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SIGN CHANGING PERIODIC SOLUTIONS OF A

NONLINEAR WAVE EQUATION

Tacksun Jung and Q-Heung Choi∗

Abstract. We seek the sign changing periodic solutions of the non-
linear wave equation utt − uxx = a(x, t)g(u) under Dirichlet bound-
ary and periodic conditions. We show that the problem has at least
one solution or two solutions whether 1

2g(u)u−G(u) is bounded or
not.

1. Introduction

In this paper we seek the sign changing solutions of the following
nonlinear wave equation

utt − uxx = a(x, t)g(u), (1.1)

under Dirichlet boundary condition and periodic condition:

u(0, t) = u(π, t) = 0,

u(x, t + T ) = u(x, t),

where a : [0, π]×R→R is a continuous function which changes sign such
that a(x, t) = −a

(
x, t + T

2

)
, and the open sets

{(x, t) | a(x, t) > 0}, {(x, t) | a(x, t) < 0}
are both nonempty. We shall write a = a+ − a−, where a+ = a · χΩ+

and a− = −a · χΩ− . In what follows we assume systematically that
T is a rational multiple of π. We assume that g satisfies the following
conditions:
(g1) g ∈ C(R,R),
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(g2) g(u) = o(u),
(g3) there exists a constant µ > 2 such that

g(u)u ≥ µ

∫ u

0

g(s)ds > 0,

(g4) there exist constants a1, a2 > 0 and p > 1 such that

|g(u)| ≤ a1|u|p + a2 for all u,

where G(u) =
∫ x

0
g(t)dt.

Integrating condition (g3) shows that there exist constants a3, a4 > 0
such that

G(u) ≥ a3|u|µ − a4. (1.2)

The purpose of this paper is to show the existence of solutions of the
problem (1.1) when 1

2
g(u)u−G(u) is bounded or 1

2
g(u)u−G(u) is not

bounded. Our main results are as follows:

Theorem 1.1. Assume that g satisfies (g1)− (g4) and 1
2
g(u)u−G(u)

is bounded. Then the problem (1.1) has at least one bounded solution
provided that p in (g4) is further restricted by p + 1 < µ.

Theorem 1.2. Assume that g satisfies (g1) − (g4), 1
2
g(u)u − G(u)

is not bounded. We also assume that there exists a small ε > 0 such
that

∫
Ω

a−(x, t) < ε. Then for each T the problem (1.1) has at least two
solutions, (1)one of which is bounded and (2) the other is a large norm
solution such that for each real number M ,

max
x∈[0,π]
t∈[0,T ]

|u(x, t)| > M

provided that p in (g4) is further restricted by p + 1 < µ.

Theorem 1.1 and Theorem 1.2 will be proved in Section 3 and 4 via
variational methods.

An outline of this paper is as follows: in Section 2 we introduce a
subspace H of functions satisfying some symmetry properties, stable by
A(Au = utt − uxx), g such that the intersection of H with the kernel
of A is reduced to 0. The search of a solution of the problem (1.1) in
the space H reduces the problem to a situation where A−1 is a compact
operator. In Section 3 we prove Theorem1.1 and 1.2(1). We introduce a
functional I whose critical points and weak solutions of (1.1) possess one-
to-one correspondence. Next we prove that I ∈ C1(E,R) and satisfies
the Palais-Smale condition. Then, we show that there exist ρ > 0, δ > 0,
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and u0 ∈ E satisfying ‖u0‖ > ρ such that if ‖u‖ = ρ, then I(u) ≥ δ, and
I(u0) ≤ 0. By critical point theorem for indefinite functionals (cf. [3])
there exists at least one solution of (1.1) which is bounded. In Section
4, we prove Theorem1.2(2) by the method of Rabinowitz (cf. [13]). We
introduce a functional J such that large critical values of J induce large
critical values of I.

2. Invariant spaces

Let Ω = (0, π)× (0, T ); T is a rational multiple of π, that is, T = 2πb
a

,
where a and b are coprime integers. Let A be the operator defined by

Au = utt − uxx

and D(A) be a collection of functions which belongs to the domain of an
operator A and which satisfies some boundary conditions. Let A be the
adjoint of A in L2(Ω). We investigate solutions of

Au = a(x, t)g(u).

We note that the eigenvalues of A are j2 − (2πk
T

)2, j = 1, 2, . . . and k =
0, 1, 2, . . . and the corresponding eigenfunctions are

sin jx sin
2πkt

T
and sin jx cos

2πkt

T
.

We also note that the set of functions sin jx sin 2πkt
T

, sin jx cos 2πkt
T

is an
orthogonal base for L2(Ω). Let u is a function of L2(Ω). Then there
exists one and only one function of L2([0, π]×R) which is T periodic in
t and equals u on Ω. We shall again denote this function by u. Let us
denote an element u, in L2(Ω), as

u =
∑
j>0

k

uj,k sin jx exp ik
a

b
t

with uj,k = uj,−k. We assume that b is even and a is odd. Let H be the
closed subspace of L2(Ω) defined by

H = {u ∈ L2(Ω)|u(x, t) = −u

(
x, t +

T

2

)
a.e. x ∈ (0, π), t ∈ R}.

Then H is invariant under shifts: Let u ∈ H and τ be a real number.
If v(x, t) = u(x, t+ τ), then v ∈ H. H is invariant by g: Let u ∈ H such
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that g(u) ∈ L2(Ω). Then g(u) ∈ H.
Let ũ(x, t) = u(x, t + T

2
). Then

ũ =
∑
j>0

k

uj,k(−1)k sin jx exp ik
a

b
t.

Therefore

u ∈ H ⇐⇒ uj,k = 0 for any even k. (2.1)

Let A1 be the linear operator of H defined by

D(A1) = D(A) ∩H

A1u = Au for every u ∈ H.

Then it follows from (2.1) that A1 is self adjoint in H.
We claim that H ∩N(A) = {0},
where N(A) is the kernel of A. In fact, let u ∈ H ∩N(A). Then

u =
∑

uj,k sin jx exp ik
a

b
t,

j2 − k2a2

b2
6= 0 =⇒ uj,k = 0.

Let j and k be such that

j2 − k2a2

b2
= 0.

Since b is even and a is odd, k is even. Using (2.1) we have uj,k = 0 and
therefore H ∩N(A) = {0}.

3. Proof of Theorem 1.1 and Theorem 1.2(1)

To prove Theorem 1.1 we shall show that the corresponding func-
tional I(u) of the problem (1.1) satisfies the geometric assumptions of
the critical point theorem for indefinite functionals (cf. [3]). Then, by
critical point theorem we shall seek solutions of (1.1). Now, we are going
to seek a function u in H such that

A1u = a(x, t)g(u). (3.1)
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The eigenvalues of A1 are j2−(2πk
T

)2, where j is odd and k is even. Given
u ∈ H, we write

u =
∑
j>0

j odd
k even

uj,k sin jx exp i
2πkt

T

with uj,k = uj,−k. Let

E = {u ∈ H |
∑

j,k

|j2 − a2k2

b2
| · |uj,k|2 < +∞},

(u, v) =
∑

j,k

|j2 − a2k2

b2
|uj,k · vj,k for u, v ∈ E,

where ( , ) is a scalar product on E. With this scalar product E is a
Hilbert space with a norm

‖u‖ = (u, u)
1
2 , u ∈ E.

Let

‖u‖r =

(∫

Ω

|u|r
) 1

r

, r ≥ 1.

By the classical theorem of Riesz (cf. [9, p525]), we have

‖u‖r ≤
(

πT

2

) 1
r

(∑

j,k

|uj,k|r′
) 1

r′

, r ≥ 2,
1

r
+

1

r′
= 1.

Since for every ε > o
∑
j odd

k even

1

|j2 − a2k2

b2
|1+ε

< ∞,

it follows that for every r ∈ [2, +∞) there is cr ∈R such that

‖u‖r ≤ cr‖u‖. (3.2)

Let

E+ = {u| u ∈ E, uj,k = 0 if j2 − a2k2

b2
< 0},

E− = {u| u ∈ E, uj,k = 0 if j2 − a2k2

b2
> 0}.

Then E = E+ ⊕ E−, for u ∈ E, u = u+ + u− ∈ E+ ⊕ E−. Let P+ be
the orthogonal projection on E+ and P− be the orthogonal projection
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on E−. We can write P+u = u+, P−u = u−, for u ∈ E. We consider the
following functional associated with (1.1),

I(u) =
1

2

∫

Ω

[−|ut|2 + |ux|2]dx dt−
∫

Ω

a(x, t)G(u)dx dt. (3.3)

=
1

2

(‖P+u‖2 − ‖P−u‖2
)−

∫

Ω

a(x, t)G(u)dx dt,

where

G(u) =

∫ u

0

g(s)ds.

From(g4) and (3.2), I is well defined. The solutions of (1.1) coincide with
the nonzero critical points of I(u). The following proposition shows that
I(u) ∈ C1(E,R) (For the proof, refer to [3]).

Proposition 1. Assume that g satisfies (g1) − (g4). Then I(u) is
continuous and Fréchet differentiable in E with Fréchet derivative

I ′(u)h =

∫

Ω

[−ut · ht + ux · hx − a(x, t)g(u)h]dx dt (3.4)

= (P+u, P+h)− (P−u, P−h)−
∫

Ω

a(x, t)g(u)hdx dt

for all h ∈ E. Moreover if we set

F (u) =

∫

Ω

a(x, t)G(u)dx dt,

then F ′(u) is continuous with respect to weak convergence, F ′(u) is
compact, and

F ′(u)h =

∫

Ω

a(x, t)g(u)hdx dt for all h ∈ E

. This implies that I ∈ C1(E, R) and F (u) is weakly continuous.

The following proposition shows that I(u) satisfies (PS) condition
when 1

2
g(u)u − G(u) is bounded or there exists an ε > 0 such that∫

Ω− a−(x, t) < ε.

Proposition 2. Assume that g satisfies (g1) − (g4). We also as-
sume that 1

2
g(u)u−G(u) is bounded or there exists an ε > 0 such that∫

Ω− a−(x, t)dx dt < ε. Then I(u) satisfies the Palais-Smale condition
provided that p in (g4) is restricted by p + 1 < µ : If for a sequence
(um), I(um) is bounded from above and I ′(um) → 0 as m → ∞, then
(um) is bounded.
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Proof. Suppose that (um) is a sequence with I(um) ≤ M and I ′(um) →
0 as m →∞. Then, by (g3), (g4), (3.2), (1.2) and the Hölder inequality,
we have: for large m with u = um,

M +
1

2
‖u‖ ≥ I(u)− 1

2
I ′(u)u =

∫

Ω

1

2
a(x, t)g(u)u− a(x, t)G(u)

=

∫

Ω

a+(x, t)[
1

2
g(u)u−G(u)]−

∫

Ω

a−(x, t)[
1

2
g(u)u−G(u)]

≥
(

1

2
− 1

µ

)
µ

∫

Ω

a+(x, t) ·G(u)

−max
Ω
|1
2
g(u)u−G(u)|

∫

Ω−
a−(x, t)dx dt

≥
(

1

2
− 1

µ

)
µ

∫

Ω

a+(x, t) · (a3|u|µ − a4)

−max
Ω
|1
2
g(u)u−G(u)|

∫

Ω−
a−(x, t)dx dt

Thus if 1
2
g(u)u−G(u) is bounded or there exists an ε > 0 such that∫

Ω− a−(x, t) < ε, then we have

1 + ‖u‖ ≥ M1

∫

Ω

|u|µ ≥ M2

(∫

Ω

|u|2dx dt

) 1
2
·µ

. (3.5)

Moreover since

|I ′(um)ϕ| ≤ ‖ϕ‖ (3.6)
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for large m and all ϕ ∈ E, choosing ϕ = u+
m ∈ E+ gives

‖u+
m‖2 =

∫

Ω

((um)tt − (um)xx) · u+
m

≤
∫

Ω

a(x, t)g(um)u+
m + ‖u+

m‖

≤
∫

Ω

|a(x, t)||g(um)||um|+ ‖um‖

≤ ‖a‖∞
∫

Ω

(
a1|um|p+1 + a2|um|

)
+ ‖um‖

≤ C1

∫

Ω

|um|p+1 + C2‖um‖L2(Ω) + ‖um‖

≤ C1

∫

Ω

|um|p+1 + C ′
2‖um‖.

Taking ϕ = −u−m in (3.6) yields

‖u−m‖2 =

∫

Ω

((um)tt − (um)xx) · (−u−m)

≤
∫

Ω

a(x, t)g(um) · (−u−m) + ‖ − u−m‖

≤
∫

Ω

|a(x, t)||g(um)||um|+ ‖um‖

≤ ‖a‖∞
∫

Ω

(a1|um|p+1 + a2|um|) + ‖um‖

≤ C3

∫

Ω

|um|p+1 + C4‖um‖L2(Ω) + ‖um‖

≤ C3

∫

Ω

|um|p+1 + C ′
4‖um‖+ ‖um‖.

Thus, by (3.5), if p + 1 ≤ µ, we have

‖um‖2 = ‖u+
m‖2 + ‖u−m‖2 ≤ M3

∫

Ω

|um|p+1 + M4‖um‖

≤ M3

∫

Ω

|um|µ + M4‖um‖
≤ M51 + ‖um‖) + M4‖um‖ ≤ M6(1 + ‖um‖),
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from which the boundedness of (um) follows. Thus (um) converges
weakly in E. Since P±I ′(um) = ±P±um +P±P̃(um) with P̃ compact and
the weak convergence of P±um imply the strong convergence of P±um

and hence (P.S.) condition holds.

Next, we will prove that I(u) satisfies one of geometrical assumptions
of the critical point theorem of indefinite functional I(u).

Proposition 3. Assume that g satisfies (g1)−(g4). Then there exist
a small real number ρ > 0, δ > 0, u0 ∈ E satisfying ‖u0‖ > ρ such that
(1) if ‖u‖ = ρ, then

I(u) ≥ δ and (3.7)

(2) I(u0) ≤ 0.

Proof. (1) By (g4), (1.2), (3.2) and the Hölder inequality, we have

I(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 −

∫

Ω

a(x, t)G(u)

≥ 1

2
‖P+u‖2 − 1

2
‖P−u‖2 − ‖a‖∞

∫

Ω

C1|u|p+1

≥ 1

2
‖P+u‖2 − 1

2
‖P−u‖2 − ‖a‖∞C ′

1‖u‖p+1

for C1, C ′
1 > 0. Since p + 1 > 2, there exist ρ > o and δ > o such that if

‖u‖ = ρ, then I(u) ≥ δ.
(2) If we choose ψ ∈ E such that ‖ψ‖ = 1, ψ ≥ 0 in Ω and support(ψ) ⊂
Ω+, then we have

I(tψ) ≤ 1

2
‖P+(tψ)‖2 − 1

2
‖P−(tψ)‖2 −

∫

Ω+

a(x, t) (a3t
µψµ − a4)

≤ 1

2
‖tψ‖2 −

∫

Ω+

(a3t
µψµ − a4)

=
1

2
t2 −

∫

Ω+

a(x, t) (a3t
µψµ − a4)

for all t > 0. Since µ > 2, for t0 great enough, u0 = t0ψ is such that
‖u0‖ > ρ and I(u0) ≤ 0.

Proof of Theorem 1.1 and Theorem 1.2(1)
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By Proposition 3.1 and 3.2 I(u) ∈ C1(E,R) and satisfies the Palais-
Smale condition. By Proposition 3.3 there exist ρ > 0, δ > 0, u0 ∈ E
satisfying ‖u0‖ > ρ such that if ‖u‖ = ρ, then I(u) ≥ δ, and I(u0) ≤ 0.
By the critical point theorem for indefinite functional, I(u) has a critical
value b ≥ δ given by

b = inf
γ∈Γ

max
[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], E) | γ(0) = 0 and γ(1) = u0}.
We denote by ũ a critical point of I such that I(ũ) = b. We claim that
there exists a constant C > 0 such that

‖a+(x, t)
1
µ ũ‖L2(Ω) ≤ C

(
1 + L

∫

Ω−
a−(x, t)dx dt

) 1
µ

,

where L = max
Ω
|1
2
g(ũ)ũ−G(ũ)|.

In fact, we have

b ≤ max I(tu0), 0 ≤ t ≤ 1,

and

I(tu0) = t2
(

1

2
‖P+u0‖2 − 1

2
‖P−u0‖2

)
−

∫

Ω

a(x, t)G(tu0)dx dt

≤ t2‖u0‖2 −
∫

Ω

a+(x, t)G(tu0)dx dt +

∫

Ω

a−(x, t)G(tu0)dx dt

≤ t2‖u0‖2 − a3t
µ

∫

Ω

a+(x, t)uµ
0 + a4

∫

Ω

a+(x, t) +

a5t
p+1

∫

Ω

a−(x, t)up+1
0

= Ct2 − Ctµ + C + C ′tp+1.



Sign changing periodic solutions of a nonlinear wave equation 253

Since 0 ≤ t ≤ 1, b is bounded: b < C̃.
We can write

b = I(ũ)− 1

2
I ′(ũ)ũ

=

∫

Ω

a(x, t)

(
1

2
g(ũ)ũ−G(ũ)

)
dx dt

=

∫

Ω

a+(x, t)

(
1

2
g(ũ)ũ−G(ũ)

)
dx dt

−
∫

Ω

a−(x, t)

(
1

2
g(ũ)ũ−G(ũ)

)
dx dt

≥
(

1

2
− 1

µ

) ∫

Ω

a+(x, t)g(ũ)ũ−max
Ω
|1
2
g(ũ)ũ−G(ũ)|

∫

Ω−
a−(x, t)dx dt

≥
(

1

2
− 1

µ

)
µ

∫

Ω

a+(x, t) (a3|ũ|µ − a4)− L

∫

Ω−
a−(x, t)dx dt,

where L = maxΩ |12g(ũ)ũ−G(ũ)|. Thus we have

C

(
1 + L

∫

Ω−
a−(x, t)dx dt

)
≥

∫

Ω

a+(x, t)|ũ|µ

≥
[ ∫

Ω

(
a+(x, t)

1
µ |ũ|

)2
]µ

2

, (3.8)

from which we can conclude that ũ is bounded. In fact, suppose that ũ
is not bounded. Then for any R > 0, |ũ| ≥ R. Thus we have∫

Ω

a+(x, t)|ũ|µ ≥ Rµ

∫

Ω

a+(x, t)dxdt

for any R, which contradicts to the fact (3.8) and the proof of Theorem
1.1 is complete. On the other hand, by Proposition 3.2, if 1

2
g(u)u−G(u)

is not bounded and there exists an ε > 0 such that
∫
Ω− a−(x, t)dxdt < ε,

then I(u) satisfies the Palais-Smale condition. Proposition 3.3 and the
critical point theorem for indefinite functional show that I(u) has a crit-
ical value b with critical point ũ such that I(ũ) = b. If

∫
Ω− a−(x, t)dx dt

is sufficiently small, by (3.8), we have∫

Ω

a+(x, t)|ũ|µ ≤ C

for C > 0, from which we can conclude that ũ is bounded and the proof
of Theorem 1.2(1) is complete.
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4. Proof of Theorem 1.2(2)

In this section we assume that 1
2
g(u)u − G(u) is not bounded and

there exists an ε > 0 such that
∫
Ω− a−(x, t) < ε. Then I ∈ C1(E,R) and

satisfies the Palais-Smale condition (cf. Proposition 3.1 and 3.2). Now,
we define a functional J

J(u) =
1

2

(‖P+u‖2 − ‖P−u‖2
)− ‖a‖∞

∫

Ω

a1

p + 1
|u|p+1.

Then J ∈ C1(E,R) and satisfies the Palais-Smale condition, and

J(u)− ‖a‖∞a2πT ≤ I(u).

Let (Ei)i≥0 be a sequence of subspaces of E such that there exist an odd
integer ji and an even integer ki such that
(1) Ei is spanned by sin jix sin ki

a
b
t, sin jix cos ki

a
b
t.

(2) i ≤ i′ ⇒ (
ki

a
b

)2 − (ji)
2 ≤ (

ki′
a
b

)2 − (ji′)
2,

(3) E = ⊕i∈NEi.
Let Vm = ⊕i≤mEi ⊕ E−.
From Proposition 3.3, there exists an Rm > 0 such that

J(u)− ‖a‖∞a2πT ≤ I(u) ≤ 0 for u ∈ (
Vm ∩ E+

) \BRm .

For u ∈ E, θ ∈ [0, T ] set:

sθu(x, t) = u(x, t + θ).

If u ∈ E, sθu ∈ E and I(u) = I(sθu), J(u) = J(sθu).
Let

F = {u ∈ E | u is independent of t}.
We have

F = {u ∈ E | sθu = u ∀θ ∈ [0, T ]}.
We remark that

F ⊂ E+.

We call a subset B of E an invariant set if for all u ∈ B, sθu ∈ B for all
θ ∈ [0, T ]. Let C(B,E) be the set of continuous functions from B into
E. If B is an invariant set we say h ∈ C(B,E) is an equivariant map if
h(sθu) = sθh(u) for all θ ∈ [0, T ] and u ∈ B. Let

ε = {B | B ⊂ E\{0}, B is closed and invariant }.
In [10] it is proved that there is an index theory i.e., a mapping i : ε →
N ∪ {∞} such that if B, B1 ∈ ε,
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(1) i(B) ≤ i(B1) if there is ϕ ∈ C(B,B1) with ϕ equivariant.
(2) i(B ∪B1) ≤ i(B) + i(B1).
(3) If B ⊂ E\F and B is compact, i(B) < +∞ and there is a δ > 0
such that i(Nδ(B)) = i(B) where Nδ(B) = {x | |x−B| ≤ δ}.
(4) If S ⊂ E\F is a 2n dimensional invariant sphere,

i(S) = n.

Let Gm denote the class of mapping h ∈ C(Dm,E) which satisfy the
following properties
(1) h is equivariant
(2) h(u) = u for all u ∈ (∂BRm ∩ Vm) ∪ F .
(3) Ph(u) = α(u)Pu + Ψ(u) where Ψ is compact and α ∈ C(Dm, [1, α]),
α depending on h.
Let

Γj = {h(Dm \ Y ) | m ≥ j, h ∈ Gm, Y ∈ εandi(Y ) ≤ m− j}, (4.1)

cj = inf
B∈Γj

sup
u∈B

I(u), (4.2)

bj = inf
B∈Γj

sup
u∈B

J(u). (4.3)

As in [13] we have the following lemma.

Lemma 4.1. bj is a critical value of J ,

bj − a2‖a‖∞πT ≤ cj, (4.4)

if cj ≥ δ, then cj is a critical value of I, (4.5)

where δ is defined as in [13], i.e.,

δ = sup
E0

(
a4

∫

Ω

a+(x, t) +
c

p + 1

∫

Ω

a−(x, t)|u|p+1

)
,

where c = max{a1, a2} > 0 and E0 is the null space of A.

Proof of Theorem 1.2(2)

We note that

bj ≥ sup
ρ

(
inf

u∈V ⊥j−1

J(ρu)

)
. (4.6)

If u ∈ V ⊥
j−1, by (3.2), there exists εj with

lim
j→∞

εj = 0.
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such that ‖u‖p+1 ≤ εj‖u‖.
If u ∈ V ⊥

j−i and ‖u‖ = 1, by (g3), (g4),

J(ρu) ≥ ρ2

2
− εp+1

j

a1

p + 1
ρp+1‖a‖∞. (4.7)

Thus if j →∞, then J(ρu) ≥ ρ2

2
. Using (4.6) we have

lim
j→∞

bj = ∞. (4.8)

Using (4.8), (4.4), and (4.5) we see that for j large enough cj is a critical
value of I and

lim
j→∞

cj = +∞. (4.9)

Note that A1u = a(x, t)g(u) and max
x∈[0,π]
t∈[0,T ]

|u(x, t)| ≤ K imply

I(u) ≤
(

max
|s|<K

1

2
sg(s)− min

|s|<K
G(s)

) ∫

Ω

a+(x, t)dx dt.

We conclude the proof using (4.9).
Acknowledgement: The authors appreciate very much the referee

for his kind corrections and suggestions.

References

[1] Amann, H., Zeh Zehnder, E., Multiple periodic solutions for a class of
nonlinear-autonomous wave equations, Houston J. Math. 7, 147-174(1981).

[2] Ambrosetti, A., Rab Rabinowitz,P.H., Dual variational methods in critical
point theory and appplication, J. funct. Analysis 14, 349-381(1973).

[3] Benci, V., Rabn Rabinowitz, P.H., Critical point theorems for indefinite func-
tionals, Inventions Math. 52, 241-273(1979).

[4] Brezis, H., Cor Coron, J.M., Periodic solutions of nonlinear wave equations
and Hamiltonian systems, Am. J. Math. 103, 559-570(1981).

[5] Brezis, H., Nir Nirenberg, L., Forced vibrations for a nonlinear wave equation,
Comm. Pure Apple. Math. 31, 1-30(1978).

[6] Brezis, H., Nir Nirenberg, L., Characterizations of the ranges of some nonlinear
operators and applications to boundary value problems, Ann. Scuola Norm.
Sup. Pisa 5, 225-326(1978).

[7] Choi, Q.H., Jts Jung, T., An application of a variational reduction method to
a nonlinear wave equation, J. Differential Equations 7, 390-410(1995).

[8] Dunford, N., Sch Schwartz, J. T., Linear operators, Vol. 1. New York: Inter-
science 1964.



Sign changing periodic solutions of a nonlinear wave equation 257

[9] Fadell, E.R., Rabino Rabinowitz, P.H., Generalized cohomological index the-
ories for the group actions with an application to bifurcation questions for
Hamiltonian systems. Invent. Math. 45, 139-174(1978).

[10] Jung, T. S., Cqh Choi, Q. H., Multiplicity results on a nonlinear biharmonic
equation, Nonlinear Analysis, Theory, Methods Applications, 30, No.8, 5083-
5092(1997).

[11] Rabinowitz, P.H., Free vibrations for a semilinear wave equation, Comm. Pure.
Appl. Math. 31, 31-68(1968).

[12] Rabinowitz, P. H., Periodic solutions of large norm of Hamiltonian systems,
J. Differential Equations 50, 33-48(1983).

[13] Schwartz, J. T., Nonlinear functional analysis, Gordon and Breach, New York,
1969.

Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail : tsjung@kunsan.ac.kr

Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail : qheung@inha.ac.kr


