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SIGN CHANGING PERIODIC SOLUTIONS OF A
NONLINEAR WAVE EQUATION

TACKSUN JUNG AND Q-HEUNG CHOI*

ABSTRACT. We seek the sign changing periodic solutions of the non-
linear wave equation uy — Uz, = a(z,t)g(u) under Dirichlet bound-
ary and periodic conditions. We show that the problem has at least
one solution or two solutions whether 1g(u)u — G(u) is bounded or
not.

1. Introduction

In this paper we seek the sign changing solutions of the following
nonlinear wave equation

Uy — Uz = alx, t)g(u), (1.1)
under Dirichlet boundary condition and periodic condition:
u(0,t) = u(m, t) =0,
u(z,t +7T) = u(z,t),

where a : [0, 7] xR—R is a continuous function which changes sign such
that a(x,t) = —a (:C,t + %) , and the open sets

{(z,t) | a(z,t) > 0}, {(z,t) | a(x,t) < 0}

are both nonempty. We shall write a = a™ — a™, where at = a - yo+
and a- = —a - xo-. In what follows we assume systematically that
T is a rational multiple of 7. We assume that g satisfies the following
conditions:

(91) g € C(R.R),
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(92) g(u) = o(u),
(g3) there exists a constant p > 2 such that

sz p [ g(s)ds >0,

4) there exist constants a;,as > 0 and p > 1 such that
g
lg(w)| < ar|ul’ + aq for all u,

where G(u) = [ g(t)dt.
Integrating condition (g3) shows that there exist constants az, as > 0
such that
G(u) > aglul* — ay. (1.2)
The purpose of this paper is to show the existence of solutions of the
problem (1.1) when g(u)u — G(u) is bounded or 3g(u)u — G(u) is not
bounded. Our main results are as follows:

THEOREM 1.1. Assume that g satisfies (g1) — (g4) and $g(u)u—G(u)
is bounded. Then the problem (1.1) has at least one bounded solution
provided that p in (g4) is further restricted by p+ 1 < p.

THEOREM 1.2. Assume that g satisfies (g1) — (g4), 39(u)u — G(u)
is not bounded. We also assume that there exists a small ¢ > 0 such
that [,a™(x,t) < e. Then for each T the problem (1.1) has at least two
solutions, (1)one of which is bounded and (2) the other is a large norm
solution such that for each real number M,

max |u(z,t)] > M

z€[0,7]
t€[0,T]

provided that p in (g4) is further restricted by p+ 1 < p.

Theorem 1.1 and Theorem 1.2 will be proved in Section 3 and 4 via
variational methods.

An outline of this paper is as follows: in Section 2 we introduce a
subspace H of functions satisfying some symmetry properties, stable by
A(Au = uy — uy,), g such that the intersection of H with the kernel
of A is reduced to 0. The search of a solution of the problem (1.1) in
the space H reduces the problem to a situation where A~ is a compact
operator. In Section 3 we prove Theorem1.1 and 1.2(1). We introduce a
functional I whose critical points and weak solutions of (1.1) possess one-
to-one correspondence. Next we prove that I € C'(E,R) and satisfies
the Palais-Smale condition. Then, we show that there exist p > 0, > 0,
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and vy € E satisfying ||up|| > p such that if ||u|| = p, then I(u) >, and
I(up) < 0. By critical point theorem for indefinite functionals (cf. [3])
there exists at least one solution of (1.1) which is bounded. In Section
4, we prove Theorem1.2(2) by the method of Rabinowitz (cf. [13]). We
introduce a functional J such that large critical values of J induce large
critical values of I.

2. Invariant spaces
Let Q = (0,7) x (0,7); T is a rational multiple of 7, that is, T = 2%,
where a and b are coprime integers. Let A be the operator defined by
Au = Uy — gy

and D(A) be a collection of functions which belongs to the domain of an
operator A and which satisfies some boundary conditions. Let A be the
adjoint of A in L*(Q). We investigate solutions of

Au = a(x,t)g(u).
We note that the eigenvalues of A are j2 — (#)Q,j =1,2,...and k =

0,1,2,... and the corresponding eigenfunctions are
.. . 2wkt L 2kt
sin jo sin — and sin jz cos —
We also note that the set of functions sin jx sin 2“7“, sin jx cos QWT’“ is an

orthogonal base for L*(Q2). Let u is a function of L?(Q). Then there
exists one and only one function of L?([0, 7] x R) which is T periodic in
t and equals v on 2. We shall again denote this function by u. Let us
denote an element u, in L?(2), as

a
U= Z Uj  Sin jo exp ik,‘gt
j;o

with u;, = u; _. We assume that b is even and a is odd. Let H be the
closed subspace of L?(Q) defined by

H = {u € L*(Q)u(z,t) = —u (az,t + g) a.e. x € (0,m),t € R}.

Then H is invariant under shifts: Let ©w € H and 7 be a real number.
If v(z,t) = u(x,t+7), then v € H. H is invariant by g: Let u € H such
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that g(u) € L*(Q2). Then g(u) € H.
Let a(z,t) = u(z,t + Z). Then

~ koo .,
U= Zuj’k(_l) sin jx exp @kgt.
j>0
k
Therefore
u€ H <= uj,=0 for any even k. (2.1)

Let A; be the linear operator of H defined by
D(A)=DA)NH

Aju = Au for every wu € H.

Then it follows from (2.1) that A; is self adjoint in H.
We claim that H N N(A) = {0},
where N(A) is the kernel of A. In fact, let u € H N N(A). Then

a
u= Z Uj SN jT exp z'k;gt,

5 Ka?
j* - B #0= u;; =0.
Let 7 and k be such that
2 k2a? _o

62

Since b is even and a is odd, k is even. Using (2.1) we have u;; = 0 and
therefore H N N(A) = {0}.

3. Proof of Theorem 1.1 and Theorem 1.2(1)

To prove Theorem 1.1 we shall show that the corresponding func-
tional I(u) of the problem (1.1) satisfies the geometric assumptions of
the critical point theorem for indefinite functionals (cf. [3]). Then, by
critical point theorem we shall seek solutions of (1.1). Now, we are going
to seek a function u in H such that

Ayu = a(x,t)g(u). (3.1)



Sign changing periodic solutions of a nonlinear wave equation 247

The eigenvalues of A; are j2—(2£)2 where j is odd and k is even. Given

T
u € H, we write

L 2kt
u = Z UjSin jzexp T
jjigd

k even
with Uj ke = ﬂj7,k. Let
o a2k.2 )
E={ucH|) |j*- s | ujnl* < +oo},
g,k

9 a2k2
(u,v)zzm W |w; k- Uy for u,v € E,
jik

where (, ) is a scalar product on E. With this scalar product E is a
Hilbert space with a norm

ul| = (u,u)3,  uweE.

1
= () o=t
Q

By the classical theorem of Riesz (cf. [9, p525]), we have

; 3
T\ " o\ 1 1
Jull < ( ) ) (]Ek |kl ) Cor=2 o4 o=l

Since for every € > o

Let

1
2, [P

j odd
k even

it follows that for every r € [2,+00) there is ¢, €R such that

[l < erfle]- (3.2)
Let
a’k?
E, = {ulu€kE, uy=0 if j°— 2 < 0},
2]{72
E. = {uu€kE, uy=0 ifﬁ—@b2 > 0},

Then E=E, ®E _,forue E,u=u"+u" € E, ®FE_. Let P, be
the orthogonal projection on F, and P_ be the orthogonal projection
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on E_. We can write Pyu =u", P.u=u", for u € E. We consider the
following functional associated Wlth (1.1),

1
I(u) = 5 /Q[—|ut|2+ | |?)dz dt — /Qa w)dx dt. (3.3)

1
— 5 (IPeul? = [P-alP) = [ ale.G(0)drat,
2 Q
where
G(u):/ g(s)ds.
0

From(g4) and (3.2), I is well defined. The solutions of (1.1) coincide with
the nonzero critical points of I(u). The following proposition shows that
I(u) € C*(E,R) (For the proof, refer to [3]).

PROPOSITION 1. Assume that g satisfies (g1) — (g4). Then I(u) is
continuous and Fréchet differentiable in E with Fréchet derivative

'(u)h = /Q g Byt 1ty - e — a(z, g Bldzdt (3.4)

= (Pyu, Pyh) — (P_u, P_h) — / a(x,t)g(u)hdx dt
Q
for all h € E. Moreover if we set
F(u) = / a(x,t)G(u)dz dt,
Q

then F'(u) is continuous with respect to weak convergence, F'(u) is
compact, and

F'(u)h = / a(z,t)g(u)hdrdt  forall he E
0

. This implies that I € C*(FE, R) and F(u) is weakly continuous.

The following proposition shows that [(u) satisfies (P.S) condition
when 3g(u)u — G(u) is bounded or there exists an e > 0 such that

Jooa (z,t) <e

PROPOSITION 2. Assume that g satisfies (g1) — (g4). We also as-
sume that Sg(u)u — G(u) is bounded or there exists an € > 0 such that
Jo-a (z,t)dzdt < e. Then I(u) satisfies the Palais-Smale condition
provided that p in (g4) is restricted by p+ 1 < u : If for a sequence
(tum), I (up) is bounded from above and I'(u,,) — 0 as m — oo, then
(u,) is bounded.
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Proof. Suppose that (u,,) is a sequence with I(u,,) < M and I'(u,,) —

0 as m — oo. Then, by (¢3), (¢4), (3.2), (1.2) and the Hélder inequality,
we have: for large m with u = u,,,

Mt Sl H@—%N@uzlédawﬂwu—d%ﬂGW)

::(Aa+@¢n§aum—w%uﬂ— [ (@000 = Gw)
> (%—%)ulgwaw-am>
_mgx‘ g(u |/ “(x,t)dx dt
(%—%)ulfWaww%ww—m>
—max\ gu \/ “(z,t)dx dt

Thus if 1g(u)u — G(u) is bounded or there exists an € > 0 such that
Jo a”(z,t) < e, then we have

1
M
L+ [l le/ ult > M, </ |u\2d:cdt) | (3.5)
Q Q

Moreover since

|1 (um)pl <l (3.6)
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for large m and all ¢ € E, choosing p = u € E, gives

Juh |2 = / (et — (tn)s) - 1
< / a(z, g ()i + ]

< / 0z )19ttt + 6]

<l / (@l + asfunn]) + [l
Q

< C1 [ Junl™ 4 Callunllize + ]
Q

e / et [PH 4 C et
(9]

Taking ¢ = —u,, in (3.6) yields

Ju |2 = / (et — (thn)as) - (—7)
< / o, )g(t) - (—u) + || — s
< / 0z, )19ttt + [t

< ||a||oo/(a1|umlp“+azluml)+ [[m]|
Q

e / a7+ Cllt 260 + ]
(9]

< Oa/Iuml”+1+Ci||um||+||um|l.
Q

Thus, by (3.5), if p+ 1 < pu, we have

et * =l [1* + {2z, 12

<

IA

M, / [P 4 Mot
Q

My / t 4 Mt
Q
Myl + et ) + Malluml] < Mo(1+ Jum])-
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from which the boundedness of (u,,) follows. Thus (u,,) converges

weakly in E. Since PLI'(u,,) = :|:Pium+Pi75(um) with P compact and
the weak convergence of Piru,, imply the strong convergence of Pyiu,,
and hence (P.S.) condition holds. O

Next, we will prove that I(u) satisfies one of geometrical assumptions
of the critical point theorem of indefinite functional I(u).

PROPOSITION 3. Assume that g satisfies (g1)—(g4). Then there exist
a small real number p > 0, § > 0, uy € E satisfying ||ug|| > p such that
(1) if [[u]l = p, then
I(u) > 6 and (3.7)
(2) I(uo) < 0.

Proof. (1) By (g4), (1.2), (3.2) and the Hélder inequality, we have
1 1
Iw) = Lipeal? = Lpou)? - / a(z, )G ()
2 2 o
1 s 1 2 p+1
> el = Lppoul? < Jjalle [ Cilul
2 2 o

1 1
> 1Pyl = SIP-ull? = ol oYl

for C1, C7 > 0. Since p+ 1 > 2, there exist p > o and § > o such that if
|lu|| = p, then I(u) > 6.

(2) If we choose ¢ € E such that ||| = 1, ¢ > 0 in © and support(¢)) C
QF, then we have

Itw) < IPEOI = 3IP-@OI = [ awt) (st - )

Q+

< gl = [ Gt —a

= %tz — /Q+ a(z,t) (agt'yPH — aq)

for all ¢ > 0. Since p > 2, for ¢y great enough, uy = ¢y is such that
|luol| > p and I(ug) < 0. O

Proof of Theorem 1.1 and Theorem 1.2(1)
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By Proposition 3.1 and 3.2 I(u) € C*(E,R) and satisfies the Palais-
Smale condition. By Proposition 3.3 there exist p > 0, 6 > 0, ug € E
satisfying |lug|| > p such that if ||u|| = p, then I(u) > 6, and I(ug) < 0.
By the critical point theorem for indefinite functional, /(u) has a critical
value b > ¢ given by

= inf max [
b Inf max (v(t)),

where I' = { € C([0,1], E) | v(0) = 0 and ~(1) = up}.
We denote by @ a critical point of I such that I(@) = b. We claim that
there exists a constant C' > 0 such that

T

Ha*(:z:,t)iﬂHLz(Q) <C (1 + L/ a(:c,t)dxdt) :

where L = max 12g(@)a — G(a).

In fact, we have
b < max I (tuyg), 0<t<1,

and

1 1
I(tug) = t* (§||P+u0||2— §||P_u0||2> —/Qa(x,t)G(tuo)dxdt

< t2|]u0||2—/a+(x,t)G(tu0)dxdt—|—/a‘(z,t)G(tuo)dmdt
Q Q
< tQHuOHQ—agt“/aﬂx,t)ug%—az;/a*(w,t)—i—
Q

0
ast?t / a” (z, t)ul ™
0

= Ct?* —Ct'+ C + C'tHL,
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Since 0 <t <1, bis bounded: b < C.
We can write

b= I(&)—%I’(&)ﬂ

_ /Qa(x,t) (%g(ﬂ)ﬂ _ G(a)) da dt
_ /Q o () (%g(ﬂ)ﬂ - G(ﬂ)) dz dt

_ /Q o (2,1) (%g(ﬂ)ﬁ _ G(a)) d dt
> (5-1) [[ate0o@i - o - G(a)

|
7 a-

<% — %) 'LL/QCﬁ(x’t) (aslu|* — ay) — L/ a” (x,t)dx dt,

where L = maxq |39(@)a — G(@)|. Thus we have

C (1+L/_a‘(x,t)dxdt) > /Qa+(;c,t)|a|ﬂ
{/Q<a+(:v,t)i|ﬁ|>2}g, (3.8)

from which we can conclude that @ is bounded. In fact, suppose that @
is not bounded. Then for any R > 0, |a| > R. Thus we have

/a+(x,t)|&|“ > R“/a+(x,t)dxdt
Q Q

for any R, which contradicts to the fact (3.8) and the proof of Theorem
1.1 is complete. On the other hand, by Proposition 3.2, if $g(u)u— G(u)
is not bounded and there exists an € > 0 such that [, o™ (x,t)dzdt <,
then I(u) satisfies the Palais-Smale condition. Proposition 3.3 and the
critical point theorem for indefinite functional show that I(u) has a crit-
ical value b with critical point @ such that I(a) = b. If [, a™(x,t)dz dt
is sufficiently small, by (3.8), we have

[t <c
Q

for C' > 0, from which we can conclude that « is bounded and the proof
of Theorem 1.2(1) is complete.

a (x,t)dx dt

v
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4. Proof of Theorem 1.2(2)

In this section we assume that 3g(u)u — G(u) is not bounded and
there exists an € > 0 such that [, a~(x,t) <e. Then I € C'(E,R) and
satisfies the Palais-Smale condition (cf. Proposition 3.1 and 3.2). Now,
we define a functional J

a1

1
= — (||Pyul|]® — || Poul?) —
J(w) = 5 (1Prul* = [[P-ull*) ||a||c>o/ﬂp+1

Then J € C'(ER) and satisfies the Palais-Smale condition, and
J(u) — ||a]|waemT < I(u).

Let (E;)i>0 be a sequence of subspaces of E such that there exist an odd
integer j; and an even integer k; such that
(1) E; is spanned by sin jyx sin k; §t, sin j;z cos k; §t.

. a)2 . a)2 .
2)i <= (kiy) — (ji)? < (k)™ — (i),
(3) E = ®ienEi.
From Proposition 3.3, there exists an R,,, > 0 such that

J(u) = ||a]|waemT < I(u) <0 for u € (V,, N EY) \Bg,,.
Foru € E, 6 € [0,T] set:

spu(x,t) = u(x,t +6).

IfueFE, spu e E and I(u) = I(spu), J(u) = J(squ).
Let

|u|p+1.

F ={u € F | u is independent of ¢}.
We have
F={ueE|spu=u V0e€]|0,T]}.
We remark that
FCE..
We call a subset B of E an invariant set if for all u € B, squ € B for all
0 € [0, T]. Let C(B,E) be the set of continuous functions from B into

E. If B is an invariant set we say h € C'(B,E) is an equivariant map if
h(seu) = sgh(u) for all 6 € [0,T] and u € B. Let

e={B| B C E\{0}, B is closed and invariant }.

In [10] it is proved that there is an index theory i.e., a mapping i : € —
N U {oo} such that if B, By € ¢,
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) i(B) <i(By) if there is ¢ € C(B, B;) with ¢ equivariant.
) i(BU By) <i(B)+i(By).

) If B C E\F and B is compact, i(B) < +oo and there is a § > 0
ch that i(Ns(B)) = i(B) where Ns(B) = {z | |zt — B| < d}.

4) If S C E\F is a 2n dimensional invariant sphere,

i(S) =n.

Let G,, denote the class of mapping h € C(D,,,E) which satisfy the
following properties

(1) h is equivariant

(2) h(u) = u for all u € (0Bg,, N V) U F.

(3) Ph(u) = a(u)Pu+ ¥(u) where ¥ is compact and o € C(D,,, [1,@]),
@ depending on h.

(1
2
(3
(

Let
Ly ={h(Dn\Y)|m>jheG,Y ccandi(Y) <m—j}, (4.1
.= inf 4.
¢ = jnf supl (u), (4.2)
bj = Blgj ilelg J(u). (4.3)

As in [13] we have the following lemma.
LEMMA 4.1. b; is a critical value of J,
bj — asllal|eemT < ¢y, (4.4)

if ¢; > 0, then c; is a critical value of I,
where § is defined as in [13], i.e.,
c
(5:sup<a4/a+ z,t)+—— [ a (x,t upﬂ),
w (o [ @@ty + 5 [ (ol

where ¢ = max{a,as} > 0 and Ey is the null space of A.

Proof of Theorem 1.2(2)

We note that

b; > sup ( inf J(pu)) . (4.6)

p u€Vit,
If u € V-, by (3.2), there exists ¢; with

J—o0
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such that |lul[,11 < €;u]l.
If u € Vit; and [lu =1, by (g3), (g4),

2
P +1_M 1
J(ou) > & — et Y e 47
() 2 5 — gt (@.7)
Thus if j — oo, then J(pu) > %. Using (4.6) we have
jli_)rgo bj = o0. (4.8)

Using (4.8), (4.4), and (4.5) we see that for j large enough ¢; is a critical
value of I and
lim ¢; = 4o00. (4.9)

Jj—00

Note that Aju = a(z,t)g(u) and max lu(z,t)| < K imply
ze |0,
te[0,T]

I(u) < <|n|13§ %89(8) - min G(s)) /Q o (2, )da dt.

We conclude the proof using (4.9).
Acknowledgement: The authors appreciate very much the referee
for his kind corrections and suggestions.
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