x|^{\alpha} + b|y|^\beta + c\), where \(0 \leq \alpha, \beta \leq 1 \), it is not difficult to show that by Theorem 3 and Theorem 4 the existence property of (1)-(2) is also valid under suitable conditions.

Definition 2. A function \(p : I \times H \to [0, \infty) \) is called a \(L^1 \)-Carathéodory function such that

(i') \(t \to p(t, x) \) is measurable for each \(x \in H \),

(ii') \(x \to p(t, x) \) is continuous for a. e. \(t \in I \),

(iii') for any \(\gamma > 0 \) there exists \(h_\gamma \in L^1(I, \mathbb{R}) \) such that \(|x|_0 \leq \gamma \) implies \(|p(t, x)| \leq h_\gamma(t) \) a. e. \(t \in I \).

Theorem 5. Assume that \(p : I \times H \to [0, \infty) \) is called a \(L^1 \)-Carathéodory function and that for all \((t, x, y) \in I \times H \times H\)

(i) there exist nonnegative real numbers \(a, b, c \) such that
\[
|\langle x, f(t, x, y) \rangle| \leq a|x|^2 + b|x||y| + c|x|,
\]
and (14) are valid.

(ii) there exist a continuous function \(g : [0, \infty) \to (0, \infty) \) and positive numbers \(R, R_1 \) such that
\[
|\langle y, f(t, x, y) \rangle| \leq p(t, x)g(|y|), \text{ for a. e. } t \in I \text{ and all } y \in H,
\]

\[
\int_{\sqrt{\pi}g(u)}^{\infty} du = \infty,
\]
where
\[
R_1 = 2A \left\{ \left(a + \frac{b^2A}{2} \right) R^2 + cR \right\}
\]
and \(R \) is a number given by (18).
Then the differential equation (1) satisfying (2) has at least one solution in \(C^1(I, H) \).

Proof. We sketch briefly the process of proof. It follows that for all \(\lambda \in (0, 1) \) there exists a \(R > 0 \) satisfying (17). Here \(R \) is a constant number (18). Multiplying (3\(\lambda \)) by \(-x(t)\) and integrating over \(I \) we have

\[
\frac{1}{A} ||rx'||^2_{L^2} \leq \int_0^T r(t)||x'(t)||^2 dt
\]

\[
\leq \int_0^T |\langle f(u, x(u), r(u)x'(u)), x(u) \rangle| du
\]

\[
\leq aT|x|_0^2 + cT|x|_0 + b\sqrt{T}||r||_{L^2}.
\]

Since

\[
 b\sqrt{T}|x|_0 ||rx'||_{L^2} \leq \frac{b^2AT}{2} |x|_0^2 + \frac{1}{2A} ||rx'||_{L^2}^2.
\]

the inequality \(||rx'||_{L^2}^2 \leq TR_1 \) is valid. There exists a \(\xi \in [0, T] \) such that \(|r(\xi)x'(\xi)| \leq \sqrt{R_1} \). It is clear that by (20)

\[
\left| \frac{1}{2} \frac{d}{dt} |r(t)x'(t)|^2 \right| = \left| |r(t)x'(t)| \frac{d}{dt} |r(t)x'(t)| \right|
\]

\[
\leq p(t, x)|r(t)x'(t)|.
\]

Dividing both sides by \(g(|r(t)x'(t)|) \) we obtain

\[
\frac{d}{dt} \int_0^t |r(t)x'(t)| \frac{u}{g(u)} du \leq p(t, x).
\]

By (iii\(\prime \)) there exists a \(h_R \in L^1(I) \) satisfying \(|p(t, x)| \leq h_R(t) \) for all \(I \). From (21) it follows that there exists a real number \(R_2 > 0 \) such that

\[
\int_0^T h_R(u) du = \int_{\sqrt{R_1}}^{R_2} \frac{u}{g(u)} du.
\]

Therefore we have for \(0 \leq \xi < t \leq T \)

\[
\int_0^t |r(t)x'(t)| \frac{u}{g(u)} du \leq \int_{\sqrt{R_1}}^{R_2} \frac{u}{g(u)} du + \int_0^t h_R(u) du
\]

\[
\leq \int_0^{R_2} \frac{u}{g(u)} du.
\]
By means of the proof of Theorem 3 our theorem is proved. □

Remark. In Theorem 5 even if the condition (20) and (21) are replaced with

\[(20') \quad |\langle y, f(t, x, y) \rangle| \leq p(t, x)g(|y|^2), \text{ for a. e. } t \in I \text{ and all } x, y \in H,\]

\[\int_\infty^\infty \frac{du}{\sqrt{\pi}g(u)} = \infty,\]

we get the same result.

Theorem 6. Assume that there exist positive numbers \(a, b\) such that for all \(t \in I\)

\[|f(t, x, y) - f(t, u, v)| \leq a|x - u| + b|y - v|\]

\[I_{1/r} < \frac{2B}{T(4aB + b^2A^2)}\]

for all \(x, y, u, v \in H\). Then the differential equation (1) satisfying

\[x(0) = x_0, \quad x(T) = x_T \text{ for } x_0, x_T \in \mathbb{R}\]

has at most one solution.

Proof. Assume \(x(t), u(t)\) are solutions of (1) satisfying (25). If we put \(w(t) = x(t) - u(t)\) we obtain

\[\left((r(t)w'(t))' + f(t, x(t), r(t)x'(t)) - f(t, u(t), r(t)u'(t)) = 0, \right.\]

\[\left. w(0) = w(T) = 0 \right\}

Consider the inner product of (26) with \(w(t)\):

\[\langle (r(t)w'(t))', w(t) \rangle + \langle f(t, x(t), r(t)x'(t)) - f(t, u(t), r(t)u'(t)), w(t) \rangle = 0.\]

From (17) it follows that

\[|w(t)|^2 \leq \int_0^t \int_s^T \left\{ \langle f(\tau, x(\tau), r(\tau)x'(\tau)) - f(\tau, u(\tau), r(\tau)u'(\tau)), w(\tau) \rangle - B |w'(\tau)|^2 \right\} d\tau d s.\]
Thus using (23) and (24) we obtain
\[|w(t)|^2 \leq 2TI_{1/r} \left(a + \frac{b^2A^2}{4B} \right) |w|_0^2. \]
Taking (24) into account we get
\[|w|_0^2 \leq 0 \]
which implies \(x(t) = u(t) \) for all \(t \in I \).

Remark. By Theorem 4 and Theorem 5 the differential equation (1)-(2) has a unique solution in \(C^1(I, H) \) under the assumptions (14), (15) and (25).

Example 1. Let \(a(t) \) and \(b(t) \) be continuous functions on \(I \). By Theorem 3 the differential equation
\[
\left((1 + t^{1/3})x'(t) \right)' + a(t)\sqrt{x'(t)} \ln \left[1 + \{r(t)x'(t)\}^2 \right] \sin(tx(t)) + b(t)e^{-t^2} = 0,
\]
\[x(0) = x(T) = 0 \]
has at least one solution in \(C^1(I, H) \).

Example 2. Let \(a(t) \), \(b(t) \) and \(c(t) \) be continuous functions on \(I \). By Theorem 4 the differential equation
\[
\left((1 + |\sin t|)x'(t) \right)' + a(t)x(t) - b(t)\frac{(r(t)x'(t))^3}{1 + |r(t)x'(t)|^2} + c(t)\cos t = 0,
\]
\[x(0) = x(T) = 0 \]
where \(0 \leq \alpha < 1 \) has at least one solution in \(C^1(I, H) \).

Remark. For the case \(\alpha = \beta = 1 \) in Theorem 3 and for a completely continuous function \(f \) satisfying (27) Mawhin[4] proved the existence result under the assumption \(\int_0^\infty \frac{ds}{h(s)+|k|} = \infty \). Hai[2] assumed that \(\int_{M/\pi}^{K/\pi} \frac{ds}{h(s)+|k|} \geq 2M \). Then they proved the existence results of the differential equation (1) – (2) with \(r(t) = 1 \) and \(J = [0, \pi] \).
Nonlinear differential equations of second order in a Hilbert Space

References

Department of Mathematics
Hallym University,
Chuncheon, Gangwon-Do
200-702, Korea.

E-mail: rjkim@hallym.ac.kr