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DETERMINANTS AND TRACES FOR THE

COMMUTING OPERATORS ON A FINITE VECTOR

SPACE

Sung Myung

Abstract. In the present article, we give a set of axioms for deter-
minants and traces of the l-tuples of commuting operators on a fixed
finite dimensional vector space over a field when l ≥ 2. We describe
them with or without a coherence assumption especially when k is
the field of real numbers. Under the coherence assumption, it turns
out that there are only a trivial determinant and trace over arbitrary
field k. This leads us to formulate a more appropriate definition of
the determinants. In this case, the set of determinants can be de-
scribed in terms of the Milnor’s K-theory. As for the traces, it is not
clear to us how to correctly formulate a definition except for certain
cases.

1. Introduction

In Section 7 of [3], the determinants for the l-tuples of commuting
operators over a field k are defined and are shown to be related with the
maps from a Milnor’s K-group. In [4], a trace map for commuting trace-
class self-adjoint operators on Hilbert spaces is defined and described.
But, in these two articles, the determinant or trace map is considered as
coherent system of maps from the total space of l-tuples of commuting
operators on vector spaces of various dimensions. In the present arti-
cle, we look for possibilities of determinants or traces for commuting
operators on a fixed finite dimensional vector space kn.

For a field k, we denote by Comml(k
n) the set of l-tuples (A1, . . . , Al)

of commuting operators on the n-dimensional k-vector space kn for n ≥
1. If k = R, it can be quipped with the obvious topology which comes
from the usual real metric. We also denote by Comml(k

n)× the set of
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l-tuples of commuting invertible operators on kn, which is obviously a
subset of Comml(k

n). The following preliminary definition is similar to
the one given in [4], but without a coherence condition.

Definition 1.1. A trace map Tl for Comml(k
n) is defined to be a

map from Comml(k
n) into the underlying additive group (k, +) of a

given field k, which satisfies the following two conditions:
(i) (Multilinearity) For l + 1 commuting n× n matrices A1, . . . , Al with
entries in k, we have

Tl(A1, . . . , Ai+B, . . . , Al) = Tl(A1, . . . , Ai, . . . , Al)+Tl(A1, . . . , B, . . . , Al).

(ii) (Compatibility with usual trace) For commuting n × n matrices
A1, . . . , Al ∈ GLn(k) and commuting n×n matrices B1, . . . , Bl such that
Tr Ai = Tr Bi for i = 1, . . . , l, we have Tl(A1, . . . , Al) = Tl(B1, . . . , Bl).

By (i) of Definition 1.1, it is immediate that Tl(A1, . . . , Al) = 0 if Ai,
for some i, is equal to the zero matrix.

For l = 1, the usual trace map gives rise to an example of a trace
for Comml(k

n) for each n ≥ 1. When n = 1, the map Tl(a1, . . . , al) =
ca1 . . . al gives a nontrivial trace for any nonzero constant c ∈ k×. It can
be easily shown that these are the only possible continuous traces for
the case n = 1 when k = R.

Lemma 1.2. Any continuous trace Tl from Comml(R1) into R is of
the form Tl(a1, . . . , al) = ca1 . . . al for some c ∈ R.

Proof. The lemma follows easily from the fact that any continuous
endomorphism for the additive group (R, +) is of the form x 7→ cx for
some c ∈ R. We remark that, if we drop the continuity assumption,
then, once we choose a Hamel basis (a Q-basis of R, c.f. [1]), an endo-
morphism of R is be given by a choice of rational numbers for all basis
vectors. Accordingly, the trace maps for Comml(R1) may be described
as products of such endomorhpisms.

For n ≥ 2, by the condition (ii) of Definition 1.1, we have, for com-
muting real matrices A1, . . . , Al,

Tl(A1, . . . , Al) = Tl

((
Tr (A1) 0

0 0n−1

)
, . . . ,

(
Tr (Al) 0

0 0n−1

))
,

where 0n−1 is an (n − 1) × (n − 1) matrix with all entries equal to 0.
Furthermore, it is immediate from Definition 1.1 that Tl composed with
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the inclusion Comml(R1) ↪→ Comml(Rn) via

(a1, . . . , al) 7→
((

a1 0
0 0n−1

)
, . . . ,

(
al 0
0 0n−1

))

is a trace for Comml(R1). Therefore, by Lemma 1.2, we have the fol-
lowing description of continuous traces for arbitrary l, n ≥ 1:

Proposition 1.3. Any continuous trace Tl from Comml(Rn) into R
can be written as Tl(A1, . . . , Al) = cTr (A1) . . . Tr (Al) for some c ∈ R.

In Section 2, it is shown in Proposition 2.4 that the trace Tl should
be identically 1, under the coherence assumption, when l, n ≥ 2.

The following ad hoc definition of determinants is similar to the one
given in [3], but again without a coherence condition.

Definition 1.4. A determinant Dl for Comml(k
n)× is defined to be

a map from Comml(k
n)× into the multiplicative group k× of units in a

given field, which satisfies the following two conditions:
(i) (Multilinearity) For l + 1 commuting matrices A1, . . . , Al and B
in GLn(k), we have Dl(A1, . . . , AiB, . . . , Al) = Dl(A1, . . . , Ai, . . . , Al) ·
Dl(A1, . . . , B, . . . , Al).
(ii) (Compatibility with usual determinant) For commuting A1, . . . , Al ∈
GLn(k) and commuting B1, . . . , Bl ∈ GLn(k) such that det Ai = det Bi

for i = 1, . . . , l, we have Dl(A1, . . . , Al) = Dl(B1, . . . , Bl).

Again, by (i) of Definition 1.4, we have Dl(A1, . . . , Al) = 1 if Ai

is the identity matrix for some i. For l = 1, the usual determinant
gives rise to an example of a determinant for Comml(Rn)× for each
n ≥ 1. When n = 1, the map Dl(a1, . . . , al) = clog |a1|··· log |al| gives a
nontrivial determinant for any constant c ∈ R 0. But, there is one notable
exceptional determinant, namely the Hilbert symbol (a1, . . . , al)R which
is defined to be 1 if a1x

2
1 + · · · + anx2

n = z2 has a nonzero solution in
x1, . . . , xn, z ∈ Rl+1 and −1 otherwise. In fact, (a1, . . . , al)R = −1 if
and only if all of a1, . . . , an are negative real numbers. The following
proposition completely describes the continuous determinant maps for
Comml(Rn)× for arbitrary l, n ≥ 1:

Proposition 1.5. Any continuous determinant Dl from Comml(Rn)×

into R× is of the form

Dl(A1, . . . , Al) =

{
clog | det(A1)|··· log |det(Al)| or

(det(A1), . . . , det(Al))R clog | det(A1)|··· log | det(Al)|
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for some c ∈ R>0, where ( , . . . , )R is the Hilbert symbol.

Proof. By (ii) of Definition 1.4, we have for commuting invertible
matrices A1, . . . , Al,

Dl(A1, . . . , Al) = Dl

((
det(A1) 0

0 In−1

)
, . . . ,

(
det(Al) 0

0 In−1

))
,

where In−1 is an (n− 1)× (n− 1) identity matrix of rank n− 1.
Since the inclusion Comml(R1)× ↪→ Comml(Rn)× via

(a1, . . . , al) 7→
((

a1 0
0 In−1

)
, . . . ,

(
al 0
0 In−1

))
,

for suitably chosen ε for each ai’s, followed by Dl is a determinant
for Comml(Rn)×, we see that Dl is the composite of (A1, . . . , Al) 7→
(det A1, . . . , det Al) and a determinant for Comml(Rn)×. So, it suffices
to prove the proposition for the case n = 1.

Let Dl be any continuous determinant for Comml(R1)×. We then
note that the map Comml(R1) → Comml(R1)× via (a1, . . . , al) 7→
(ea1 , . . . , eal) followed by Dl gives a continuous trace for Comml(R1). By
Proposition 1.3, we conclude that, for all positive real numbers a1, . . . , al,
Dl(a1, . . . , al) = ec1 log(a1)··· log(al) for some constant c1 ∈ R.

Finally, we have (a1, . . . , al) = (sgn(a1)|a1|, . . . , sgn(al)|al|) for any
a1, . . . , al ∈ R×, where sgn(ai) = ±1 according to the sign of ai. By
(i) of Definition 1.4, we see that any elements of the form (±1, . . . ,±1)
maps into the torsion subgroup {±1} of R×. But, their images are
completely determined by the value of (−1, . . . ,−1) again by (i) of Def-
inition 1.4. Hence, if Dl(−1, . . . ,−1) = 1, we have Dl(a1, . . . , al) =
ec1 log |a1|... log |al| and, if Dl(−1, . . . ,−1) = −1, we have Dl(a1, . . . , al) =
(a1, . . . , al)R ec1 log |a1|... log |al| .

Proposition 1.3 and Proposition 1.5 completely describes the traces
and determinants for arbitrary l, n ≥ 1, but a more interesting traces
and determinants are the ones with coherence assumptions.

In Section 2, the coherence conditions are defined, but, any trace and
determinant over an arbitrary field are immediately shown to be trivial
when l ≥ 2 and n ≥ 2 with the coherence assumptions. By examining
the proof of this fact, it can be realized that the preliminary definition
of the determinants given in Definition 1.4 allows too much freedom
for manipulation. Therefore, a new set of axioms for the determinants
will be given in Definition 2.5 and then the coherent determinants for
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Comml(k
n)× will be described in terms of Milnor’s K-theory for a fixed

n.

2. Coherence of trace and determinant

We define the coherence assumption for a trace as follows:

Definition 2.1. Suppose that we are given a trace Tl,m from Comml(k
m)

into k for every 1 ≤ m < n. A trace Tl from Comml(k
n) into k is said to

be coherent with the sub-traces Tl,m if it satisfies the following condition:

Tl

(


A11 0
. . .

0 A1r


 , . . . ,




Al1 0
. . .

0 Alr




)
=

r∑
i=1

Tl,ni
(A1i, . . . , Ali)

whenever A1i, . . . , Ali, for each i = 1, . . . , r, are commuting ni × ni ma-
trices and

∑
ni = n.

The determinants with a coherent condition are defined similarly as
below:

Definition 2.2. Suppose that we have a determinant Dl,m from
Comml(k

m)× into k× for each 1 ≤ m < n. A determinant Dl from
Comml(k

n)× into k× is said to be coherent with the sub-determinants
Dl,m if it satisfies the following condition:

Dl

(


A11 0
. . .

0 A1r


 , . . . ,




Al1 0
. . .

0 Alr




)
=

r∏
i=1

Dl,ni
(A1i, . . . , Ali)

when A1i, . . . , Ali, for each i, are commuting invertible matrices in GLni
(k)

and
∑

ni = n.

Proposition 2.3. In the sense of Definition 1.4, there is no nontrivial
coherent determinant Dl for Comml(k

n)× when l, n ≥ 2.

Proof. First, let us show that Dl vanishes on the following types of
l-tuples of commuting invertible matrices in Comml(k

n) if n ≥ 2:
((

a1 0
0 In−1

)
,

(
a2 0
0 In−1

)
, . . . ,

(
an 0
0 In−1

))
,
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where ai ∈ k×. The proof of this fact is immediate because, by (ii) of
Definition 1.4, we have the same determinant value after we replace the

n-th coordinate

(
an 0
0 In−1

)
by the matrix




1 0 0
0 an 0
0 0 In−2


 which has

the same determinant. But, after the replacement, the determinant is 1
because of Definition 2.2 and (i) of Definition 1.4 for the sub-determinant
Dl,1.

A consequence of this fact is that Dl,1 should be trivial as the sub-
determinant in Definition 2.2 when n ≥ 2. Then, by Definition 2.2, we
conclude that Dl is trivial on Comml(k

n)× since

Dl(A1, . . . , Al) = D1

((
det A1 0

0 In−1

)
, . . . ,

(
det An 0

0 In−1

))
.

The proof of the following proposition is similar.

Proposition 2.4. There is no nontrivial coherent trace Tl for Comml(k
n)

in the sense of Definition 1.1 when l, n ≥ 2.

To avoid the situation where a determinant Dl depends only on the
determinant of each coordinate matrix, it is inevitable to put a restriction
on the freedom of individual manipulation of each coordinate matrix
and substitute the condition (ii) of Definition 1.4 by a more rigid set of
axioms. From now on, a determinant will mean a map which satisfies
the following definition:

Definition 2.5. A determinant Dl for Comml(k
n)× is defined to be

a map from Comml(k
n)× into the multiplicative group k× of units in a

given field, which satisfies the following three conditions:
(i) (Multilinearity) For l + 1 commuting matrices A1, . . . , Al and B
in GLn(k), we have Dl(A1, . . . , AiB, . . . , Al) = Dl(A1, . . . , Ai, . . . , Al) ·
Dl(A1, . . . , B, . . . , Al).
(ii) (Similar Matrices) For commuting matrices A1, . . . , Al ∈ GLn(k) and
some S ∈ GLn(k), we have D(SA1S

−1, . . . , SAlS
−1) = D(A1, . . . , Al).

(iii) (Polynomial Homotopy) For commuting A1(t), . . . , Al(t) ∈ GLn(k[t]),
we have D(A1(0), . . . , Al(0)) = D(A1(1), . . . , Al(1)).
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In [3], it is proved that a coherent system of determinants for Comml(k
n)×

for all n ≥ 1 is in one-to-one correspondence with the group homo-
morphisms from the Milnor’s K-group KM

l (k) (c.f. [2] or [5]) into the
multiplicative group k×.

It is not clear how we should modify the definition for the traces to
allow only rigid simultaneous deformation of the tuples of commuting
matrices. But, in case of hermitian operators, it is possible to take
advantage of the definition of determinants using the exponential map
(See [4]).

We conclude the article with a theorem which describes the coherent
determinants for Comml(k

n)×.

Theorem 2.6. There exists a one-to-one correspondence between set
of coherent determinants for Comml(k

n)× in the sense of Definition 2.5
and the set of group homomorphisms from KM

l (k) into k× if n ≥ 3.

Proof. In Theorem 7.2 of [3], it is shown that there is a one-to-one
correspondence between the set of coherent system of determinants for
Comml(k

n)× for all n ≥ 1 and the set of group homomorphisms from
KM

l (k) ' GWl(k) into the multiplicative group k× of units of k. There-
fore, it suffices to prove that the generators and relations for the Good-
willie group GWl(k) in Definition 4.1 of [3] coming only from the sets
Comml(k

m)× (m ≤ n) generate the whole set of generators and re-
lations in Definition 4.1. Let GWl(k)n be the abelian group which is
generated by Comml(k

m)× (m ≤ n) subject to the relations as in Defi-
nition 4.1 of [3] which come from Comml(k

m)× (m ≤ n) so that we have
GWl(k) = lim

→
n

GWl(k)n. If one tracks down the proof of Lemma 5.2 of

[3], it can be checked that the multilinearity for commuting diagonal
matrices can be obtained using only the relations coming from the sets
Comml(k

m)× (m ≤ 2). Also, (iv) of the same lemma can be proved us-
ing only the relations coming from the sets Comml(k

m)× (m ≤ 3), so we
have a homomorphism KM

l (k) → GWl(k)n, which is similar to the one
in Proposition 5.6 of [3]. Furthermore, if one goes through Section 5-6 of
[3], it can be verified that GWl(k)n ' KM

l (k) when n ≥ 3. Therefore a
group homomorphism from the abelian group KM

l (k) into k×, gives rise
to a coherent determinant for Comml(k

n)× in the sense of Definition 2.5
and conversely, each coherent determinant for Comml(k

n)× determines
a group homomorphism from GWl(k)n into k×.
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Corollary 2.7. If a coherent determinant for Comml(k
3)× in the

sense of Definition 2.5 is given, then we are given a coherent system of
determinants for Comml(k

n)× for all n. The converse is trivially true.

Remark 2.8. The theorem is clearly false when n = 1 in view of
Proposition 1.5 with n = 1 as there is no coherence condition required
for n = 1 and Definition 1.4 and Definition 2.5 coincide if n = 1. When
n = 2, GWl(k)2 may not be isomorphic to KM

l (k) in general. But, we
remark that it is still true that each group homomorphism KM

l (k) into
k× gives rise to a coherent determinant for Comml(k

2)× since a coherent
system of determinants for Comml(k

n)× for all n ≥ 1 clearly induces a
coherent determinant for each n ≥ 1.
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