Korean J. Math. 16 (2008), No. 1, pp. 91–101

NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER IN A HILBERT SPACE

RAKJOONG KIM

ABSTRACT. Let H be a Hilbert space. Assume that $0 \le \alpha, \beta \le 1$ and r(t) > 0 in I = [0, T]. By means of the fixed point theorem of Leray-Schauder type the existence principles of solutions for two point boundary value problems of the form

$$(r(t)x'(t))' + f(t, x(t), r(t)x'(t)) = 0, \quad t \in I$$

 $x(0) = x(T) = 0$

are established where f satisfies for positive constants a, b and c

$$|f(t, x, y)| \le a|x|^{\alpha} + b|y|^{\beta} + c$$
 for all $(t, x, y) \in I \times H \times H$.

1. Introduction

In this paper, we are concerned with the Dirichlet boundary value problems of the type:

(1)
$$(r(t)x'(t))' + f(t, x(t), r(t)x'(t)) = 0, \quad t \in I = [0, T]$$

(2)
$$x(0) = x(T) = 0$$

where $r(t) \in C(I, (0, \infty)), T > 0$ is constant, H is a Hilbert space and $f: I \times H \times H \to H$.

We will use the following notation throughout this paper: $|x|_0 = \sup_{t \in I} |x(t)|$ for $x \in C(I, H)$, $|x|_1 = \max_{t \in I} \{|x|_0, |x'|_0\}$ for $x \in C^1(I, H)$ where $|\cdot|$ is the norm induced by the inner product $\langle \cdot, \cdot \rangle$

Received January 24, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 34C10, 34C15.

Key words and phrases: fixed point theorem, Hilbert Space, nonlinear differential equation, Carathéodory function, completely continuous.

and $||x||_{L^2}^2 = \int_0^T \langle x(t), x(t) \rangle dt$. By a solution of (1), (2), we define $x \in C^1(I, H)$ satisfying (1), (2).

The differential equation x''(t) + kx'(t) + f(t, x(t), x'(t)) = 0, $x(0) = x(\pi) = 0$ was studied by Mawhin[3] for the case $H = R^n$, where references to the corresponding literature are also given. Also Mawhin[4] and Hai[2] dealt with the same problem for the case that H is a Hilbert space. The purpose of this paper is to establish some existence results and uniqueness of differential equation (1)-(2) which extend their results.

DEFINITION 1. A function $f : I \times H \times H \to H$ is called a L^1 -Carathéodory function if the following conditions are valid:

- (i) $t \to f(t, x, y)$ is measurable for each $(x, y) \in H \times H$,
- (ii) $(x, y) \to f(t, x, y)$ is continuous for a. e. $t \in I$,
- (iii) for any $\gamma > 0$ there exists $h_{\gamma} \in L^{1}(I, \mathbb{R})$ such that

$$|f(t,x,y)| \le h_{\gamma}(t)$$
 a. e. $t \in I$,

and for all x, y with $\max\{|x|_0, |y|_0\} \le \gamma$.

Hereafter we assume that the function f is a L^1 -Carathéodory function. Our existence principles will be proved by means of the following fixed point theorem[4] of Leray-Schauder type.

PROPOSITION. [Nonlinear Alternative] Assume Ω is a relatively open subset of a convex set C in a Banach Space E. Let $F : \overline{\Omega} \to C$ be a compact map with $p^* \in \Omega$. Then either

- A1. F has a fixed point in $\overline{\Omega}$, or
- A2. there exist a $u \in \partial \Omega$ and a $\lambda \in (0, 1)$ such that $u = (1 \lambda)p^* + \lambda F u$.

2. Existence Principles

LEMMA 1[1]. Let X, Y be positive constants and $\sigma \geq 0$. Then the inequality

$$(\sigma+1)XY^{\sigma} \le X^{\sigma+1} + \sigma Y^{\sigma+1}$$

is valid where the equality holds if and only if X = Y.

Put $A = \max_{t \in [0,T]} r(t)$, $B = \min_{t \in [0,T]} r(t)$ and denote I_h by $I_h = \int_0^T h(s) ds$ for a integrable function h on I.

THEOREM 2. Suppose that there exists a constant M > 0, independent of λ , with

$$|x|_1 \leqq M$$

for any solution of

(3_{\lambda})
$$(r(t)x'(t))' + \lambda f(t, x(t), r(t)x'(t)) = 0,$$

 $x(0) = x(T) = 0$

for each $\lambda \in (0, 1)$ and $t \in I = [0, T]$. Then the differential equation (1) satisfying (2) has at least one solution in $C^1(I, H)$.

Proof. We find a priori bounds of solutions of (3_{λ}) . To solve (3_{λ}) is equivalent to find $x(t) \in C^{1}(I, H)$ such that for $\lambda \in (0, 1)$

(4)
$$x(t) = \lambda F x(t),$$

where

(5)
$$Fx(t) = \int_0^t \frac{1}{r(s)} \left[C + \int_s^T f(u, x(u), r(u)x'(u)) \, du \right] ds,$$
$$C = -I_{1/r}^{-1} \int_0^T \frac{1}{r(s)} \int_s^T f(u, x(u), r(u)x'(u)) \, du \, ds.$$

By standard argument we can show that $F: C^1(I, H) \to C^1(I, H)$ is completely continuous. Assume that there exists a constant M > 0, independent of λ , such that

$$|x|_1 \leqq M$$

is valid for any solution of $(3_{\lambda}), \lambda \in (0, 1)$. Choose then

(6)
$$\Omega = \{ x \in C^1(I, H) : |x|_1 < M \}.$$

We apply Proposition with $p^* = 0$. Then A2 of Proposition cannot be occurred. Therefore F has a fixed point $x \in C^1(I, H)$ in $\overline{\Omega}$ by A1. \Box

THEOREM 3. Assume that there exist nonnegative real numbers a, b, c such that for all $(t, x, y) \in I \times H \times H$

(7)
$$|f(t,x,y)| \le a|x|^{\alpha} + b|y|^{\beta} + c$$

where $0 \leq \alpha, \beta < 1$. Then the differential equation (1) satisfying (2) has at least one solution in $C^{1}(I, H)$.

Proof. Assume that $0 \leq \alpha, \beta < 1$. We find a suitable bounded open set $\Omega \subseteq C^1(I, H)$ such that all solutions of (3_λ) belong to Ω but for any $\lambda \in (0, 1) \lambda F$ has no fixed point in $\partial \Omega$. Note that the equation (4) is equivalent to $(r(t)x'(t))' + \lambda f(t, x(t), r(t)x'(t)) = 0$. Consider the inner product (3_λ) with x(t).

(8)
$$\langle (r(t)x'(t))', x(t) \rangle + \langle \lambda f(t, x(t), r(t)x'(t)), x(t) \rangle = 0.$$

From this we can immediately deduce

$$\langle x'(t), x(t) \rangle = \frac{1}{r(t)} \int_{t}^{T} \{ \langle \lambda f(u, x(u), r(u)x'(u)), x(u) \rangle - r(u) |x'(u)|^2 \} du,$$

from which we get

(9)
$$|x(t)|^2 \leq \int_0^t \frac{2}{r(s)} \int_s^T \left\{ \langle \lambda f(u, x(u), r(u)x'(u)), x(u) \rangle - \frac{1}{A} |r(u)x'(u)|^2 \right\} du \, ds.$$

So it follows that for all $\lambda \in (0, 1)$

$$\begin{aligned} \left| \langle \lambda f(u, x(u), r(u) x'(u)), x(u) \rangle \right| \\ \leq a |x(u)|^{1+\alpha} + b |x(u)| |r(u) x'(u)|^{\beta} + c |x(u)|. \end{aligned}$$

Applying Lemma 1 with

$$\sigma = \frac{\beta}{2-\beta}, \ X = \frac{b}{\sigma+1} \left(\sigma A\right)^{\sigma/(\sigma+1)} |x(u)|, \ Y = \left(\frac{|r(u)x'(u)|^2}{\sigma A}\right)^{1/(\sigma+1)}$$

Nonlinear differential equations of second order in a Hilbert Space

95

to $b|x(u)||r(u)x'(u)|^{\beta}$ we then obtain for all $\lambda \in (0, 1)$

$$\begin{split} \langle \lambda f(u, x(u), r(u) x'(u)), x(u) \rangle \\ &\leq a |x(u)|^{1+\alpha} + C |x(u)|^{\frac{2}{2-\beta}} + c |x(u)| + \frac{1}{A} |r(u) x'(u)|^2 \end{split}$$

where $C = \frac{2-\beta}{2} \left(\frac{A\beta}{2}\right)^{\beta/(2-\beta)} b^{2/(2-\beta)}$. Thus (9) is reduced to

$$|x(t)|^{2} \leq 2T I_{1/r} \left\{ a|x|_{0}^{1+\alpha} + C|x|_{0}^{\frac{2}{2-\beta}} + c|x|_{0} \right\}, \quad t \in I$$

So there exists a R > 0 such that

$$(10) |x|_0 \le R.$$

From the fact that

$$\frac{1}{2} \frac{d}{dt} |r(t)x'(t)|^2 = \langle (r(t)x'(t))', r(t)x'(t) \rangle$$
$$= -\langle \lambda f(t, x(t), r(t)x'(t)), r(t)x'(t) \rangle$$

it is clear that by means of (10)

$$\left|\frac{1}{2}\frac{d}{dt}|r(t)x'(t)|^{2}\right| = \left|\left|r(t)x'(t)\right|\frac{d}{dt}|r(t)x'(t)|\right|$$
$$\leq \left(aR^{\alpha} + b\left|r(t)x'(t)\right|^{\beta} + c\right)|r(t)x'(t)|$$

Dividing both sides by $(aR^{\alpha} + b |r(t)x'(t)|^{\beta} + c) |r(t)x'(t)|$ we obtain

$$\left|\frac{d}{dt}\int_{0}^{\left|r(t)x'(t)\right|}\frac{du}{aR^{\alpha}+bu^{\beta}+c}\right| \leq 1.$$

By means of the condition (2) there exists $t_0 \in (0, T)$ such that $x'(t_0) = 0$. Integrating $\frac{d}{dt} \int_0^{|r(t)x'(t)|} \frac{du}{aR^{\alpha} + bu^{\beta} + c}$ over $[t_0, t]$ for $0 \le t_0 < t \le T$ we have

(11)
$$\int_{0}^{\left|r(t)x'(t)\right|} \frac{du}{aR^{\alpha} + bu^{\beta} + c} < T.$$

On the other hand, since

$$\int_0^\infty \frac{du}{aR^\alpha + bu^\beta + c} = \infty$$

there exists a $R_1 > 0$ such that

(12)
$$T \le \int_0^{R_1} \frac{du}{aR^\alpha + bu^\beta + c}.$$

From (11) and (12) we obtain $|x'|_0 \leq R_1/B$. Put $M = \max\{R, R_1/B\}$. Then the inequality $|x|_1 \leq M$ is valid for each solution of $(3_\lambda), \lambda \in (0, 1)$ satisfying (2). If therefore we take

$$\Omega = B_{M+1}(0) = \{ x \in C^1(I, H) : |x|_1 < M+1 \}$$

our theorem is proved by Theorem 2.

REMARK. Even though a = c = 0 Theorem 3 is valid.

THEOREM 4. Assume that there exist nonnegative real numbers a, b, c such that for all $(t, x, y) \in I \times H \times H$

(13)
$$|f(t, x, y)| \le a|x| + b|y| + c,$$

(14)
$$T(4a+b^2A)I_{1/r} < 2.$$

are valid. Then the differential equation (1) satisfying (2) has at least one solution in $C^{1}(I, H)$.

Proof. The most part of proof is similar to that of Theorem 3. We sketch briefly the process of proof. It is obvious that for all $\lambda \in (0, 1)$ (15)

$$\langle \lambda f(u, x(u), r(u)x'(u)), x(u) \rangle \le \left(a + \frac{b^2 A}{4}\right) |x(u)|^2 + c|x(u)| + \frac{1}{A} |r(u)x'(u)|^2.$$

Thus from (9) we have

(16)
$$|x(t)|^2 \le 2T I_{1/r} \left\{ \left(a + \frac{b^2 A}{4} \right) |x|_0^2 + c|x|_0 \right\}, \quad t \in I$$

96

for all $\lambda \in (0, 1)$. So we obtain

$$(17) |x|_0 \le R$$

where

(18)
$$R = \frac{4cTI_{1/r}}{2 - T(4a + b^2A)I_{1/r}}.$$

Note that R > 0 by (14). The rest part of proof is the same as that of Theorem 3.

REMARK. In the case of $|f(t, x, y)| \leq a|x|^{\alpha} + b|y|^{\beta} + c$, where $0 \leq \alpha, \beta \leq 1$, it is not difficult to show that by Theorem 3 and Theorem 4 the existence property of (1)-(2) is also valid under suitable conditions.

DEFINITION 2. A function $p : I \times H \to [0,\infty)$ is called a L^1 -Carathéodory function such that

- (i') $t \to p(t, x)$ is measurable for each $x \in H$,
- (ii') $x \to p(t, x)$ is continuous for a. e. $t \in I$,
- (iii') for any $\gamma > 0$ there exists $h_{\gamma} \in L^{1}(I, \mathbb{R})$ such that $|x|_{0} \leq \gamma$ implies $|p(t, x)| \leq h_{\gamma}(t)$ a. e. $t \in I$.

THEOREM 5. Assume that $p : I \times H \to [0, \infty)$ is called a L^1 -Carathéodory function and that for all $(t, x, y) \in I \times H \times H$

(i) there exist nonnegative real numbers a, b, c such that

(19)
$$|\langle x, f(t, x, y) \rangle| \le a|x|^2 + b|x||y| + c|x|,$$

and (14) are valid.

(ii) there exist a continuous function $g: [0, \infty) \to (0, \infty)$ and positive numbers R, R_1 such that

(20)
$$|\langle y, f(t,x,y)\rangle| \le p(t,x)g(|y|)$$
, for a. e. $t \in I$ and all $y \in H$,

(21)
$$\int_{\sqrt{R_1}}^{\infty} \frac{u}{g(u)} \, du = \infty,$$

where

(22)
$$R_1 = 2A\left\{\left(a + \frac{b^2 A}{2}\right)R^2 + cR\right\}$$

and R is a number given by (18).

Then the differential equation (1) satisfying (2) has at least one solution in $C^{1}(I, H)$.

Proof. We sketch briefly the process of proof. It follows that for all $\lambda \in (0, 1)$ there exists a R > 0 satisfying (17). Here R is a constant number (18). Multiplying (3_{λ}) by -x(t) and integrating over I we have

$$\begin{aligned} \frac{1}{A} ||rx'||_{L^2}^2 &\leq \int_0^T r(t) |x'(t)|^2 \, dt \\ &\leq \int_0^T \left| \langle f(u, x(u), r(u) x'(u)), x(u) \rangle \right| \, du \\ &\leq aT |x|_0^2 + cT |x|_0 + b\sqrt{T} |x|_0 \, ||rx'||_{L^2}. \end{aligned}$$

Since

$$b\sqrt{T}|x|_0 ||rx'||_{L^2} \le \frac{b^2 AT}{2}|x|_0^2 + \frac{1}{2A}||rx'||_{L^2}^2$$

the inequality $||rx'||_{L^2}^2 \leq TR_1$ is valid. There exists a $\xi \in [0,T]$ such that $|r(\xi)x'(\xi)| \leq \sqrt{R_1}$. It is clear that by (20)

$$\left|\frac{1}{2}\frac{d}{dt}|r(t)x'(t)|^2\right| = \left|\left|r(t)x'(t)\right|\frac{d}{dt}|r(t)x'(t)|\right|$$
$$\leq p(t,x)g(|r(t)x'(t)|).$$

Dividing both sides by g(|r(t)x'(t)|) we obtain

$$\left|\frac{d}{dt}\int_0^{\left|r(t)x'(t)\right|}\frac{u}{g(u)}\,du\right| \le p(t,x).$$

By (iii') there exists a $h_R \in L^1(I)$ satisfying $|p(t,x)| \leq h_R(t)$ for all I. From (21) it follows that there exists a real number $R_2 > 0$ such that

$$\int_0^T h_R(u) \, du = \int_{\sqrt{R_1}}^{R_2} \frac{u}{g(u)} \, du.$$

Therefore we have for $0 \leq \xi < t \leq T$

$$\int_{0}^{\left|r(t)x'(t)\right|} \frac{u}{g(u)} \, du \le \int_{0}^{\sqrt{R_{1}}} \frac{u}{g(u)} \, du + \int_{0}^{t} h_{R}(u) \, du$$
$$\le \int_{0}^{R_{2}} \frac{u}{g(u)} \, du.$$

By means of the proof of Theorem 3 our theorem is proved.

REMARK. In Theorem 5 even if the condition (20) and (21) are replaced with

(20')

$$\begin{aligned} |\langle y, f(t, x, y) \rangle| &\leq p(t, x)g(|y|^2), \text{ for a. e. } t \in I \text{ and all } x, y \in H, \\ (21') \qquad \qquad \int_{\sqrt{R_1}}^{\infty} \frac{du}{g(u)} = \infty, \end{aligned}$$

we get the same result.

THEOREM 6. Assume that there exist positive numbers a, b such that for all $t \in I$

(23)
$$|f(t, x, y) - f(t, u, v)| \le a|x - u| + b|y - v|$$

(24)
$$I_{1/r} < \frac{2B}{T(4aB + b^2 A^2)}$$

for all $x, y, u, v \in H$. Then the differential equation (1) satisfying

(25)
$$x(0) = x_0, \ x(T) = x_T \text{ for } x_0, \ x_T \in \mathbb{R}$$

has at most one solution.

Proof. Assume x(t), u(t) are solutions of (1) satisfying (25). If we put w(t) = x(t) - u(t) we obtain

(26)
$$(r(t)w'(t))' + f(t, x(t), r(t)x'(t)) - f(t, u(t), r(t)u'(t)) = 0,$$

 $w(0) = w(T) = 0$

Consider the inner product of (26) with w(t):

$$\langle (r(t)w'(t))', w(t) \rangle + \langle f(t, x(t), r(t)x'(t)) - f(t, u(t), r(t)u'(t)), w(t) \rangle = 0.$$

From (17) it follows that

(27)
$$|w(t)|^2 \leq \int_0^t \frac{2}{r(s)} \int_s^T \left\{ \langle f(\tau, x(\tau), r(\tau) x'(\tau)) - f(\tau, u(\tau), r(\tau) u'(\tau)), w(\tau) \rangle - B |w'(\tau)|^2 \right\} d\tau \, ds.$$

Thus using (23) and (24) we obtain

$$|w(t)|^2 \le 2TI_{1/r}\left(a + \frac{b^2A^2}{4B}\right)|w|_0^2.$$

Taking (24) into account we get

 $|w|_0^2 \le 0$

which implies x(t) = u(t) for all $t \in I$.

REMARK. By Theorem 4 and Theorem 5 the differential equation (1)-(2) has a unique solution in $C^{1}(I, H)$ under the assumptions (14), (15) and (25).

EXAMPLE 1. Let a(t) and b(t) be continuous functions on I. By Theorem 3 the differential equation

$$((1+t^{1/3})x'(t))' + a(t)\sqrt[3]{x'(t)} \ln \left[1 + \{r(t)x'(t)\}^2\right] \sin(t\,x(t)) + b(t)e^{-t^2} = 0,$$
$$x(0) = x(T) = 0$$

has at least one solution in $C^1(I, H)$.

EXAMPLE 2. Let a(t), b(t) and c(t) be continuous functions on I. By Theorem 4 the differential equation

$$\left((1+|\sin t|) x'(t) \right)' + a(t)x(t) - b(t) \frac{\{r(t)x'(t)\}^3}{1+|r(t)x'(t)|^2} + c(t)\cos t = 0,$$
$$x(0) = x(T) = 0$$

where $0 \le \alpha < 1$ has at least one solution in $C^1(I, H)$.

REMARK. For the case $\alpha = \beta = 1$ in Theorem 3 and for a completely continuous function f satisfying (27) Mawhin[4] proved the existence result under the assumption $\int_0^\infty \frac{ds}{h(s)+|k|} = \infty$. Hai[2] assumed that $\int_{M/\pi}^K \frac{ds}{h(s)+|k|} \geq 2M$. Then they proved the existence results of the differential equation (1) – (2) with r(t) = 1 and $J = [0, \pi]$.

100

Nonlinear differential equations of second order in a Hilbert Space 101

References

- 1. G.H.Hardy, J.E.Litlewood and G. Polya, *Inequality*, Cambridge University Press, Cambridge. Netherlands, 1988.
- Dang Dinh Hai, Existence and Uniqueness of Solutions for a Nonlinear Second Order Differential Equations in Hilbert Space, Proc. of Edinburgh Math. Society 33 (1990), 89-95.
- J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problem (Regional Conference Series in Math. 40, Amer. Math. Soc. Providence, R. I., 1979).
- J. Mawhin, Two point boundary value Problems for nonlinear Second Order Differential Equations in Hilbert Space, Tôhoku Math. Jour 32 (1980), 225-233.
- 5. D. O'regan, Existence Theory for Nonlinear Ordinary differential equations, Kluwer Academic Publishers. Netherlands, 1977.

Department of Mathematics Hallym University, Chuncheon, Gangwon-Do 200-702, Korea. *E-mail*: rjkim@hallym.ac.kr