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NONLINEAR DIFFERENTIAL EQUATIONS
OF SECOND ORDER IN A HILBERT SPACE

RakJoong Kim

Abstract. Let H be a Hilbert space. Assume that 0 ≤ α, β ≤ 1
and r(t) > 0 in I = [0, T ]. By means of the fixed point theorem
of Leray-Schauder type the existence principles of solutions for two
point boundary value problems of the form

(
r(t)x′(t)

)′
+ f(t, x(t), r(t)x′(t)) = 0, t ∈ I

x(0) = x(T ) = 0

are established where f satisfies for positive constants a, b and c

|f(t, x, y)| ≤ a|x|α + b|y|β + c for all (t, x, y) ∈ I ×H ×H.

1. Introduction

In this paper, we are concerned with the Dirichlet boundary value
problems of the type:

(
r(t)x′(t)

)′ + f(t, x(t), r(t)x′(t)) = 0, t ∈ I = [0, T ](1)

x(0) = x(T ) = 0(2)

where r(t) ∈ C(I, (0,∞)), T > 0 is constant, H is a Hilbert space and
f : I ×H ×H → H.

We will use the following notation throughout this paper: |x|0 =
supt∈I |x(t)| for x ∈ C(I, H), |x|1 = maxt∈I {|x|0, |x′|0)} for x ∈
C1(I,H) where | · | is the norm induced by the inner product 〈·, ·〉

Received January 24, 2008.
2000 Mathematics Subject Classification: 34C10, 34C15.
Key words and phrases: fixed point theorem, Hilbert Space, nonlinear differen-
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and ||x||2L2 =
∫ T

0
〈x(t), x(t)〉 dt. By a solution of (1), (2), we define

x ∈ C1(I, H) satisfying (1), (2).

The differential equation x′′(t)+kx′(t)+f(t, x(t), x′(t)) = 0, x(0) =
x(π) = 0 was studied by Mawhin[3] for the case H = Rn, where ref-
erences to the corresponding literature are also given. Also Mawhin[4]
and Hai[2] dealt with the same problem for the case that H is a Hilbert
space. The purpose of this paper is to establish some existence results
and uniqueness of differential equation (1)-(2) which extend their re-
sults.

Definition 1. A function f : I × H × H → H is called a L1-
Carathéodory function if the following conditions are valid:

(i) t → f(t, x, y) is measurable for each (x, y) ∈ H ×H,
(ii) (x, y) → f(t, x, y) is continuous for a. e. t ∈ I,
(iii) for any γ > 0 there exists hγ ∈ L1(I,R) such that

|f(t, x, y)| ≤ hγ(t) a. e. t ∈ I,

and for all x, y with max{|x|0, |y|0} ≤ γ.

Hereafter we assume that the function f is a L1-Carathéodory func-
tion . Our existence principles will be proved by means of the following
fixed point theorem[4] of Leray-Schauder type.

Proposition. [Nonlinear Alternative] Assume Ω is a relatively open
subset of a convex set C in a Banach Space E. Let F : Ω → C be a
compact map with p∗ ∈ Ω. Then either

A1. F has a fixed point in Ω, or
A2. there exist a u ∈ ∂Ω and a λ ∈ (0, 1) such that u = (1−λ)p∗+

λFu.

2. Existence Principles

Lemma 1[1]. Let X, Y be positive constants and σ ≥ 0. Then the
inequality

(σ + 1)XY σ ≤ Xσ+1 + σY σ+1
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is valid where the equality holds if and only if X = Y .

Put A = max
t∈[0,T ]

r(t), B = min
t∈[0,T ]

r(t) and denote Ih by Ih =
∫ T

0
h(s) ds

for a integrable function h on I.

Theorem 2. Suppose that there exists a constant M > 0, indepen-
dent of λ, with

|x|1 � M

for any solution of

(
r(t)x′(t)

)′ + λf(t, x(t), r(t)x′(t)) = 0,(3λ)

x(0) = x(T ) = 0

for each λ ∈ (0, 1) and t ∈ I = [0, T ]. Then the differential equation (1)
satisfying (2) has at least one solution in C1(I, H).

Proof. We find a priori bounds of solutions of (3λ). To solve (3λ) is
equivalent to find x(t) ∈ C1(I, H) such that for λ ∈ (0, 1)

(4) x(t) = λFx(t),

where

Fx(t) =
∫ t

0

1
r(s)

[
C +

∫ T

s

f(u, x(u), r(u)x′(u)) du
]
ds,(5)

C = −I−1
1/r

∫ T

0

1
r(s)

∫ T

s

f(u, x(u), r(u)x′(u)) du ds.

By standard argument we can show that F : C1(I, H) → C1(I, H) is
completely continuous. Assume that there exists a constant M > 0,
independent of λ, such that

|x|1 � M

is valid for any solution of (3λ), λ ∈ (0, 1). Choose then

(6) Ω = {x ∈ C1(I, H) : |x|1 < M}.
We apply Proposition with p∗ = 0. Then A2 of Proposition cannot be
occurred. Therefore F has a fixed point x ∈ C1(I,H) in Ω by A1. ¤
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Theorem 3. Assume that there exist nonnegative real numbers
a, b, c such that for all (t, x, y) ∈ I ×H ×H

(7) |f(t, x, y)| ≤ a|x|α + b|y|β + c

where 0 ≤ α, β < 1. Then the differential equation (1) satisfying (2)
has at least one solution in C1(I, H).

Proof. Assume that 0 ≤ α, β < 1. We find a suitable bounded open
set Ω ⊆ C1(I, H) such that all solutions of (3λ) belong to Ω but for
any λ ∈ (0, 1) λF has no fixed point in ∂Ω. Note that the equation (4)
is equivalent to

(
r(t)x′(t)

)′ + λf(t, x(t), r(t)x′(t)) = 0. Consider the
inner product (3λ) with x(t).

(8) 〈(r(t)x′(t))′, x(t)〉+ 〈λf(t, x(t), r(t)x′(t)), x(t)〉 = 0.

From this we can immediately deduce

〈x′(t), x(t)〉 =
1

r(t)

∫ T

t

{〈λf(u, x(u), r(u)x′(u)), x(u)〉−r(u)|x′(u)|2} du,

from which we get

(9) |x(t)|2 ≤
∫ t

0

2
r(s)

∫ T

s

{〈λf(u, x(u), r(u)x′(u)), x(u)〉 − 1
A
|r(u)x′(u)|2} du ds.

So it follows that for all λ ∈ (0, 1)

∣∣∣〈λf(u, x(u), r(u)x′(u)), x(u)〉
∣∣∣

≤ a|x(u)|1+α + b|x(u)||r(u)x′(u)|β + c|x(u)|.

Applying Lemma 1 with

σ =
β

2− β
, X =

b

σ + 1
(σA)σ/(σ+1) |x(u)|, Y =

( |r(u)x′(u)|2
σA

)1/(σ+1)
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to b|x(u)||r(u)x′(u)|β we then obtain for all λ ∈ (0, 1)

〈λf(u, x(u), r(u)x′(u)), x(u)〉
≤ a|x(u)|1+α + C|x(u)| 2

2−β + c|x(u)|+ 1
A
|r(u)x′(u)|2

where C = 2−β
2

(
Aβ
2

)β/(2−β)

b2/(2−β). Thus (9) is reduced to

|x(t)|2 ≤ 2T I1/r

{
a|x|1+α

0 + C|x|
2

2−β

0 + c|x|0
}

, t ∈ I.

So there exists a R > 0 such that

(10) |x|0 ≤ R.

From the fact that

1
2

d

dt

∣∣r(t)x′(t)∣∣2 = 〈(r(t)x′(t))′, r(t)x′(t)〉
= −〈λf(t, x(t), r(t)x′(t)), r(t)x′(t)〉

it is clear that by means of (10)
∣∣∣∣
1
2

d

dt

∣∣r(t)x′(t)
∣∣2

∣∣∣∣ =
∣∣∣∣
∣∣r(t)x′(t)

∣∣ d

dt

∣∣r(t)x′(t)
∣∣
∣∣∣∣

≤ (
aRα + b |r(t)x′(t)|β + c

) |r(t)x′(t)|.

Dividing both sides by
(
aRα + b |r(t)x′(t)|β + c

) |r(t)x′(t)| we obtain
∣∣∣∣∣∣
d

dt

∫ ∣∣r(t)x′(t)
∣∣

0

du

aRα + buβ + c

∣∣∣∣∣∣
≤ 1.

By means of the condition (2) there exists t0 ∈ (0, T ) such that x′(t0) =

0. Integrating
d

dt

∫ ∣∣r(t)x′(t)
∣∣

0

du

aRα + buβ + c
over [t0, t] for 0 ≤ t0 < t ≤

T we have
∫ ∣∣r(t)x′(t)∣∣

0

du

aRα + buβ + c
< T.(11)
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On the other hand, since
∫ ∞

0

du

aRα + buβ + c
= ∞

there exists a R1 > 0 such that

(12) T ≤
∫ R1

0

du

aRα + buβ + c
.

From (11) and (12) we obtain |x′|0 ≤ R1/B. Put M = max {R, R1/B}.
Then the inequality |x|1 ≤ M is valid for each solution of (3λ), λ ∈
(0, 1) satisfying (2). If therefore we take

Ω = BM+1(0) = {x ∈ C1(I, H) : |x|1 < M + 1}

our theorem is proved by Theorem 2. ¤

Remark. Even though a = c = 0 Theorem 3 is valid.

Theorem 4. Assume that there exist nonnegative real numbers
a, b, c such that for all (t, x, y) ∈ I ×H ×H

|f(t, x, y)| ≤ a|x|+ b|y|+ c,(13)

T (4a + b2A)I1/r < 2.(14)

are valid. Then the differential equation (1) satisfying (2) has at least
one solution in C1(I, H).

Proof. The most part of proof is similar to that of Theorem 3. We
sketch briefly the process of proof. It is obvious that for all λ ∈ (0, 1)
(15)

〈λf(u, x(u), r(u)x′(u)), x(u)〉 ≤
(

a +
b2A

4

)
|x(u)|2+c|x(u)|+ 1

A
|r(u)x′(u)|2.

Thus from (9) we have

(16) |x(t)|2 ≤ 2T I1/r

{(
a +

b2A

4

)
|x|20 + c|x|0

}
, t ∈ I
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for all λ ∈ (0, 1). So we obtain

(17) |x|0 ≤ R

where

(18) R =
4cTI1/r

2− T (4a + b2A)I1/r
.

Note that R > 0 by (14). The rest part of proof is the same as that of
Theorem 3. ¤

Remark. In the case of |f(t, x, y)| ≤ a|x|α + b|y|β + c, where 0 ≤
α, β ≤ 1, it is not difficult to show that by Theorem 3 and Theorem 4
the existence property of (1)-(2) is also valid under suitable conditions.

Definition 2. A function p : I × H → [0,∞) is called a L1-
Carathéodory function such that

(i’) t → p(t, x) is measurable for each x ∈ H,
(ii’) x → p(t, x) is continuous for a. e. t ∈ I,
(iii’) for any γ > 0 there exists hγ ∈ L1(I,R) such that |x|0 ≤ γ

implies |p(t, x)| ≤ hγ(t) a. e. t ∈ I.

Theorem 5. Assume that p : I × H → [0,∞) is called a L1-
Carathéodory function and that for all (t, x, y) ∈ I ×H ×H

(i) there exist nonnegative real numbers a, b, c such that

(19) |〈x, f(t, x, y)〉| ≤ a|x|2 + b|x||y|+ c|x|,
and (14) are valid.

(ii) there exist a continuous function g : [0,∞) → (0,∞) and posi-
tive numbers R, R1 such that

|〈y, f(t, x, y)〉| ≤ p(t, x)g(|y|), for a. e. t ∈ I and all y ∈ H,(20)
∫ ∞
√

R1

u

g(u)
du = ∞,(21)

where

(22) R1 = 2A

{(
a +

b2A

2

)
R2 + cR

}

and R is a number given by (18).
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Then the differential equation (1) satisfying (2) has at least one solution
in C1(I, H).

Proof. We sketch briefly the process of proof. It follows that for all
λ ∈ (0, 1) there exists a R > 0 satisfying (17). Here R is a constant
number (18). Multiplying (3λ) by −x(t) and integrating over I we have

1
A
||rx′||2L2 ≤

∫ T

0

r(t)|x′(t)|2 dt

≤
∫ T

0

∣∣〈f(u, x(u), r(u)x′(u)), x(u)〉
∣∣ du

≤ aT |x|20 + cT |x|0 + b
√

T |x|0 ||rx′||L2 .

Since

b
√

T |x|0 ||rx′||L2 ≤ b2AT

2
|x|20 +

1
2A
||rx′||2L2

the inequality ||rx′||2L2 ≤ TR1 is valid. There exists a ξ ∈ [0, T ] such
that |r(ξ)x′(ξ)| ≤ √

R1. It is clear that by (20)
∣∣∣∣
1
2

d

dt

∣∣r(t)x′(t)∣∣2
∣∣∣∣ =

∣∣∣∣
∣∣r(t)x′(t)∣∣ d

dt

∣∣r(t)x′(t)∣∣
∣∣∣∣

≤ p(t, x)g(|r(t)x′(t)|).
Dividing both sides by g(|r(t)x′(t)|) we obtain

∣∣∣∣∣∣
d

dt

∫ ∣∣r(t)x′(t)∣∣

0

u

g(u)
du

∣∣∣∣∣∣
≤ p(t, x).

By (iii’) there exists a hR ∈ L1(I) satisfying |p(t, x)| ≤ hR(t) for all I.
From (21) it follows that there exists a real number R2 > 0 such that

∫ T

0

hR(u) du =
∫ R2

√
R1

u

g(u)
du.

Therefore we have for 0 ≤ ξ < t ≤ T

∫ ∣∣r(t)x′(t)
∣∣

0

u

g(u)
du ≤

∫ √
R1

0

u

g(u)
du +

∫ t

0

hR(u) du

≤
∫ R2

0

u

g(u)
du.
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By means of the proof of Theorem 3 our theorem is proved. ¤

Remark. In Theorem 5 even if the condition (20) and (21) are
replaced with

|〈y, f(t, x, y)〉| ≤ p(t, x)g(|y|2), for a. e. t ∈ I and all x, y ∈ H,

(20’)

∫ ∞
√

R1

du

g(u)
= ∞,(21’)

we get the same result.

Theorem 6. Assume that there exist positive numbers a, b such
that for all t ∈ I

|f(t, x, y)− f(t, u, v)| ≤ a|x− u|+ b|y − v|(23)

I1/r <
2B

T (4aB + b2A2)
(24)

for all x, y, u, v ∈ H. Then the differential equation (1) satisfying

(25) x(0) = x0, x(T ) = xT for x0, xT ∈ R
has at most one solution.

Proof. Assume x(t), u(t) are solutions of (1) satisfying (25). If we
put w(t) = x(t)− u(t) we obtain

(
r(t)w′(t)

)′ + f(t, x(t), r(t)x′(t))− f(t, u(t), r(t)u′(t)) = 0,(26)

w(0) = w(T ) = 0

Consider the inner product of (26) with w(t):

〈(r(t)w′(t))′, w(t)〉+〈f(t, x(t), r(t)x′(t))−f(t, u(t), r(t)u′(t)), w(t)〉 = 0.

From (17) it follows that

(27) |w(t)|2 ≤
∫ t

0

2
r(s)

∫ T

s

{〈f(τ, x(τ), r(τ)x′(τ))

− f(τ, u(τ), r(τ)u′(τ)), w(τ)〉 −B |w′(τ)|2} dτ ds.
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Thus using (23) and (24) we obtain

|w(t)|2 ≤ 2TI1/r

(
a +

b2A2

4B

)
|w|20.

Taking (24) into account we get

|w|20 ≤ 0

which implies x(t) = u(t) for all t ∈ I. ¤

Remark. By Theorem 4 and Theorem 5 the differential equation (1)-
(2) has a unique solution in C1(I, H) under the assumptions (14), (15)
and (25).

Example 1. Let a(t) and b(t) be continuous functions on I. By
Theorem 3 the differential equation

(
(1 + t1/3)x′(t)

)′

+ a(t) 3
√

x′(t) ln
[
1 + {r(t)x′(t)}2] sin(t x(t)) + b(t)e−t2 = 0,

x(0) = x(T ) = 0

has at least one solution in C1(I, H).

Example 2. Let a(t), b(t) and c(t) be continuous functions on I.
By Theorem 4 the differential equation

(
(1 + | sin t|)x′(t)

)′ + a(t)x(t)− b(t)
{r(t)x′(t)}3

1 + |r(t)x′(t)|2 + c(t) cos t = 0,

x(0) = x(T ) = 0

where 0 ≤ α < 1 has at least one solution in C1(I, H).

Remark. For the case α = β = 1 in Theorem 3 and for a completely
continuous function f satisfying (27) Mawhin[4] proved the existence
result under the assumption

∫∞
0

ds
h(s)+|k| = ∞. Hai[2] assumed that

∫ K

M/π
ds

h(s)+|k| ≥ 2M . Then they proved the existence results of the
differential equation (1)− (2) with r(t) = 1 and J = [0, π].
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