Abstract. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to K(E)$ a multivalued nonself-mapping such that P_T is nonexpansive, where $P_T(x) = \{u_x \in Tx : \|x - u_x\| = d(x, Tx)\}$. For $f : C \to C$ a contraction and $t \in (0, 1)$, let x_t be a fixed point of a contraction $S_t : C \to K(E)$, defined by $S_t x := tP_T(x) + (1 - t)f(x)$, $x \in C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong limit $\lim_{t \to 1} x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly Gâteaux differentiable norm. Our results provide a partial answer to Jung’s question.

1. Introduction

Let E be a Banach space and C a nonempty closed subset of E. We shall denote by $\mathcal{F}(E)$ the family of nonempty closed subsets of E, by $\mathcal{CB}(E)$ the family of nonempty closed bounded subsets of E, by $K(E)$ the family of nonempty compact subsets of E, and by $\mathcal{KC}(E)$ the family of nonempty compact convex subsets of E. Let $H(\cdot, \cdot)$ be the Hausdorff distance on $\mathcal{CB}(E)$, that is,

$$H(A, B) = \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right\}$$
for all $A, B \in CB(E)$, where $d(a, B) = \inf\{\|a - b\| : b \in B\}$ is the distance from the point a to the subset B. Recall that a mapping $f : C \to C$ is a contraction on C if there exists a constant $k \in (0, 1)$ such that
\[\|f(x) - f(y)\| \leq k\|x - y\|, \quad x, y \in C. \]
We use Σ_C to denote the collection of mappings f verifying the above inequality. That is, $\Sigma_C = \{f : C \to C | f$ is a contraction with constant $k\}$. Note that each $f \in \Sigma_C$ has a unique fixed point in C.

A multivalued mapping $T : C \to \mathcal{F}(E)$ is said to be a contraction if there exists a constant $k \in [0, 1)$ such that
\[H(Tx, Ty) \leq k\|x - y\| \]
for all $x, y \in C$. If (1) is valid when $k = 1$, the T is called nonexpansive. A point x is a fixed point for a multi-valued mapping T if $x \in Tx$. Banach’s Contraction Principle was extended to a multivalued contraction by Nadler [18] in 1969. The set of fixed points is denoted by $F(T)$.

Given a $f \in \Sigma_C$ and a $t \in (0, 1)$, we can define a contraction $G_t : C \to K(C)$ by
\[G_t x := tTx + (1 - t)f(x), \quad x \in C. \]
Then G_t is a multivalued and hence it has a (non-unique, in general) fixed point $x_t := x_t^f \in C$ (see [18]): that is
\[x_t \in tTx_t + (1 - t)f(x_t). \]
If T is single valued, we have
\[x_t = tTx_t + (1 - t)f(x_t). \]

A special case of (4) has been considered by Browder [2] in a Hilbert space as follows. Fix $u \in C$ and define a contraction G_t on C by
\[G_t x = tTx + (1 - t)u, \quad x \in C. \]
Let $z_t \in C$ be the unique fixed point of G_t. Thus
\[z_t = tTz_t + (1 - t)u. \]
(Such a sequence $\{z_t\}$ is said to be an approximating fixed point of T since it possesses the property that if $\{x_t\}$ is bounded, then $\lim_{t \to 1} \|Tz_t - z_t\| = 0$.) The strong convergence of $\{z_t\}$ as $t \to 1$ for a single-valued nonexpansive self or non-self mapping T was studied in Hilbert space or certain Banach spaces by many authors (see for instance, Browder [2], Halpern [8], Jung and Kim [11], Jung and Kim [12], Kim and Takahashi...
Approximating fixed points for multivalued nonself-mappings

[13], Reich [26], Singh and Waston [23], Takahashi and Kim [30], Xu [32], and Xu and Yin [36]).

In 1967, Browder [2] proved the following.

Theorem B. ([2]). In a Hilbert space, as $t \to 1$, z_t defined by (5) converges strongly to a fixed point of T that is closest to u, that is, the nearest point projection of u onto $F(T)$.

However, Pietramala [19] (see also Jung [10]) provided an example showing that Browder’s theorem [2] cannot be extended to the multivalued case without adding an extra assumption even if E is Euclidean. López Acedo and Xu [15] gave the strong convergence of $\{x_t\}$ defined by $x_t \in tTx_t + (1-t)u$, $u \in C$ under the restriction $F(T) = \{z\}$ in Hilbert space. Kim and Jung [14] extended the result of López Acedo and Xu [15] to a Banach space with a weakly sequentially continuous duality mapping. Sahu [20] also studied the multi-valued case in a uniformly convex Banach space with a uniformly Gâteaux differentiable norm. Recently, Jung [10] gave the strong convergence of $\{x_t\}$ defined by $x_t \in tTx_t + (1-t)u$, $u \in C$ for the multivalued nonexpansive nonself-mapping T in a uniformly convex or reflexive Banach space having a uniformly Gâteaux differentiable norm and mentioned that the condition $F(T) = \{z\}$ should be added in the main results of Sahu [20]. More precisely, he established the following extensions of Browder’s theorem [2].

Theorem J1. ([10]). Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to K(E)$ a nonexpansive nonself-mapping. Suppose that C is a nonexpansive retract of E. Suppose that $T(y) = \{y\}$ for any fixed point y of T and that for each $u \in C$ and $t \in (0,1)$, the contraction G_t defined by $G_t x := tTx + (1-t)u$, $x \in C$. has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

Theorem J2. ([10]). Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to K\mathcal{C}(E)$ a nonexpansive nonself-mapping satisfying the inwardness condition. Assume that every closed bounded...
convex subset of \(C \) is compact. If the fixed point set \(F(T) \) of \(T \) is nonempty and \(Ty = \{y\} \) for any \(y \in F(T) \), then the sequence \(\{x_t\} \) defined by \(x_t \in tTx_t + (1 - t)u, \ u \in C \) converges strongly as \(t \to 1 \) to a fixed point of \(T \).

Very recently, in order to give a partial answer to Jung’s open question [10]: Can the assumption \(Tz = \{z\} \) in Theorem J1 and J2 be omitted ?, Shahzad and Zegeye [21] considered a class of multivalued mapping under some mild conditions as follows.

Let \(C \) be a closed convex subset of a Banach space \(E \). Let \(T : C \to \mathcal{K}(E) \) be a multivalued nonself-mapping and

\[
P_Tx = \{ux \in Tx : \|x - ux\| = d(x, Tx)\}.
\]

Then \(P_T : C \to \mathcal{K}(E) \) is multivalued and \(P_Tx \) is nonempty and compact for every \(x \in C \). Instead of

\[
G_tx = tTx + (1 - t)u, \ u \in C,
\]

we consider for \(t \in (0, 1) \),

\[
S_tx = tP_Tx + (1 - t)u, \ u \in C,
\]

It is clear that \(S_t \subseteq G_t \) and if \(P_T \) is nonexpansive and \(T \) is weakly inward, then \(S_t \) is weakly inward contraction. Theorem 1 of Lim [16] guarantees that \(S_t \) has a fixed point point \(x_t \), that is,

\[
x_t \in tP_Tx_t + (1 - t)u \subseteq tTx_t + (1 - t)u.
\]

It \(T \) is single-valued, then (8) is reduced to (5).

On the other hand, Xu [35] studied the strong convergence of \(x_t \) defined by (4) as \(t \to 1 \) in either a Hilbert space or a uniformly smooth Banach space and showed that the strong \(\lim_{t \to 1} x_t \) is the unique solution of certain variational inequality. This result of Xu [35] also improved Theorem 2.1 of Moudafi [17] as the continuous version. In 2006, Jung [9] also established the strong convergence of \(x_t \) defined by (4) for finite nonexpansive mappings in a reflexive Banach space Banach space having a uniformly Gâteaux differentiable norm with the condition that every weakly compact convex subset of \(E \) has the fixed point property for nonexpansive mappings.

In this paper, motivated by [10, 21, 35], we establish the strong convergence of \(\{x_t\} \) defined by

\[
x_t \in tP_Tx_t + (1 - t)f(x_t), \ f \in \Sigma_C,
\]
for the multivalued nonself-mapping T in a uniformly convex Banach space with a uniformly Gâteaux differentiable norm. We also study the strong convergence of $\{x_t\}$ for the multivalued nonself-mapping T satisfying the inwardness condition in a reflexive Banach space with a uniformly Gâteaux differentiable norm. Our results improve and extend the results in [2, 10, 11, 12, 20, 21, 32, 36] to the viscosity approximation method for multivalued nonself-mapping case. We also point out that our results give a partial answer to Jung’s question [10].

2. Preliminaries

Let E be a real Banach space with norm $\| \cdot \|$ and let E^* be its dual. The value of $x^* \in E^*$ at $x \in E$ will be denoted by $\langle x, x^* \rangle$.

A Banach space E is called uniformly convex if $\delta(\varepsilon) > 0$ for every $\varepsilon > 0$, where the modulus $\delta(\varepsilon)$ of convexity of E is defined by

$$\delta(\varepsilon) = \inf\{1 - \frac{\|x + y\|}{2} : \|x\| \leq 1, \|y\| \leq 1, \|x - y\| \geq \varepsilon\}$$

for every ε with $0 \leq \varepsilon \leq 2$. It is well-known that if E is uniformly convex, then E is reflexive and strictly convex (cf. [5]).

The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x, y in its unit sphere $U = \{x \in E : \|x\| = 1\}$. It is said to be uniformly Gâteaux differentiable if for each $y \in U$, this limit is attained uniformly for $x \in U$. Finally, the norm is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth if the limit in (9) is attained uniformly for $(x, y) \in U \times U$. A discussion of these and related concepts may be found in [3].

The normalized duality mapping J from E into the family of nonempty (by Hahn-Banach theorem) weak-star compact subsets of its dual E^* is defined by

$$J(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}.$$

for each $x \in E$. It is single valued if and only if E is smooth.

Let D be a subset of C. Then a mapping $Q : C \to D$ is said to be retraction if $Qx = x$ for all $x \in D$. A retraction $Q : C \to D$ is said to
be sunny if each point on the ray \(\{ Qx + t(x - Qx) : t > 0 \} \) is mapped by \(Q \) back onto \(Qx \), in other words, \(Q(Qx + t(x - Qx)) = Qx \) for all \(t \geq 0 \) and \(x \in C \). A subset \(D \) of \(C \) is said to be a sunny nonexpansive retract of \(C \) if there exists a sunny nonexpansive retraction of \(C \) onto \(D \) (cf. [5, 25]). In a smooth Banach space \(E \), it is known (cf. [5, p. 48]) that \(Q \) is a sunny nonexpansive retraction from \(C \) onto \(D \) if and only if the following inequality holds:

\[
\langle x - Qx, J(z - Qx) \rangle \leq 0, \quad x \in C, \quad z \in D.
\]

A mapping \(T : C \to CB(E) \) is \(*\)-nonexpansive ([7]) if for all \(x, y \in C \) and \(u_x \in Tx \) with \(\|x - u_x\| = \inf \{\|x - z\| : z \in Tx\} \), there exists \(u_y \in Ty \) with \(\|y - u_y\| = \inf \{\|y - w\| : w \in Ty\} \) such that

\[
\|u_x - u_y\| \leq \|x - y\|.
\]

It is known that \(*\)-nonexpansiveness is different from nonexpansiveness for multivalued mappings. There are some \(*\)-nonexpansiveness multivalued mappings which are not nonexpansive and some nonexpansive multivalued mappings which are not \(*\)-nonexpansive [31].

Let \(\mu \) be a linear continuous functional on \(\ell^\infty \) and let \(a = (a_1, a_2, ...) \in \ell^\infty \). We will sometimes write \(\mu_n(a_n) \) in place of the value \(\mu(a) \). A linear continuous functional \(\mu \) such that \(\|\mu\| = 1 = \mu(1) \) and \(\mu_n(a_n) = \mu_n(a_{n+1}) \) for every \(a = (a_1, a_2, ...) \in \ell^\infty \) is called a Banach limit. We know that if \(\mu \) is a Banach limit, then

\[
\liminf_{n \to \infty} a_n \leq \mu_n(a_n) \leq \limsup_{n \to \infty} a_n
\]

for every \(a = (a_1, a_2, ...) \in \ell^\infty \). Let \(\{x_n\} \) be a bounded sequence in \(E \). Then we can define the real valued continuous convex function \(\phi \) on \(E \) by

\[
\phi(z) = \mu_n\|x_n - z\|^2
\]

for each \(z \in E \).

The following lemma which was given in [6, 28] is, in fact, a variant of Lemma 1.3 in [25].

Lemma 1. Let \(C \) be a nonempty closed convex subset of a Banach space \(E \) with a uniformly Gâteaux differentiable norm and let \(\{x_n\} \) be a bounded sequence in \(E \). Let \(\mu \) be a Banach limit and \(u \in C \). Then

\[
\mu_n\|x_n - u\|^2 = \min_{y \in C} \mu_n\|x_n - y\|^2
\]
if and only if
\[\mu_n \langle x - u, J(x_n - u) \rangle \leq 0 \]
for all \(x \in C \).

We also need the following result, which was essentially given by Reich [27, pp. 314-315] and was also proved by Takahashi and Jeong [29].

Lemma 2. Let \(E \) be a uniformly convex Banach space, \(C \) a nonempty closed convex subset of \(E \), and \(\{x_n\} \) a bounded sequence of \(E \). Then the set
\[M = \{ u \in C : \mu_n \|x_n - u\|^2 = \min_{z \in C} \mu_n \|x_n - z\|^2 \} \]
consists of one point.

We introduce some terminology for boundary conditions for non-self mappings. The **inward set** of \(C \) at \(x \) is defined by
\[I_C(x) = \{ z \in E : z = x + \lambda(y-x) : y \in C, \lambda \geq 0 \}. \]
Let \(\bar{I}_C(x) = x + T_C(x) \) with
\[T_C(x) = \left\{ y \in E : \liminf_{\lambda \to 0^+} \frac{d(x + \lambda y, C)}{\lambda} = 0 \right\} \]
for any \(x \in C \). Note that for a convex set \(C \), we have \(\bar{I}_C(x) = \overline{I_C(x)} \), the closure of \(I_C(x) \). A multivalued mapping \(T : C \to F(E) \) is said to satisfy the **inwardness condition** if \(Tx \subset I_C(x) \) for all \(x \in C \) and respectively, to satisfy the **weak inwardness condition** if \(Tx \subset \overline{I_C(x)} \) for all \(x \in C \). We notice that a fixed point theorem for nonexpansive mappings satisfying the inwardness condition is given in Corollary 3.5 of Reich [24]. A fixed point theorem for multi-valued strict contractions was given in Theorem 3.4 of Reich [24], too. It is also well-known that if \(C \) is a nonempty closed subset of a Banach space \(E \), \(T : C \to F(E) \) is a contraction satisfying the weak inwardness condition, and \(x \in E \) has a nearest point in \(Tx \), then \(T \) has a fixed point ([Theorem 11.4 of Deimling [4]]).

Finally, the following lemmas were given by Xu [34] (also see Lemma 2.3.2 of Xu [33] for Lemma 4).

Lemma 3. If \(C \) is a closed bounded convex subset of a uniformly convex Banach space \(E \) and \(T : C \to K(E) \) is a nonexpansive mapping satisfying the weak inwardness condition, then \(T \) has a fixed point.
Lemma 4. If C is a compact convex subset of a Banach space E and $T : C \to \mathcal{K}(E)$ is a nonexpansive mapping satisfying the boundary condition:
$$Tx \cap \overline{I}_C(x) \neq \emptyset, \quad x \in C,$$
then T has a fixed point.

3. Main results

Now, we first prove a strong convergence theorem.

Theorem 1. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to \mathcal{K}(E)$ a multivalued nonself-mapping such that P_T is nonexpansive. Suppose that C is a nonexpansive retract of E. Suppose that for $f \in \Sigma_C$ and $t \in (0, 1)$, the contraction S_t defined by $S_t x = tP_T x + (1 - t)f(x)$ has a fixed point $x_t \in C$. Then T has a fixed point if and only if \{x_t\} remains bounded as $t \to 1$ and in this case, \{x_t\} converges strongly as $t \to 1$ to a fixed point of T.

If we define $Q : \Sigma_C \to F(T)$ by $Q(f) := \lim_{t \to 1} x_t$ for $f \in \Sigma_C$, then $Q(f)$ solves the variational inequality
$$((I - f)(Q(f)), J(Q(f) - z)) \leq 0, \quad f \in \Sigma_C, \quad z \in F(T).$$

Proof. For given any $x_t \in C$, we can find some $y_t \in P_T x_t$ such that
$$x_t = t y_t + (1 - t)f(x_t).$$
Let $z \in F(T)$. Then \{x_t\} is uniformly bounded. In fact, noting that $P_T y = \{y\}$ whenever y is a fixed point of T, we have $z \in P_T z$ and
$$\|y_t - z\| = d(y_t, P_T z) \leq H(P_T x_t, P_T z) \leq \|x_t - z\| \quad \text{for all} \ t \in (0, 1).$$
Thus we have
$$\|x_t - z\| \leq t\|y_t - z\| + (1 - t)\|f(x_t) - z\| \leq t\|x_t - z\| + (1 - t)(\|f(x_t) - f(z)\| + \|f(z) - z\|) \leq t\|x_t - z\| + (1 - t)(k\|x_t - z\| + \|f(z) - z\|).$$
This implies that
$$\|x_t - z\| \leq \frac{1}{1 - k}\|f(z) - z\|$$
and so \{x_t\} is uniformly bounded. Also \{f(x_t)\} is bounded.
Suppose conversely that \(\{x_t\} \) remains bounded as \(t \to 1 \). We now show that \(T \) has a fixed point \(z \) and that \(\{x_t\} \) converges strongly as \(t \to 1 \) to a fixed point of \(T \). To this end, let \(t_n \to 1 \) and \(x_n = x_{t_n} \). Define \(\phi : E \to [0, \infty) \) by \(\phi(z) = \mu_n \|x_n - z\|^2 \). Since \(\phi \) is continuous and convex, \(\phi(z) \to \infty \) as \(\|z\| \to \infty \), and \(E \) is reflexive, \(\phi \) attains its infimum over \(C \) (cf. [1, p. 79]). Let \(z \in C \) be such that
\[
\mu_n \|x_n - z\|^2 = \min_{y \in C} \mu_n \|x_n - y\|^2
\]
and let
\[
M = \{x \in C : \mu_n \|x - x\|^2 = \min_{y \in C} \mu_n \|x_n - y\|^2\}.
\]
Then \(M \) is a nonempty bounded closed convex subset of \(C \). Since \(C \) is a nonexpansive retract of \(E \), the point \(z \) is the unique global minimum (over all of \(E \)). In fact, let \(Q \) be a nonexpansive retraction of \(E \) onto \(C \). Then for any \(y \in E \), we have
\[
\mu_n \|x_n - z\|^2 \leq \mu_n \|x_n - Qy\|^2 = \mu_n \|Qx_n - Qy\|^2 \leq \mu_n \|x_n - y\|^2
\]
and hence
\[
\mu_n \|x_n - z\|^2 = \min_{y \in E} \mu_n \|x_n - y\|^2.
\]
This global minimum point \(z \) is also unique by Lemma 2.

On the other hand, since \(x_t = ty_t + (1 - t)f(x_t) \) for some \(y_t \in P_T x_t \), it follows that
\[
\|x_t - y_t\| = (1 - t)\|f(x_t) - y_t\| \to 0
\]
as \(t \to 1 \). Since \(P_T \) is compact valued, we have for each \(n \geq 1 \), some \(w_n \in P_T z \) for \(z \in M \) such that
\[
\|y_n - w_n\| = d(y_n, P_T z) \leq H(P_T x_n, P_T z) \leq \|x_n - z\|.
\]
Let \(w = \lim_{n \to \infty} w_n \in P_T z \). It follows from (14) and (15) that
\[
\mu_n \|x_n - w\|^2 \leq \mu_n \|y_n - w_n\|^2 \leq \mu_n \|x_n - z\|^2.
\]
Since \(z \) is the unique global minimum, we have \(w = z \in P_T z \subset T z \) and hence \(F(T) \neq \emptyset \). We have also that \(P_T z = \{z\} \).

On the another hand, for \(P_T z = \{z\} \subset C \), we have from (13)
\[
\langle x_n - y_n, J(x_n - z) \rangle = \langle (x_n - z) + (z - y_n), J(x_n - z) \rangle \\
\geq \|x_n - z\|^2 - \|y_n - z\|\|x_n - z\| \\
\geq \|x_n - z\|^2 - \|x_n - z\|^2 = 0,
\]
and it follows that
\[0 \leq \langle x_n - y_n, J(x_n - z) \rangle = (1 - t_n)\langle f(x_n) - y_n, J(x_n - z) \rangle. \]

Hence from (14) and (16), we obtain
\[\mu_n \langle x_n - f(x_n), J(x_n - z) \rangle \leq 0 \]
for \(P_Tz = \{ z \} = M \). But, from (11) in Lemma 1, we have
\[\mu_n \langle x - z, J(x_n - z) \rangle \leq 0 \]
for all \(x \in C \). In particular, we have
\[\mu_n \langle f(z) - z, J(x_n - z) \rangle \leq 0. \]

Combining (17) and (18), we get
\[\mu_n \|x_n - z\|^2 = \mu_n \langle x_n - z, J(x_n - z) \rangle \]
\[\leq \mu_n \langle f(x_n) - f(z), J(x_n - z) \rangle + \mu_n \langle f(z) - z, J(x_n - z) \rangle \]
\[\leq k\mu_n \|x_n - z\|^2 \]
and hence \(\mu_n \|x_n - z\|^2 \leq 0 \). Therefore, there is a subsequence \(\{ x_{n_j} \} \) of \(\{ x_n \} \) which converges strongly to \(z \). To complete the proof, suppose that there is another subsequence \(\{ x_{n_j} \} \) of \(\{ x_n \} \) which converges strongly to \(y \) (say). Since
\[d(x_{n_k}, P_Tx_{n_k}) \leq \|x_{n_k} - y_{n_k}\| = (1 - t_{n_k})\|f(x_{n_k}) - y_{n_k}\| \to 0 \]
as \(k \to \infty \), we have \(d(y, Ty) = 0 \) and hence \(y \in P_Ty \subset Ty \). Noting that \(P_Ty = \{ y \} \), from (17) we have
\[\langle z - f(z), J(z - y) \rangle \leq 0 \text{ and } \langle y - f(y), J(y - z) \rangle \leq 0. \]

Adding these two inequalities yields
\[\|z - y\|^2 \leq \langle f(z) - f(y), J(z - y) \rangle = k\|z - y\|^2 \]
and thus \(z = y \). This proves the strong convergence of \(\{ x_t \} \) to \(z \).

Define \(Q : \Sigma_C \to F(T) \) by \(Q(f) := \lim_{t \to 1} x_t \). Since \(x_t = ty_t + (1 - t) f(x_t) \) for some \(y_t \in P_Tx_t \),
\[(I - f)(x_t) = -\frac{t}{1 - t}(x_t - y_t). \]
From (13), we have for $z \in F(T)$
\[
\langle (I - f)(x_t), J(x_t - z) \rangle = - \frac{t}{1 - t} \langle (x_t - z) + (z - y_t), J(x_t - z) \rangle \\
\leq - \frac{t}{1 - t} (\|x_t - z\|^2 - \|y_t - z\| \|x_t - z\|) \\
\leq - \frac{t}{1 - t} (\|x_t - z\|^2 - \|x_t - z\|^2) = 0.
\]

Letting $t \to 1$ yields
\[
\langle (I - f)(Q(f)), J(Q(f) - z) \rangle \leq 0, \quad f \in \Sigma_C, \quad z \in F(T).
\]

Remark 1. In Theorem 1, if $f(x) = u, \ x \in C,$ is a constant mapping, then it follows from (12) that
\[
\langle Q(u) - u, J(Q(u) - z) \rangle \leq 0, \quad u \in C, \quad z \in F(T).
\]
Hence by (10), Q reduces to the sunny nonexpansive retraction from C onto $F(T)$.

By definition of the Hausdorff metric, we obtain that if T is $*$-nonexpansive, then P_T is nonexpansive. Hence, as a direct consequence of Theorem 1, we have the following result.

Corollary 1. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to K(E)$ a multivalued $*$-nonexpansive nonself-mapping. Suppose that C is a nonexpansive retract of E. Suppose that for $f \in \Sigma_C$ and $t \in (0, 1)$, the contraction S_t defined by $S_t x = tP_T x + (1 - t)f(x)$ has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

It is well-known that every nonempty closed convex subset C of a strictly convex reflexive Banach space E is Chebyshev, that is, for any $x \in E$, there is a unique element $u \in C$ such that $\|x - u\| = \inf\{\|x - v\| : v \in C\}$. Thus, we have the following corollary.
Corollary 2. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to K\mathcal{C}(E)$ a multivalued nonself-mapping such that P_T is nonexpansive. Suppose that C is a nonexpansive retract of E. Suppose that for $f \in \Sigma_C$ and $t \in (0, 1)$, the contraction S_t defined by $S_t x = tP_T x + (1 - t)f(x)$ has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

Proof. In this case, Tx is Chebyshev for each $x \in C$. So P_T is a selector of T and P_T is single valued. Thus the result follows from Theorem 1.

Corollary 3. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to K\mathcal{C}(E)$ a multivalued nonexpansive nonself-mapping. Suppose that C is a nonexpansive retract of E. Suppose that for $f \in \Sigma_C$ and $t \in (0, 1)$, the contraction S_t defined by $S_t x = tP_T x + (1 - t)f(x)$ has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

Corollary 4. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed bounded convex subset of E, and $T : C \to K\mathcal{C}(E)$ a multivalued nonself-mapping satisfying the weak inwardness condition such that P_T is nonexpansive. Suppose that C is a nonexpansive retract of E. Let $f \in \Sigma_C$ and $t \in (0, 1)$. Then $\{x_t\}$ defined by $x_t \in tP_T x_t + (1 - t)f(x_t)$ converges strongly as $t \to 1$ to a fixed point of T.

Proof. Fix $f \in \Sigma_C$ and define for each $t \in (0, 1)$, the contraction $S_t : C \to K\mathcal{C}(E)$ by

$$S_t x := tP_T x + (1 - t)f(x), \quad x \in C.$$

As it is easily seen that S_t also satisfies the weak inwardness condition: $S_t x \subset \overline{I}_C(x)$ for all $x \in C$, it follows from Lemma 3 that S_t has a fixed point denoted by x_t. Thus the result follows from Theorem 1. \qed
Remark 2. (1) As in [31], Shahzad and Zegeye [21] gave the following example of a multivalued T such that P_T is nonexpansive: Let $C = [0, \infty)$ and T be defined by $Tx = [x, 2x]$ for $x \in C$. Then $P_Tx = \{x\}$ for $x \in C$. Also T is $*$-nonexpansive but not nonexpansive (see [31]).

(2) Theorem 1 (and Corollaries 1-4) generalizes Theorem 3.1 (and Corollaries 3.3-3.5) of Shahzad and Zegeye [21] to the viscosity approximation method.

(3) Theorem 1 also improves and complements the corresponding results of Jung [10], Kim and Jung [14] and Sahu [20]. Theorem 1 extends the corresponding results of Jung and Kim [11], Jung and Kim of [12] and Xu and Yin [36], to the multivalued mapping case, too.

(4) Our results apply to all L^p spaces or ℓ^p spaces for $1 < p < \infty$.

Theorem 2. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to KC(E)$ a multivalued nonself-mapping satisfying the inwardness condition such that P_T is nonexpansive. Let $f \in \Sigma_C$ and $t \in (0, 1)$. Assume that every closed bounded convex subset of C is compact. If P_T has a fixed point, then the sequence $\{x_t\}$ defined by

\[x_t \in tP_Tx_t + (1 - t)f(x_t), \]

converges strongly as $t \to 1$ to a fixed point of T.

Proof. Let $z \in P_Tz$. As in proof of Theorem 1, we have $\|x_t - z\| \leq \frac{1}{1-t}\|f(z) - z\|$ for all $t \in (0, 1)$ and hence $\{x_t\}$ is uniformly bounded.

We now show that $\{x_t\}$ converges strongly as $t \to 1^-$ to a fixed point of T. To this end, let $t_n \to 1$ and $x_n = x_{t_n}$. As in the proof of Theorem 1, we define the same function $\phi : E \to [0, \infty)$ by $\phi(z) = \mu_n\|x_n - z\|^2$ and let

\[M = \{x \in C : \mu_n\|x_n - x\|^2 = \min_{y \in C} \mu_n\|x_n - y\|^2\}. \]

Then M is a nonempty closed bounded convex subset of C and by assumption, M is compact convex. Clearly, P_T satisfies the inwardness condition. By using the same argument as in Theorem 2 of Jung [10], we can prove that the inwardness condition of P_T on C implies a weaker inwardness of P_T on M, that is,

\[P_Tz \cap I_M(z) \neq \emptyset, \quad z \in M. \]
So, by Lemma 4, there exists \(z \in M \) such that \(z \in P_Tz \subseteq Tz \) and so \(P_Tz = \{z\} \). The strong convergence of \(\{x_t\} \) to \(z \) is the same as given in the proof of Theorem 1.

Corollary 5. Let \(E \) be a reflexive Banach space with a uniformly Gâteaux differentiable norm, \(C \) a nonempty closed convex subset of \(E \), and \(T : C \to \mathcal{K}C(E) \) a multivalued \(*\)-nonexpansive nonself-mapping satisfying the inwardness condition such that \(P_T \) is nonexpansive. Let \(f \in \Sigma_C \) and \(t \in (0, 1) \). Assume that every closed bounded convex subset of \(C \) is compact. If \(P_T \) has a fixed point, then the sequence \(\{x_t\} \) defined by (19) converges strongly as \(t \to 1 \) to a fixed point of \(T \).

Corollary 6. Let \(E \) be a uniformly smooth Banach space, \(C \) a nonempty closed convex subset of \(E \), and \(T : C \to \mathcal{K}C(E) \) a multivalued nonself-mapping satisfying the inwardness condition such that \(P_T \) is nonexpansive. Let \(f \in \Sigma_C \) and \(t \in (0, 1) \). Assume that every closed bounded convex subset of \(C \) is compact. If \(P_T \) has a fixed point, then the sequence \(\{x_t\} \) defined by (19) converges strongly as \(t \to 1 \) to a fixed point of \(T \).

Corollary 7. Let \(E \) be a reflexive Banach space with a uniformly Gâteaux differentiable norm, \(C \) a nonempty compact convex subset of \(E \), and \(T : C \to \mathcal{K}C(E) \) a multivalued nonself-mapping satisfying the inwardness condition such that \(P_T \) is nonexpansive. Let \(f \in \Sigma_C \) and \(t \in (0, 1) \). If \(P_T \) has a fixed point, then the sequence \(\{x_t\} \) defined by (19) converges strongly as \(t \to 1 \) to a fixed point of \(T \).

Corollary 8. Let \(E \) be a uniformly smooth Banach space, \(C \) a nonempty compact convex subset of \(E \), and \(T : C \to \mathcal{K}C(E) \) a multivalued nonself-mapping satisfying the inwardness condition such that \(P_T \) is nonexpansive. Let \(f \in \Sigma_C \) and \(t \in (0, 1) \). If \(P_T \) has a fixed point, then the sequence \(\{x_t\} \) defined by (19) converges strongly as \(t \to 1 \) to a fixed point of \(T \).

Remark 3. (1) Theorem 2 (and Corollaries 5-8) also improves Theorem 3.9 (and Corollaries 3.10-3.12) of Shahzad and Zegeye [21] to the
viscosity approximation method. Theorem 2 (and Corollaries 6-7) complements Theorem 2 (and Corollaries 4-5) of Jung [10], too.

2) Theorem 2 is also a multivalued version of Theorem 1 and Corollary 1 of Jung and Kim [12] and Theorem 1 of Xu [32].

3) A fixed point theorem for \(T : C \to KC(E) \) a \(\ast \)-nonexpansive, 1-\(\chi \)-contractive multivalued mapping satisfying the inwardness condition in a special Banach space was recently given by Shahzad and Lone [22]. In this case, one can relax the assumption that \(F(T) \neq \emptyset \).

References

Department of Mathematics
Dong-A University
Busan 604-714, Korea
E-mail: jungjs@mail.donga.ac.kr