THE PROOF OF THE EXISTENCE OF THE THIRD SOLUTION OF A NONLINEAR BIHARMONIC EQUATION BY DEGREE THEORY

Tacksun Jung and Q-Heung Chor*

Abstract

We investigate the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition, $\Delta^{2} u+$ $c \Delta u=b u^{+}+s$, in Ω, where $c \in R$ and Δ^{2} denotes the biharmonic operator. We show by degree theory that there exist at least three solutions of the problem.

1. Introduction

Let Ω be a bounded set in R^{n} with smooth boundary $\partial \Omega$. In this paper we study the multiplicity of the solutions of the nonlinear biharmonic equation with Dirichlet boundary condition

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=b u^{+}+s \quad \text { in } \Omega, \tag{1.1}\\
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega,
\end{gather*}
$$

where $u^{+}=\max \{u, 0\}, c \in R, s \in R$ and Δ^{2} denotes the biharmonic operator. Equations with nonlinearities of this type have been extensively studied for the second order elliptic operators (cf. [7]). Tarantello [12] also studied this type equation. She showed that if $\lambda_{1}>0$ is the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$ and $c<\lambda_{1}$, then the problem

$$
\begin{gathered}
\Delta^{2} u+c \Delta u=b\left[(u+1)^{+}-1\right] \quad \text { in } \Omega, \\
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega,
\end{gathered}
$$

Received April 8, 2008.
2000 Mathematics Subject Classification: 35J35, 35J40, 35Q72.
Key words and phrases: Dirichlet boundary condition, biharmonic equation, eigenvalue, degree theory.

* Corresponding author.
has at least one solution, which is negative if and only if $b \geq \lambda_{1}\left(\lambda_{1}-c\right)$. Choi and Jung [4] proved that if $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0$, or if $\lambda_{1}<c<\lambda_{2}, b<\lambda_{1}\left(\lambda_{1}-c\right)$ and $s>0$, then problem (1.1) has at least two solutions by use of the variational reduction method.

In this paper, we prove that if $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0$, then problem (1.1) has at least three solutions by use of the degree theory.

In section 2 we state the main result and in section 3 we prove the main theorem.

2. Statement of main result

Let Ω be a bounded set in R^{n} with smooth boundary $\partial \Omega$. Let $\lambda_{k}, k=$ $1,2, \ldots$, denote the eigenvalues and $\phi_{k}, k=1,2, \ldots$, the corresponding eigenfunctions, suitably normalized with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem

$$
\begin{gathered}
\Delta u+\lambda u=0 \quad \text { in } \Omega \\
u=0
\end{gathered} \quad \text { on } \partial \Omega,
$$

where each eigenvalue λ_{k} is repeated as often as its multiplicity. We recall that $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots \rightarrow+\infty$, and that $\phi_{1}(x)>0$ for $x \in \Omega$. The eigenvalue problem

$$
\begin{array}{cl}
\Delta^{2} u+c \Delta u=\nu u & \text { in } \Omega, \\
u=0, \quad \Delta u=0 & \text { on } \partial \Omega
\end{array}
$$

has infinitely many eigenvalues

$$
\nu_{k}=\lambda_{k}\left(\lambda_{k}-c\right), \quad k=1,2, \ldots
$$

and corresponding eigenfunctions $\phi_{k}(x)$. The set of functions $\left\{\phi_{k}\right\}$ is an orthonormal base for $L^{2}(\Omega)$. Let us denote an element u, in $L^{2}(\Omega)$, as

$$
u=\sum h_{k} \phi_{k}, \quad \sum h_{k}^{2}<\infty .
$$

We define a subspace H of $L^{2}(\Omega)$ as follows

$$
H=\left\{u \in L^{2}(\Omega)\left|\sum\right| \lambda_{k}\left(\lambda_{k}-c\right) \mid h_{k}^{2}<\infty\right\} .
$$

Then this is a complete normed space with a norm

$$
\left|\|u \mid\|=\left[\sum\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}\right]^{\frac{1}{2}} .\right.
$$

Since $\lambda_{k} \rightarrow+\infty$ and c is fixed, we have
(1) $\Delta^{2} u+c \Delta u \in H$ implies $u \in H$.
(2) $|\|u \mid\| \geq C\|u\|$ for some $C>0$.
(3) $\|u\|_{L^{2}(\Omega)}=0$ if and only if $|\|u \mid\|=0$.

For the proof, refer to Choi and Jung [4].
In this paper we consider weak solutions of the boundary value problem

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=b u^{+}+s \quad \text { in } \Omega, \tag{2.1}\\
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

A weak solution of (2.1), which is called a solution in H, is of the form

$$
u=\sum h_{k} \phi_{k}, \quad \Delta^{2} u+c \Delta u=\sum \lambda_{k}\left(\lambda_{k}-c\right) h_{k} \phi_{k} \in L^{2}(\Omega)
$$

For simplicity of notation, a weak solution of (2.1) is characterized by

$$
\begin{equation*}
\Delta^{2} u+c \Delta u=b u^{+}+s \quad \text { in } H . \tag{2.2}
\end{equation*}
$$

Now, we state the main result of this paper, which is a sharp result for the multiplicity of solutions of a nonlinear biharmonic equation.

Theorem 2.1. Assume that $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0$. Then problem (2.2) has at least three solutions.

3. Proof of theorem 2.1

For the proof of Theorem 2.1 we need some lemmas.
Lemma 3.1. Let $c<\lambda_{1}, b \geq 0$ and $b \neq \lambda_{k}\left(\lambda_{k}-c\right), k \geq 1$, Then the problem

$$
\begin{equation*}
\Delta^{2} u+c \Delta u=b u^{+} \quad \text { in } H \tag{3.1}
\end{equation*}
$$

has only the trivial solution.
For the proof, refer to Theorem 1.3 (ii) and Lemma 2.9 in [4].
Lemma 3.2. Let $c<\lambda_{1}, s<0$ and $\alpha>0$ be given. Then there exists an $R_{0}>0$ (depending on s and α) such that for all b with $\lambda_{1}\left(\lambda_{1}-c\right)+\alpha \leq$ $b \leq \lambda_{2}\left(\lambda_{2}-c\right)-\alpha$, the solutions u of (2.2) satisfy $\left|\|u \mid\|<R_{0}\right.$.
Proof. If not, then there exists a sequence $\left(b_{n}, u_{n}\right)$ with $\lambda_{1}\left(\lambda_{1}-c\right)+\alpha \leq$ $b_{n} \leq \lambda_{2}\left(\lambda_{2}-c\right)-\alpha,|\|u \mid\| \rightarrow \infty$ such that

$$
\begin{equation*}
u_{n}=\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u_{n}^{+}+s\right) . \tag{3.3}
\end{equation*}
$$

The functions $w_{n}=\frac{u_{n}}{\left\|u_{n}\right\| \|}$ satisfy the equation

$$
w_{n}=\left(\Delta^{2}+c \Delta\right)^{-1}\left(b w_{n}^{+}+\frac{s}{\| \| u_{n}\| \|}\right)
$$

Now $\left(\Delta^{2}+c \Delta\right)^{-1}$ is a compact operator. Therefore we may assume that $w_{n} \rightarrow w_{0}, b_{n} \rightarrow b_{0}$ and $0<\lambda_{1}\left(\lambda_{1}-c\right)<b_{0}<\lambda_{2}\left(\lambda_{2}-c\right)$. Since $\left|\left\|w_{n} \mid\right\|=1\right.$, it follows that $|\left\|w_{0} \mid\right\|=1$ and

$$
\begin{equation*}
w_{0}=\left(\Delta^{2}+c \Delta\right)^{-1}\left(b w_{0}^{+}\right) \quad \text { in } H \tag{3.4}
\end{equation*}
$$

This contradicts Lemma 3.1 and proved the lemma.
Lemma 3.3. Under the assumptions and the notations of Lemma 3.2

$$
d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right), B_{R}, 0\right)=1
$$

for all $R \geq R_{0}$, where $d_{L S}$ denotes the Leray-Schauder degree.
Proof. Let R_{0} be such that solutions of

$$
u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+\lambda s\right)=0, \quad 0 \leq \lambda \leq 1
$$

satisfy $\mid\|u\| \| \leq R_{0}$. Since the degree is invariant under a homotopy, we get

$$
\begin{aligned}
& d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+\lambda s\right), B_{R}(0), 0\right) \\
= & d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}\right), B_{R}(0), 0\right)
\end{aligned}
$$

for $R \geq R_{0}$. The equation

$$
u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}\right)=0
$$

has only the trivial solution $u=0$ in $B_{R}(0)$. Thus we have

$$
\begin{aligned}
& d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}\right), B_{R}(0), 0\right) \\
= & d_{L S}\left(u, B_{R}(0), 0\right)=1,
\end{aligned}
$$

since the map is simply identity. Now, we will show the existence of the negative solution of (2.2).

Lemma 3.4. Assume that $c<\lambda_{1}$ and $s<0$. Then problem (2.2) has a negative solution $u_{0}(x)$.

For the proof, refer to [4].
Now, we consider the local Leray-Schauder degree of $u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+\right.$ s) at the negative solution u_{0} with respect to zero.

Lemma 3.5. Assume that $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0$. Then there exists $d>0$ such that

$$
\begin{equation*}
d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right), B_{d}\left(u_{0}\right), 0\right)=1, \tag{3.5}
\end{equation*}
$$

where u_{0} is the negative solution of (2.2).
Proof. Since every solution of problem (2.2) is discrete and u_{0} is a solution of (2.2), there exists $d>0$ such that there is no the other solution of (2.2) in the neighborhood $B_{d}\left(u_{0}\right)$ of u_{0} with radius d. Then we have

$$
\begin{aligned}
& d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right), B_{d}\left(u_{0}\right), 0\right) \\
= & d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}(s), B_{d}\left(u_{0}\right), 0\right)=1,
\end{aligned}
$$

since the map is simply a translation of the identity and since $\|\left(\Delta^{2}+\right.$ $c \Delta)^{-1} s \|<d$ by Lemma 3.4.

Next, we will consider the local Leray-Schauder degree of $u-\left(\Delta^{2}+\right.$ $c \Delta)^{-1}\left(b u^{+}+s\right)$ at the changing sign solution of (2.2) with respect to zero.

Now, we denote that for given $u, \chi(u)$ is the characteristic function of the positive set of u, i.e.,

$$
[\chi(u)](x)= \begin{cases}1, & \text { if } u(x)>0 \\ 0, & \text { if } u(x) \leq 0\end{cases}
$$

We consider the following eigenvalue problem

$$
\begin{equation*}
\left(\Delta^{2}+c \Delta\right) u=\nu b \chi(u) u \quad \text { in } H \tag{3.6}
\end{equation*}
$$

when $\mu(\{x \mid u(x)=0\})=0$, where μ is the Lebesgue measure.
We assume that $c<\lambda_{1}$ and $\lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$. Let

$$
v=\sum h_{m} \phi_{m}, \quad L v=\sum \lambda_{m}\left(\lambda_{m}-c\right) h_{m} \phi_{m} .
$$

For eigenvalues $\lambda_{m}\left(\lambda_{m}-c\right), m \geq 1$, the corresponding eigenvalues $\nu_{m}(b \chi(u))$ are nontrivial solutions of (3.6) and

$$
\begin{equation*}
\nu_{1}(b \chi(u))<\nu_{2}(b \chi(u))<\ldots \rightarrow+\infty . \tag{3.7}
\end{equation*}
$$

Then we have the following lemma.

Lemma 3.6. Assume that $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0$. Then if u is a solution of (2.2) which changes sign, then

$$
0<\nu_{1}(b \chi(u))<1 .
$$

Proof. We know that (2.2) has the negative solution u_{0}. Writing (2.2) for u and u_{0} and subtracting we get

$$
\left(\Delta^{2}+c \Delta\right)\left(u-u_{0}\right)=b u^{+} .
$$

If we use the notation $\frac{b u^{+}}{u-u_{0}}$, then we have

$$
\begin{equation*}
0 \leq \frac{b u^{+}}{u-u_{0}}<b \chi(u) \leq b \tag{3.8}
\end{equation*}
$$

By (3.6), $\nu_{m}\left(\frac{b u^{+}}{u-u_{0}}\right)=1$ for some $m \geq 1$ and by (3.8), $m=1$, i.e., $\nu_{1}\left(\frac{b u^{+}}{u-u_{0}}\right)=1$. Since

$$
0<\nu_{1}(b \chi(u))<\nu_{1}\left(\frac{b u^{+}}{u-u_{0}}\right)=1
$$

we obtain the desired result.
The final step in the proof of our theorem is described in
Lemma 3.7. Assume that $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0$. Then if u_{*} is a solution of (2.2) which changes sign, then there exists $\epsilon>0$ such that

$$
d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right), B_{\epsilon}\left(u_{*}\right), 0\right)=+1 \quad \text { or }-1 .
$$

Proof. Let u_{*} be a solution of (2.2) which changes sign. Since the solutions of (2.2) are discrete, we can choose small $\epsilon^{\prime}>0$ such that $B_{\epsilon^{\prime}}\left(u_{*}\right)$ does not contain the other solutions of (2.2). Let us choose $u \in B_{\epsilon^{\prime}}\left(u_{*}\right)$ and set $v=u-u_{*}$. Then there exists $\epsilon_{*}<\epsilon^{\prime}$ such that u_{*} and $u_{*}+v$ have same sign, so the following holds:

$$
\begin{aligned}
& u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right)=\left(u_{*}+v\right)-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b\left(u_{*}+v\right)^{+}+s\right) \\
= & v-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b\left(u_{*}+v\right)^{+}-b u_{*}^{+}\right) \\
= & v-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b \chi\left(u_{*}\right) v\right),
\end{aligned}
$$

where $u \in B_{\epsilon_{*}}\left(u_{*}\right)$. Thus we have

$$
\begin{aligned}
& d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right), B_{\epsilon_{*}}\left(u_{*}\right), 0\right) \\
= & d_{L S}\left(v-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b \chi\left(u_{*}\right) v\right), B_{\epsilon_{*}}(0), 0\right) .
\end{aligned}
$$

The eigenvalues of the operator $v-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b \chi\left(u_{*}\right) v\right)$ are connected with the eigenvalues ν of the eigenvalue problem $\left(\Delta^{2}+c \Delta\right) v=\nu b \chi\left(u_{*}\right) v$ by

$$
v-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b \chi\left(u_{*}\right) v\right)=\rho v \Longleftrightarrow(\rho-1)\left(\Delta^{2}+c \Delta\right) v=-b \chi\left(u_{*}\right) v
$$

or $\rho=\frac{\nu-1}{\nu}$. It follows from Lemma 3.6 and (3.7) that

$$
0<\nu_{1}(b \chi(u)) \ldots<\nu_{n}(b \chi(u))<1<\nu_{n+1}(b \chi(u)) \ldots
$$

and thus there are $(-1)^{n}$ negative eigenvalues ρ. Thus the desired degree is +1 or -1 . So the lemma is proved.

Proof of Theorem 2.1.
The equation (2.2) can be written in the form

$$
u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right)=0
$$

The degree of $u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right)$ on a large ball of radius $R>$ R_{0} is +1 by Lemma 3.3. From Lemma 3.4 and 3.5, the constant sign solution of (2.2) is only the negative solution u_{0} and the degree on the small neighborhood $B_{d}\left(u_{0}\right)$ is +1 . Choi and Jung [4] proved that under the same assumptions of Theorem 2.1, there exists another solution of problem (2.2) which changes sign. If u_{*} is a solution of (2.2) which changes sign, then from Lemma 3.7, the degree on the ball $B_{\epsilon_{*}}\left(u_{*}\right)$ is +1 or -1 . Choosing $R>R_{0}$ so that B_{R} contains all solutions of (2.2), we can conclude that
$d_{L S}\left(u-\left(\Delta^{2}+c \Delta\right)^{-1}\left(b u^{+}+s\right), B_{R} \backslash\left\{B_{d}\left(u_{0}\right) \cup B_{\epsilon_{*}}\left(u_{*}\right)\right\}, 0\right)=-1 \quad$ or +1.
Thus there exist at least three solutions in B_{R}.

References

[1] Amann, H., Saddle points and multiple solutions of differential equations, Math. Z., (1979), 127-166.
[2] Ambrosetti, A. and Rab Rabinowitz, P.H., Dual variational methods in critical point theory and application, J. Funct. Anal. 14, (1973), 349-381.
[3] Choi, Q.H. and tsj Jung, T., An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations 7, (1995) 390-410.
[4] Choi, Q.H. and jung Jung, T., Multiplicity results on a nonlinear biharmonic equation, Rocky Mountain J. Math. 29, No. 1 (1999), 141-164.
[5] Choi, Q.H. and JungJung, T., On periodic solutions of the nonlinear suspension bridge equation, Diff. Int. Eq.,4, No. 2 (1991), 383-396.
[6] Choi, Q.H., Jung Jung, T. and McK McKenna, P.J., The study of a nonlinear suspension bridge equation by a variational reduction method, Applicable Analysis, 50, (1993), 73-92.
[7] Lazer, A.C. and McK McKenna, P.J., Critical points theory and boundary value problems with nonlinearities crossing multiple eigenvalues II, Comm. P.D.E. 11(15) (1986), 1653-1676.
[8] Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Inst. Lecture Notes (1974).
[9] Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conference board of the mathematical sciences regional conference series in Mathematics, A.M.S., No. 65 (1988).
[10] Schröder, Operator Inequalities", Academic Press (1980).
[11] Schwartz, J. T., Nonlinear functional analysis, Gordon and Breach, New York, 1969.
[12] Tarantello, G., A note on a semilinear elliptic problem, Differential and Integral Equations, Vol. 5, No. 3, May 1992, 561-565.

Department of Mathematics
Kunsan National University
Kunsan 573-701 Korea
E-mail: tsjung@kunsan.ac.kr
Department of Mathematics Education
Inha University
Incheon 402-751 Korea
E-mail: qheung@inha.ac.kr

