THE PROOF OF THE EXISTENCE OF THE THIRD
SOLUTION OF A NONLINEAR BIHARMONIC
EQUATION BY DEGREE THEORY

TACKSUN JUNG AND Q-HEUNG CHOI

Abstract. We investigate the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition, \(\Delta^2 u + c \Delta u = bu^+ + s \), in \(\Omega \), where \(c \in \mathbb{R} \) and \(\Delta^2 \) denotes the biharmonic operator. We show by degree theory that there exist at least three solutions of the problem.

1. Introduction

Let \(\Omega \) be a bounded set in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \). In this paper we study the multiplicity of the solutions of the nonlinear biharmonic equation with Dirichlet boundary condition

\[
\Delta^2 u + c \Delta u = bu^+ + s \quad \text{in} \; \Omega,
\]

\[
u = 0, \quad \Delta u = 0 \quad \text{on} \; \partial \Omega,
\]

where \(u^+ = \max\{u, 0\} \), \(c \in \mathbb{R} \), \(s \in \mathbb{R} \) and \(\Delta^2 \) denotes the biharmonic operator. Equations with nonlinearities of this type have been extensively studied for the second order elliptic operators (cf. [7]). Tarantello [12] also studied this type equation. She showed that if \(\lambda_1 > 0 \) is the first eigenvalue of \(-\Delta \) in \(H^1_0(\Omega) \) and \(c < \lambda_1 \), then the problem

\[
\Delta^2 u + c \Delta u = b[(u + 1)^+ - 1] \quad \text{in} \; \Omega,
\]

\[
u = 0, \quad \Delta u = 0 \quad \text{on} \; \partial \Omega,
\]

Received April 8, 2008.
2000 Mathematics Subject Classification: 35J35, 35J40, 35Q72.
Key words and phrases: Dirichlet boundary condition, biharmonic equation, eigenvalue, degree theory.
*Corresponding author.
has at least one solution, which is negative if and only if \(b \geq \lambda_1(\lambda_1 - c) \).

Choi and Jung [4] proved that if \(c < \lambda_1, \lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c) \) and \(s < 0 \), or if \(\lambda_1 < c < \lambda_2, b < \lambda_1(\lambda_1 - c) \) and \(s > 0 \), then problem (1.1) has at least two solutions by use of the variational reduction method.

In this paper, we prove that if \(c < \lambda_1, \lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c) \) and \(s < 0 \), then problem (1.1) has at least three solutions by use of the degree theory.

In section 2 we state the main result and in section 3 we prove the main theorem.

2. Statement of main result

Let \(\Omega \) be a bounded set in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \). Let \(\lambda_k, k = 1, 2, \ldots \), denote the eigenvalues and \(\phi_k, k = 1, 2, \ldots \), the corresponding eigenfunctions, suitably normalized with respect to \(L^2(\Omega) \) inner product, of the eigenvalue problem

\[
\Delta u + \lambda u = 0 \quad \text{in } \Omega, \\
u = 0 \quad \text{on } \partial \Omega,
\]

where each eigenvalue \(\lambda_k \) is repeated as often as its multiplicity. We recall that \(0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \to +\infty \), and that \(\phi_1(x) > 0 \) for \(x \in \Omega \). The eigenvalue problem

\[
\Delta^2 u + c \Delta u = \nu u \quad \text{in } \Omega, \\
u = 0, \quad \Delta u = 0 \quad \text{on } \partial \Omega
\]

has infinitely many eigenvalues

\[
\nu_k = \lambda_k(\lambda_k - c), \quad k = 1, 2, \ldots,
\]

and corresponding eigenfunctions \(\phi_k(x) \). The set of functions \(\{\phi_k\} \) is an orthonormal base for \(L^2(\Omega) \). Let us denote an element \(u \), in \(L^2(\Omega) \), as

\[
u = \sum h_k \phi_k, \quad \sum h_k^2 < \infty.
\]

We define a subspace \(H \) of \(L^2(\Omega) \) as follows

\[
H = \{ u \in L^2(\Omega) | \sum |\lambda_k(\lambda_k - c)|h_k^2 < \infty \}.
\]

Then this is a complete normed space with a norm

\[
||u|| = [\sum |\lambda_k(\lambda_k - c)|h_k^2]^\frac{1}{2}.
\]
Since $\lambda_k \to +\infty$ and c is fixed, we have

1. $\Delta^2 u + c\Delta u \in H$ implies $u \in H$.

2. $\|u\| \geq C\|u\|$ for some $C > 0$.

3. $\|u\|_{L^2(\Omega)} = 0$ if and only if $\|u\| = 0$.

For the proof, refer to Choi and Jung [4].

In this paper we consider weak solutions of the boundary value problem

$$
\Delta^2 u + c\Delta u = b u^+ + s \quad \text{in } \Omega,
$$

$$
u = 0, \quad \Delta u = 0 \quad \text{on } \partial \Omega.
$$

A weak solution of (2.1), which is called a solution in H, is of the form

$$
u = \sum h_k \phi_k, \quad \Delta^2 u + c\Delta u = \sum \lambda_k (\lambda_k - c) h_k \phi_k \in L^2(\Omega).
$$

For simplicity of notation, a weak solution of (2.1) is characterized by

$$
\Delta^2 u + c\Delta u = b u^+ + s \quad \text{in } H.
$$

Now, we state the main result of this paper, which is a sharp result for the multiplicity of solutions of a nonlinear biharmonic equation.

Theorem 2.1. Assume that $c < \lambda_1, \lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c)$ and $s < 0$. Then problem (2.2) has at least three solutions.

3. Proof of theorem 2.1

For the proof of Theorem 2.1 we need some lemmas.

Lemma 3.1. Let $c < \lambda_1, b \geq 0$ and $b \neq \lambda_k(\lambda_k - c), k \geq 1$, Then the problem

$$
\Delta^2 u + c\Delta u = bu^+ \quad \text{in } H
$$

has only the trivial solution.

For the proof, refer to Theorem 1.3 (ii) and Lemma 2.9 in [4].

Lemma 3.2. Let $c < \lambda_1, s < 0$ and $\alpha > 0$ be given. Then there exists an $R_0 > 0$ (depending on s and α) such that for all b with $\lambda_1(\lambda_1 - c) + \alpha \leq b \leq \lambda_2(\lambda_2 - c) - \alpha$, the solutions u of (2.2) satisfy $\|u\| < R_0$.

Proof. If not, then there exists a sequence (b_n, u_n) with $\lambda_1(\lambda_1 - c) + \alpha \leq b_n \leq \lambda_2(\lambda_2 - c) - \alpha$, $\|u\| \to \infty$ such that

$$
u_n = (\Delta^2 + c\Delta)^{-1}(b u_n^+ + s).
$$
The functions $w_n = \frac{u_n}{\|u_n\|}$ satisfy the equation
$$w_n = (\Delta^2 + c\Delta)^{-1}(bw_n^+ + \frac{s}{\|u_n\|}).$$

Now $(\Delta^2 + c\Delta)^{-1}$ is a compact operator. Therefore we may assume that $w_n \to w_0$, $b_n \to b_0$ and $0 < \lambda_1(\lambda_1 - c) < b_0 < \lambda_2(\lambda_2 - c)$. Since $\|w_n\| = 1$, it follows that $\|w_0\| = 1$ and
$$w_0 = (\Delta^2 + c\Delta)^{-1}(bw_0^+) \quad \text{in } H. \quad (3.4)$$

This contradicts Lemma 3.1 and proved the lemma.

Lemma 3.3. Under the assumptions and the notations of Lemma 3.2
$$d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s), B_R, 0) = 1$$
for all $R \geq R_0$, where d_{LS} denotes the Leray-Schauder degree.

Proof. Let R_0 be such that solutions of
$$u - (\Delta^2 + c\Delta)^{-1}(bu^+ + \lambda s) = 0, \quad 0 \leq \lambda \leq 1,$$
satisfy $\|u\| \leq R_0$. Since the degree is invariant under a homotopy, we get
$$d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + \lambda s), B_R(0), 0) = d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+), B_R(0), 0)$$
for $R \geq R_0$. The equation
$$u - (\Delta^2 + c\Delta)^{-1}(bu^+) = 0$$
has only the trivial solution $u = 0$ in $B_R(0)$. Thus we have
$$d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+), B_R(0), 0) = d_{LS}(u, B_R(0), 0) = 1,$$
since the map is simply identity. Now, we will show the existence of the negative solution of (2.2).

Lemma 3.4. Assume that $c < \lambda_1$ and $s < 0$. Then problem (2.2) has a negative solution $u_0(x)$.

For the proof, refer to [4].

Now, we consider the local Leray-Schauder degree of $u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s)$ at the negative solution u_0 with respect to zero.
Lemma 3.5. Assume that \(c < \lambda_1, \lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c) \) and \(s < 0 \). Then there exists \(d > 0 \) such that

\[
d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s), B_d(u_0), 0) = 1,
\]

(3.5)

where \(u_0 \) is the negative solution of (2.2).

Proof. Since every solution of problem (2.2) is discrete and \(u_0 \) is a solution of (2.2), there exists \(d > 0 \) such that there is no the other solution of (2.2) in the neighborhood \(B_d(u_0) \) of \(u_0 \) with radius \(d \). Then we have

\[
d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s), B_d(u_0), 0) = d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(s), B_d(u_0), 0) = 1,
\]

since the map is simply a translation of the identity and since \(\| (\Delta^2 + c\Delta)^{-1}s \| < d \) by Lemma 3.4.

Next, we will consider the local Leray-Schauder degree of \(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s) \) at the changing sign solution of (2.2) with respect to zero.

Now, we denote that for given \(u, \chi(u) \) is the characteristic function of the positive set of \(u \), i.e.,

\[
[\chi(u)](x) = \begin{cases}
1, & \text{if } u(x) > 0, \\
0, & \text{if } u(x) \leq 0.
\end{cases}
\]

We consider the following eigenvalue problem

\[
(\Delta^2 + c\Delta)u = \nu b\chi(u)u \quad \text{in } H,
\]

(3.6)

when \(\mu(\{x | u(x) = 0\}) = 0 \), where \(\mu \) is the Lebesgue measure.

We assume that \(c < \lambda_1 \) and \(\lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c) \). Let

\[
v = \sum h_m\phi_m, \quad Lv = \sum \lambda_m(\lambda_m - c)h_m\phi_m.
\]

For eigenvalues \(\lambda_m(\lambda_m - c), m \geq 1 \), the corresponding eigenvalues \(\nu_m(b\chi(u)) \) are nontrivial solutions of (3.6) and

\[
\nu_1(b\chi(u)) < \nu_2(b\chi(u)) < \ldots \to +\infty.
\]

(3.7)

Then we have the following lemma.
Lemma 3.6. Assume that $c < \lambda_1$, $\lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c)$ and $s < 0$. Then if u is a solution of (2.2) which changes sign, then

$$0 < \nu_1(b\chi(u)) < 1.$$

Proof. We know that (2.2) has the negative solution u_0. Writing (2.2) for u and u_0 and subtracting we get

$$(\Delta^2 + c\Delta)(u - u_0) = bu^+.$$

If we use the notation $\frac{bu^+}{u - u_0}$, then we have

$$0 \leq \frac{bu^+}{u - u_0} < b\chi(u) \leq b.$$

By (3.6), $\nu_m(\frac{bu^+}{u - u_0}) = 1$ for some $m \geq 1$ and by (3.8), $m = 1$, i.e., $\nu_1(\frac{bu^+}{u - u_0}) = 1$. Since

$$0 < \nu_1(b\chi(u)) < \nu_1(\frac{bu^+}{u - u_0}) = 1,$$

we obtain the desired result.

The final step in the proof of our theorem is described in

Lemma 3.7. Assume that $c < \lambda_1$, $\lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c)$ and $s < 0$. Then if u_* is a solution of (2.2) which changes sign, then there exists $\epsilon > 0$ such that

$$d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s), B_\epsilon(u_*), 0) = +1 \quad \text{or} \quad -1.$$

Proof. Let u_* be a solution of (2.2) which changes sign. Since the solutions of (2.2) are discrete, we can choose small $\epsilon' > 0$ such that $B_{\epsilon'}(u_*)$ does not contain the other solutions of (2.2). Let us choose $u \in B_{\epsilon'}(u_*)$ and set $v = u - u_*$. Then there exists $\epsilon_* < \epsilon'$ such that u_* and $u_* + v$ have same sign, so the following holds:

$$u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s) = (u_* + v) - (\Delta^2 + c\Delta)^{-1}(b(u_* + v)^+ + s)$$

$$= v - (\Delta^2 + c\Delta)^{-1}(b(u_* + v)^+ - bu^+)$$

$$= v - (\Delta^2 + c\Delta)^{-1}(b\chi(u_*)v),$$

where $u \in B_{\epsilon_*}(u_*)$. Thus we have

$$d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s), B_{\epsilon_*}(u_*), 0) = d_{LS}(v - (\Delta^2 + c\Delta)^{-1}(b\chi(u_*)v), B_0(0), 0).$$
The proof of the existence of the third solution

The eigenvalues of the operator \(v - (\Delta^2 + c\Delta)^{-1}(b\chi(u_*)v) \) are connected with the eigenvalues \(\nu \) of the eigenvalue problem \((\Delta^2 + c\Delta)v = \nu b\chi(u_*)v \) by

\[
v - (\Delta^2 + c\Delta)^{-1}(b\chi(u_*)v) = \rho v \iff (\rho - 1)(\Delta^2 + c\Delta)v = -b\chi(u_*)v
\]
or \(\rho = \frac{\nu - 1}{\nu} \). It follows from Lemma 3.6 and (3.7) that

\[
0 < \nu_1(b\chi(u)) \ldots < \nu_n(b\chi(u)) < 1 < \nu_{n+1}(b\chi(u)) \ldots
\]
and thus there are \((-1)^n\) negative eigenvalues \(\rho \). Thus the desired degree is \(+1\) or \(-1\). So the lemma is proved.

Proof of Theorem 2.1.

The equation (2.2) can be written in the form

\[
u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s) = 0.
\]
The degree of \(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s) \) on a large ball of radius \(R > R_0 \) is \(+1\) by Lemma 3.3. From Lemma 3.4 and 3.5, the constant sign solution of (2.2) is only the negative solution \(u_0 \) and the degree on the small neighborhood \(B_d(u_0) \) is \(+1\). Choi and Jung [4] proved that under the same assumptions of Theorem 2.1, there exists another solution of problem (2.2) which changes sign. If \(u_* \) is a solution of (2.2) which changes sign, then from Lemma 3.7, the degree on the ball \(B_{r_*}(u_*)) \) is \(+1\) or \(-1\). Choosing \(R > R_0 \) so that \(B_R \) contains all solutions of (2.2), we can conclude that

\[
d_{LS}(u - (\Delta^2 + c\Delta)^{-1}(bu^+ + s), B_R \setminus \{B_d(u_0) \cup B_{r_*}(u_*)\}, 0) = -1 \quad \text{or} \quad +1.
\]
Thus there exist at least three solutions in \(B_R \).

References

Department of Mathematics
Kunsan National University
Kunsan 573-701 Korea
E-mail: tsjung@kunsan.ac.kr

Department of Mathematics Education
Inha University
Incheon 402-751 Korea
E-mail: qheung@inha.ac.kr