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THE PROOF OF THE EXISTENCE OF THE THIRD

SOLUTION OF A NONLINEAR BIHARMONIC

EQUATION BY DEGREE THEORY

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the multiplicity of solutions of the non-
linear biharmonic equation with Dirichlet boundary condition, ∆2u+
c∆u = bu+ + s, in Ω, where c ∈ R and ∆2 denotes the biharmonic
operator. We show by degree theory that there exist at least three
solutions of the problem.

1. Introduction

Let Ω be a bounded set in Rn with smooth boundary ∂Ω. In this paper
we study the multiplicity of the solutions of the nonlinear biharmonic
equation with Dirichlet boundary condition

∆2u + c∆u = bu+ + s in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω,

where u+ = max{u, 0}, c ∈ R, s ∈ R and ∆2 denotes the biharmonic op-
erator. Equations with nonlinearities of this type have been extensively
studied for the second order elliptic operators (cf. [7]). Tarantello [12]
also studied this type equation. She showed that if λ1 > 0 is the first
eigenvalue of −∆ in H1

0 (Ω) and c < λ1, then the problem

∆2u + c∆u = b[(u + 1)+ − 1] in Ω,

u = 0, ∆u = 0 on ∂Ω,
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has at least one solution, which is negative if and only if b ≥ λ1(λ1− c).
Choi and Jung [4] proved that if c < λ1, λ1(λ1− c) < b < λ2(λ2− c) and
s < 0, or if λ1 < c < λ2, b < λ1(λ1 − c) and s > 0, then problem (1.1)
has at least two solutions by use of the variational reduction method.

In this paper, we prove that if c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c)
and s < 0, then problem (1.1) has at least three solutions by use of the
degree theory.

In section 2 we state the main result and in section 3 we prove the
main theorem.

2. Statement of main result

Let Ω be a bounded set in Rn with smooth boundary ∂Ω. Let λk, k =
1, 2, . . ., denote the eigenvalues and φk, k = 1, 2, . . ., the corresponding
eigenfunctions, suitably normalized with respect to L2(Ω) inner product,
of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω,

where each eigenvalue λk is repeated as often as its multiplicity. We
recall that 0 < λ1 < λ2 ≤ λ3 ≤ . . . → +∞, and that φ1(x) > 0 for
x ∈ Ω. The eigenvalue problem

∆2u + c∆u = νu in Ω,

u = 0, ∆u = 0 on ∂Ω

has infinitely many eigenvalues

νk = λk(λk − c), k = 1, 2, . . . ,

and corresponding eigenfunctions φk(x). The set of functions {φk} is an
orthonormal base for L2(Ω). Let us denote an element u, in L2(Ω), as

u =
∑

hkφk,
∑

h2
k < ∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|λk(λk − c)|h2
k < ∞}.

Then this is a complete normed space with a norm

|‖u|‖ = [
∑

|λk(λk − c)|h2
k]

1
2 .
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Since λk → +∞ and c is fixed, we have
(1) ∆2u + c∆u ∈ H implies u ∈ H.
(2) |‖u|‖ ≥ C‖u‖ for some C > 0.
(3) ‖u‖L2(Ω) = 0 if and only if |‖u|‖ = 0.
For the proof, refer to Choi and Jung [4].
In this paper we consider weak solutions of the boundary value problem

∆2u + c∆u = bu+ + s in Ω, (2.1)

u = 0, ∆u = 0 on ∂Ω.

A weak solution of (2.1), which is called a solution in H, is of the form

u =
∑

hkφk, ∆2u + c∆u =
∑

λk(λk − c)hkφk ∈ L2(Ω).

For simplicity of notation, a weak solution of (2.1) is characterized by

∆2u + c∆u = bu+ + s in H. (2.2)

Now, we state the main result of this paper, which is a sharp result for
the multiplicity of solutions of a nonlinear biharmonic equation.

Theorem 2.1. Assume that c < λ1,λ1(λ1 − c) < b < λ2(λ2 − c) and
s < 0. Then problem (2.2) has at least three solutions.

3. Proof of theorem 2.1

For the proof of Theorem 2.1 we need some lemmas.

Lemma 3.1. Let c < λ1, b ≥ 0 and b 6= λk(λk − c), k ≥ 1, Then the
problem

∆2u + c∆u = bu+ in H (3.1)

has only the trivial solution.
For the proof, refer to Theorem 1.3 (ii) and Lemma 2.9 in [4].

Lemma 3.2. Let c < λ1, s < 0 and α > 0 be given. Then there exists
an R0 > 0 (depending on s and α) such that for all b with λ1(λ1−c)+α ≤
b ≤ λ2(λ2 − c)− α, the solutions u of (2.2) satisfy |‖u|‖ < R0.
Proof. If not, then there exists a sequence (bn, un) with λ1(λ1−c)+α ≤
bn ≤ λ2(λ2 − c)− α, |‖u|‖ → ∞ such that

un = (∆2 + c∆)−1(bu+
n + s). (3.3)
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The functions wn = un

|‖un|‖ satisfy the equation

wn = (∆2 + c∆)−1(bw+
n +

s

|‖un|‖).

Now (∆2 + c∆)−1 is a compact operator. Therefore we may assume
that wn → w0, bn → b0 and 0 < λ1(λ1 − c) < b0 < λ2(λ2 − c). Since
|‖wn|‖ = 1, it follows that |‖w0|‖ = 1 and

w0 = (∆2 + c∆)−1(bw+
0 ) in H. (3.4)

This contradicts Lemma 3.1 and proved the lemma.
Lemma 3.3. Under the assumptions and the notations of Lemma 3.2

dLS(u− (∆2 + c∆)−1(bu+ + s), BR, 0) = 1

for all R ≥ R0, where dLS denotes the Leray-Schauder degree.
Proof. Let R0 be such that solutions of

u− (∆2 + c∆)−1(bu+ + λs) = 0, 0 ≤ λ ≤ 1,

satisfy |‖u|‖ ≤ R0. Since the degree is invariant under a homotopy, we
get

dLS(u− (∆2 + c∆)−1(bu+ + λs), BR(0), 0)

= dLS(u− (∆2 + c∆)−1(bu+), BR(0), 0)

for R ≥ R0. The equation

u− (∆2 + c∆)−1(bu+) = 0

has only the trivial solution u = 0 in BR(0). Thus we have

dLS(u− (∆2 + c∆)−1(bu+), BR(0), 0)

= dLS(u,BR(0), 0) = 1,

since the map is simply identity. Now, we will show the existence of the
negative solution of (2.2).

Lemma 3.4. Assume that c < λ1 and s < 0. Then problem (2.2) has
a negative solution u0(x).

For the proof, refer to [4].

Now, we consider the local Leray-Schauder degree of u−(∆2+c∆)−1(bu++
s) at the negative solution u0 with respect to zero.
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Lemma 3.5. Assume that c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c) and
s < 0. Then there exists d > 0 such that

dLS(u− (∆2 + c∆)−1(bu+ + s), Bd(u0), 0) = 1, (3.5)

where u0 is the negative solution of (2.2).
Proof. Since every solution of problem (2.2) is discrete and u0 is a
solution of (2.2), there exists d > 0 such that there is no the other
solution of (2.2) in the neighborhood Bd(u0) of u0 with radius d. Then
we have

dLS(u− (∆2 + c∆)−1(bu+ + s), Bd(u0), 0)

= dLS(u− (∆2 + c∆)−1(s), Bd(u0), 0) = 1,

since the map is simply a translation of the identity and since ‖(∆2 +
c∆)−1s‖ < d by Lemma 3.4.

Next, we will consider the local Leray-Schauder degree of u − (∆2 +
c∆)−1(bu++s) at the changing sign solution of (2.2) with respect to zero.

Now, we denote that for given u, χ(u) is the characteristic function
of the positive set of u, i.e.,

[χ(u)](x) =

{
1, if u(x) > 0,

0, if u(x) ≤ 0.

We consider the following eigenvalue problem

(∆2 + c∆)u = νbχ(u)u in H, (3.6)

when µ({x|u(x) = 0}) = 0, where µ is the Lebesgue measure.

We assume that c < λ1 and λ1(λ1 − c) < b < λ2(λ2 − c). Let

v =
∑

hmφm, Lv =
∑

λm(λm − c)hmφm.

For eigenvalues λm(λm − c), m ≥ 1, the corresponding eigenvalues
νm(bχ(u)) are nontrivial solutions of (3.6) and

ν1(bχ(u)) < ν2(bχ(u)) < . . . → +∞. (3.7)

Then we have the following lemma.
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Lemma 3.6. Assume that c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c) and
s < 0. Then if u is a solution of (2.2) which changes sign, then

0 < ν1(bχ(u)) < 1.

Proof. We know that (2.2) has the negative solution u0. Writing (2.2)
for u and u0 and subtracting we get

(∆2 + c∆)(u− u0) = bu+.

If we use the notation bu+

u−u0
, then we have

0 ≤ bu+

u− u0

< bχ(u) ≤ b. (3.8)

By (3.6), νm( bu+

u−u0
) = 1 for some m ≥ 1 and by (3.8), m = 1, i.e.,

ν1(
bu+

u−u0
) = 1. Since

0 < ν1(bχ(u)) < ν1(
bu+

u− u0

) = 1,

we obtain the desired result.
The final step in the proof of our theorem is described in

Lemma 3.7. Assume that c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c) and
s < 0. Then if u∗ is a solution of (2.2) which changes sign, then there
exists ε > 0 such that

dLS(u− (∆2 + c∆)−1(bu+ + s), Bε(u∗), 0) = +1 or − 1.

Proof. Let u∗ be a solution of (2.2) which changes sign. Since the
solutions of (2.2) are discrete, we can choose small ε′ > 0 such that
Bε′(u∗) does not contain the other solutions of (2.2). Let us choose
u ∈ Bε′(u∗) and set v = u − u∗. Then there exists ε∗ < ε′ such that u∗
and u∗ + v have same sign, so the following holds:

u− (∆2 + c∆)−1(bu+ + s) = (u∗ + v)− (∆2 + c∆)−1(b(u∗ + v)+ + s)

= v − (∆2 + c∆)−1(b(u∗ + v)+ − bu+
∗ )

= v − (∆2 + c∆)−1(bχ(u∗)v),

where u ∈ Bε∗(u∗). Thus we have

dLS(u− (∆2 + c∆)−1(bu+ + s), Bε∗(u∗), 0)

= dLS(v − (∆2 + c∆)−1(bχ(u∗)v), Bε∗(0), 0).
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The eigenvalues of the operator v− (∆2 + c∆)−1(bχ(u∗)v) are connected
with the eigenvalues ν of the eigenvalue problem (∆2 +c∆)v = νbχ(u∗)v
by

v − (∆2 + c∆)−1(bχ(u∗)v) = ρv ⇐⇒ (ρ− 1)(∆2 + c∆)v = −bχ(u∗)v

or ρ = ν−1
ν

. It follows from Lemma 3.6 and (3.7) that

0 < ν1(bχ(u)) . . . < νn(bχ(u)) < 1 < νn+1(bχ(u)) . . .

and thus there are (−1)n negative eigenvalues ρ. Thus the desired degree
is +1 or −1. So the lemma is proved.

Proof of Theorem 2.1.
The equation (2.2) can be written in the form

u− (∆2 + c∆)−1(bu+ + s) = 0.

The degree of u − (∆2 + c∆)−1(bu+ + s) on a large ball of radius R >
R0 is +1 by Lemma 3.3. From Lemma 3.4 and 3.5, the constant sign
solution of (2.2) is only the negative solution u0 and the degree on the
small neighborhood Bd(u0) is +1. Choi and Jung [4] proved that under
the same assumptions of Theorem 2.1, there exists another solution of
problem (2.2) which changes sign. If u∗ is a solution of (2.2) which
changes sign, then from Lemma 3.7 , the degree on the ball Bε∗(u∗) is
+1 or −1. Choosing R > R0 so that BR contains all solutions of (2.2),
we can conclude that

dLS(u−(∆2+c∆)−1(bu++s), BR\{Bd(u0)∪Bε∗(u∗)}, 0) = −1 or +1.

Thus there exist at least three solutions in BR.
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