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THE NON-EXISTENCE AND EXISTENCE OF POSITIVE

SOLUTION TO THE COOPERATION MODEL WITH

GENERAL COOPERATION RATES

Joon Hyuk Kang and Jungho Lee∗

Abstract. The non-existence and existence of the positive solution
for the generalized cooperation biological model for two species of
animals

∆u + u(a− bu + g(v)) = 0 in Ω
∆v + v(d + h(u)− cv) = 0 in Ω
u = v = 0 on ∂Ω,

are investigated. The techniques used in this paper are elliptic the-
ory, upper-lower solutions, maximum principles and spectrum esti-
mates. The arguments also rely on some detailed properties for the
solution of logistic equations.

1. Introduction

A lot of research has been focused on reaction-diffusion equations
modeling of the elliptic steady states of cooperative interacting processes
with Dirichlet boundary conditions. Our knowledge about the existence
of positive solutions is limited to somewhat rather special systems, whose
relative growth rates are linear; the results established are only for the
following cooperation models(see [1],[2],[3],[4],[5].)

∆u + u(a− bu + cv) = 0 in Ω
∆v + v(d + eu− fv) = 0 in Ω
u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, a, d > 0
are reproduction rates, b, f > 0 are self-limitation rates and c, e > 0 are
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cooperation rates.
The question in this paper concerns the existence of positive coexistence
when the cooperation growth rates are nonlinear, more precisely, the
existence of the positive steady

state of
∆u + u(a− bu + g(v)) = 0 in Ω
∆v + v(d + h(u)− cv) = 0 in Ω
u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, b, c are
positive constants, g, h ∈ C1 are strictly increasing, and g(0) = h(0) = 0.
In section 3, we will see when they can not coexist, that is, some suffi-
cient conditions that either one of the species is excluded by the other
using a Maximum Principles and spectrum theory. In section 4, we pro-
vide the coexistence region of the reproduction rates (a, d) by virtue of
Maximum Principles, upper-lower solutions method and the properties
of the logistic equation.

2. Preliminaries

In this section, we state some preliminary results which will be useful
for our later arguments.

Definition 2.1. (upper and lower solutions)

(1)

{
∆u + f(x, u) = 0 in Ω,
u|∂Ω = 0

where f ∈ Cα(Ω̄×R) and Ω is a bounded domain in Rn.
(A) A function ū ∈ C2,α(Ω̄) satisfying

{
∆ū + f(x, ū) ≤ 0 in Ω,
ū|∂Ω ≥ 0

is called an upper solution to (1).
(B) A function u ∈ C2,α(Ω̄) satisfying

{
∆u + f(x, u) ≥ 0 in Ω,
u|∂Ω ≤ 0

is called a lower solution to (1).
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Lemma 2.1. Let f(x, ξ) ∈ Cα(Ω̄×R) and let ū, u ∈ C2,α(Ω̄) be respec-
tively, upper and lower solutions to (1) which satisfy u(x) ≤ ū(x), x ∈ Ω̄.
Then (1) has a solution u ∈ C2,α(Ω̄) with u(x) ≤ u(x) ≤ ū(x), x ∈ Ω̄.

Lemma 2.2. (The first eigenvalue)

(2)

{ −∆u + q(x)u = λu in Ω,
u|∂Ω = 0,

where q(x) is a smooth function from Ω to R and Ω is a bounded domain
in Rn.
(A) The first eigenvalue λ1(q), denoted by simply λ1 when q ≡ 0, is
simple with a positive eigenfunction.
(B) If q1(x) < q2(x) for all x ∈ Ω, then λ1(q1) < λ1(q2).
(C)(Variational Characterization of the first eigenvalue)

λ1(q) = min
φ∈W 1

0 (Ω),φ 6=0

∫
Ω
(|∇φ|2 + qφ2)dx∫

Ω
φ2dx

.

(D) If a(x) ∈ C(Ω̄), a(x) > 0(x ∈ Ω) and α ∈ R, then

lim
α→+∞

λ1(αa(x)) = +∞.

Lemma 2.3. If a(x) ∈ Cα(Ω̄) for some α ∈ (0, 1) and λ1(−∆+a(x)) >
0, w ∈ C2(Ω̄) and satisfies{ −∆w + a(x)w ≥ 0 in Ω

w = 0 on ∂Ω.

Then w ≥ 0 in Ω.

Lemma 2.4. (Maximum Principles)

Lu =
n∑

i,j=1

aij(x)Diju +
n∑

i=1

ai(x)Diu + a(x)u = f(x) in Ω,

where Ω is a bounded domain in Rn.
(M1) ∂Ω ∈ C2,α(0 < α < 1)
(M2) |aij(x)|α, |ai(x)|α, |a(x)|α ≤ M(i, j = 1, ..., n)
(M3) L is uniformly elliptic in Ω̄, with ellipticity constant γ, i.e., for
every x ∈ Ω̄ and every real vector ξ = (ξ1, ..., ξn)

n∑
i,j=1

aij(x)ξiξj ≥ γ

n∑
i=1

|ξi|2.
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Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of Lu ≥ 0(Lu ≤ 0) in Ω.
(A) If a(x) ≡ 0, then maxΩ̄ u = max∂Ω u(minΩ̄ u = min∂Ω u).
(B) If a(x) ≤ 0, then maxΩ̄ u ≤ max∂Ω u+(minΩ̄ u ≥ −max∂Ω u−),
where u+ = max(u, 0), u− = −min(u, 0).
(C) If a(x) ≡ 0 and u attains its maximum (minimum) at an interior
point of Ω, then u is identically a constant in Ω.
(D) If a(x) ≤ 0 and u attains a nonnegative maximum (nonpositive
minimum) at an interior point of Ω, then u is identically a constant in
Ω.

We also need some information on the solutions of the following lo-
gistic equations.

Lemma 2.5. {
∆u + uf(u) = 0 in Ω,
u|∂Ω = 0, u > 0,

where f is a decreasing C1 function such that there exists c0 > 0 such
that f(u) ≤ 0 for u ≥ c0 and Ω is a bounded domain in Rn.
If f(0) > λ1, then the above equation has a unique positive solution,
where λ1 is the first eigenvalue of −∆ with homogeneous boundary con-
dition. We denote this unique positive solution as θf .

The main property about this positive solution is that θf is increasing
as f is increasing.

Especially, for a > λ1, we denote θa as the unique positive solution of{
∆u + u(a− u) = 0 in Ω,
u|∂Ω = 0, u > 0.

Hence, θa is increasing as a > 0 is increasing.

3. Nonexistence of steady state

We consider

(3)
∆u + u(a− bu + g(v)) = 0 in Ω
∆v + v(d + h(u)− cv) = 0 in Ω
u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, b, c are
positive constants, g, h ∈ C1 are strictly increasing, and g(0) = h(0) = 0.
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By virtue of Lemma 2.3, we have the following estimates of solutions to
(3).

Lemma 3.1. Let (u, v) be a solution of (3).

(1) If a ≥ d, 0 < b ≤ 1, c ≥ 1, then [sup(h′) + 1]u ≥ [inf(g′) + 1]v.
(2) If a ≤ d, 0 < c ≤ 1, b ≥ 1, then [inf(h′) + 1]u ≤ [sup(g′) + 1]v.

Proof. (1) Let w = [sup(h′) + 1]u− [inf(g′) + 1]v. By the mean value
theorem and the fact g(0) = h(0) = 0, we have

sup(h′)u ≥ h(u), inf(g′)v ≤ g(v).

Hence,

−∆w + (−d + bu + cv)w
= −[sup(h′) + 1]∆u + [inf(g′) + 1]∆v + (−d + bu + cv)[sup(h′) + 1]u

−(−d + bu + cv)[inf(g′) + 1]v
= [sup(h′) + 1]au + [sup(h′) + 1]ug(v)− [inf(g′) + 1]dv − [inf(g′) + 1]vh(u)

−[sup(h′) + 1]du + [sup(h′) + 1]cuv + [inf(g′) + 1]dv − [inf(g′) + 1]buv
≥ h(u)g(v) + ug(v)− g(v)h(u)− vh(u) + cvh(u)− bug(v) + cuv − buv
= ug(v)(1− b)− vh(u)(1− c) + (c− b)uv
≥ 0.

Since (u, v) is a positive solution of (3), from the monotonicity of the
first eigenvalue,

λ1(−∆− d + bu + cv) > λ1(−∆− d− h(u) + cv) = 0.

Hence, 2.3 implies w ≥ 0 and we get the desired result.

(2) Let w = [sup(g′) + 1]v − [inf(h′) + 1]u. By the mean value theorem
and the fact g(0) = h(0) = 0, we have

inf(h′)u ≤ h(u), sup(g′)v ≥ g(v).
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Hence,

−∆w + (−a + bu + cv)w
= −[sup(g′) + 1]∆v + [inf(h′) + 1]∆u + (−a + bu + cv)[sup(g′) + 1]v

−(−a + bu + cv)[inf(h′) + 1]u
= [sup(g′) + 1]dv + [sup(g′) + 1]vh(u)− [inf(h′) + 1]au− [inf(h′) + 1]ug(v)

−[sup(g′) + 1]av + [sup(g′) + 1]buv + [inf(h′) + 1]au− [inf(h′) + 1]cuv
≥ g(v)h(u) + vh(u)− h(u)g(v)− ug(v) + g(v)bu− h(u)cv + buv − cuv
= vh(u)(1− c)− ug(v)(1− b) + (b− c)uv
≥ 0.

Since (u, v) is a positive solution of (3), from the monotonicity of the
first eigenvalue,

λ1(−∆− a + bu + cv) > λ1(−∆− a + bu− g(v)) = 0.

Hence, the Lemma 2.3 implies w ≥ 0 and we get the desired result.

Now, we have the following nonexistence results.

Theorem 3.2. Let a, d > λ1.
(i) If a ≥ d, 0 < b ≤ 1, c ≥ 1 and inf(h′) inf(g′) + inf(h′)− c sup(h′) ≥ c,
then (3) has no positive solution.
(ii) If a ≤ d, 0 < c ≤ 1, b ≥ 1 and inf(g′) inf(h′) + inf(g′)− b sup(g′) ≥ b,
then (3) has no positive solution.

Proof. (i) From (1) of Lemma 3.1, we have [sup(h′)+1]u ≥ [inf(g′)+
1]v. Hence, by the mean value theorem and the assumption,

0 = ∆v + v(d + h(u)− cv)

≥ ∆v + v(d + inf(h′)u− c[sup(h′)+1]u
inf(g′)+1

)

= ∆v + v(d + [inf(h′) inf(g′)+inf(h′)−c sup(h′)−c]u
inf(g′)+1

)

≥ ∆v + dv.

By multiplying φ1 to the both sides, we have

(d− λ1)

∫

Ω

vφ1 =

∫

Ω

φ1(∆v + dv) ≤ 0.

Hence d ≤ λ1, which is a contradiction to our assumption.

(ii) From (2) of Lemma 3.1, we have [inf(h′) + 1]u ≤ [sup(g′) + 1]v.
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Hence, by the mean value theorem and the assumption,

0 = ∆u + u(a + g(v)− bu)

≥ ∆u + u(a + inf(g′)v − b[sup(g′)+1]v
inf(h′)+1

)

= ∆u + u(a + [inf(g′) inf(h′)+inf(g′)−b sup(g′)−b]v
inf(h′)+1

)

≥ ∆u + au.

By multiplying φ1 to the both sides, we have

(a− λ1)

∫

Ω

uφ1 =

∫

Ω

φ1(∆u + au) ≤ 0.

Hence a ≤ λ1, which is a contradiction to our assumption.

4. Existence region for steady state

We consider

(4)
∆u + u(a− bu + g(v)) = 0 in Ω
∆v + v(d + h(u)− cv) = 0 in Ω
u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, b, c are
positive constants, g, h ∈ C1 are strictly increasing, g(0) = h(0) = 0,
and bc > sup(g′) sup(h′).

First, we see that the two species can not coexist when the reproduction
capacities are not strong enough.

Theorem 4.1. Suppose a ≤ λ1, d ≤ λ1.
Then u = v ≡ 0 is the only nonnegative solution to (4).

Proof. Let (u, v) be a nonnegative solution to (4). By the Mean Value
Theorem, there are ũ, ṽ such that

g(v) = g(v)− g(0) = g′(ṽ)v
h(u) = h(u)− h(0) = h′(ũ)u.

Hence, (4) implies that

∆u + u(a− bu + g′(ṽ)v) = 0 in Ω,
∆v + v(d− cv + h′(ũ)u) = 0 in Ω.
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Hence,
∆u + u(a− bu + sup(g′)v) ≥ 0 in Ω,
∆v + v(d− cv + sup(h′)u) ≥ 0 in Ω.

Therefore,

sup(h′)φ1∆u + sup(h′)φ1u(a− bu + sup(g′)v) ≥ 0 in Ω,
sup(g′)φ1∆v + sup(g′)φ1v(d− cv + sup(h′)u) ≥ 0 in Ω.

So,∫
Ω
− sup(h′)φ1∆udx ≤ ∫

Ω
[−b sup(h′)u2 + sup(g′) sup(h′)uv + a sup(h′)u]φ1dx,∫

Ω
− sup(g′)φ1∆vdx ≤ ∫

Ω
[−c sup(g′)v2 + sup(g′) sup(h′)uv + d sup(g′)v]φ1dx.

Hence, by the Green’s Identity, we have∫
Ω

sup(h′)λ1φ1udx ≤ ∫
Ω
[−b sup(h′)u2 + sup(g′) sup(h′)uv + a sup(h′)u]φ1dx,∫

Ω
sup(g′)λ1φ1vdx ≤ ∫

Ω
[−c sup(g′)v2 + sup(g′) sup(h′)uv + d sup(g′)v]φ1dx.

Therefore,∫
Ω

sup(h′)(λ1 − a)uφ1 + sup(g′)(λ1 − d)vφ1dx
≤ ∫

Ω
[−b sup(h′)u2 + 2 sup(g′) sup(h′)uv − c sup(g′)v2]φ1dx.

Since the left hand side is nonnegative and the integrand of the right
hand side is negative definite by the assumptions, we conclude that u =
v ≡ 0.

In order to prove the main existence results, we will need the following
Lemmas.

Lemma 4.2. If u > 0, v > 0 is a solution to (4), then the system of
equations

(5)
−bu + sup(g′)v + a = 0
sup(h′)u− cv + d = 0

has a unique positive solution (u∗, v∗) and u ≤ u∗, v ≤ v∗ in Ω̄.

Proof. Let u > 0, v > 0 in Ω be a solution to (4) and K1 =
maxΩ̄u(x) > 0, K2 = maxΩ̄v(x) are occurred at x1 ∈ Ω, x2 ∈ Ω, re-
spectively.
We claim
(6)

0 ≤ K1(−bu(x1) + sup(g′)v(x1) + a) ≤ K1(−bK1 + sup(g′)K2 + a)
0 ≤ K2(sup(h′)u(x2)− cv(x2) + d) ≤ K2(sup(h′)K1 − cK2 + d)
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In fact, suppose −bu(x1) + sup(g′)v(x1) + a < 0. Then since ∆u(x1) +
u(x1)(−bu(x1) + sup(g′)v(x1) + a) ≥ 0 by (4) and the Mean Value The-
orem, ∆u(x1) > 0, which contradicts to the Maximum Principles.
Since bc > sup(g′) sup(h′), the system (5) has a unique positive solution

u∗ = 1
bc−sup(g′) sup(h′)(ac + d sup(g′))

v∗ = 1
bc−sup(g′) sup(h′)(a sup(h′) + bd),

and by (6)

u ≤ K1 ≤ u∗, v ≤ K2 ≤ v∗.

Lemma 4.3. For any M0 > 0, there are constants M1,M2 > M0 such
that ū = M1, v̄ = M2 is an upper solution to (4).

Proof. Since bc > sup(g′) sup(h′), there are M1,M2 > M0 such that

∆M1 + M1(a− bM1 + g(M2)) ≤ M1(a− bM1 + sup(g′)M2) ≤ 0
∆M2 + M2(d + h(M1)− cM2) ≤ M2(d + sup(h′)M1 − cM2) ≤ 0.

Thus ū = M1, v̄ = M2 is an upper solution to (4).

Then we prove the main existence results.

Theorem 4.4. Let a > λ1[d > λ1]. Then there is a number M(a) <
λ1[N(d) < λ1] such that for any d > M(a)[a > N(d)], (4) has a positive
solution in Ω.

Proof. Suppose a > λ1. Let u = ωa
b

be the unique positive solution
to

∆u + u(a− bu) = 0 in Ω
u = 0 on ∂Ω.

Let M(a) = λ1(−h(ωa
b
)) be the smallest eigenvalue of

−∆Z − h(ωa
b
)Z = µZ in Ω
Z = 0 on ∂Ω.

and ω0(x) be the corresponding normalized positive eigenfunction.
By the monotonicity, M(a) = λ1(−h(ωa

b
)) < λ1.

Let v = εω0(x). Let d > M(a). Then, for sufficiently small ε > 0,

∆u + u(a− bu + g(v))
= ∆(ωa

b
) + ωa

b
(a− bωa

b
+ g(εω0(x)))

= ωa
b
g(εω0(x)) > 0 in Ω
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and
∆v + v(d + h(u)− cv))

= ∆(εω0) + εω0(d + h(ωa
b
)− cεω0(x))

= −εM(a)ω0 + dεω0(x)− cε2ω2
0

= εω0(d−M(a))− cε2ω2
0

> 0 in Ω.

So, u > 0, v > 0 is a lower solution to (4). But, by the Lemma 4.3,
there is an upper solution M1 > u,M2 > v of (4). Therefore, there is a
positive solution of (4).

Theorem 4.5. Let a ≤ λ1[d ≤ λ1]. Then there is a number M(a) >
λ1[N(d) > λ1] such that for any d > M(a)[a > N(d)], (4) has a positive
solution in Ω.

Proof. Suppose a ≤ λ1. Let d > λ1 and ω d
c

be the unique positive

solution to
∆v + v(d− cv) = 0 in Ω

v = 0 on ∂Ω.

Since

lim
d→∞

λ1(−g(ω d
c
)) ≤ lim

d→∞
λ1(− inf(g′)ω d

c
) ≤ lim

d→∞
λ1(− inf(g′)

d− λ1

c
φ0) = −∞,

there is a number M(a) ≥ λ1 such that λ1(−g(ω d
c
)) < a if d > M(a).

Let u = εω0 and v = ω d
c
, where ω0 is the normalized positive eigenfunc-

tion corresponding to λ1(−g(ω d
c
)).

Then if d > M(a), for sufficiently small ε > 0,

∆u + u(a− bu + g(v))
= ∆(εω0) + εω0(a− bεω0 + g(ω d

c
))

= −λ1(−g(ω d
c
))εω0 + aεω0 − bε2ω2

0

> 0 in Ω

and
∆v + v(d + h(u)− cv)

= vh(u) > 0 in Ω.

So, u, v is a lower solution to (4). Hence, by the Lemma 4.3, if d > M(a),
there is a positive solution to (4).

Theorem 4.6. If a < −d sup(g′)
c

, then (4) does not have any positive
solution.
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Proof. Since a < −d sup(g′)
c

, (5) does not have any positive solution,
and so by the Lemma 4.2, (4) does not have any positive solution.

The main assumption in this section is bc > sup(g′) sup(h′) which in-
dicates that the two species have stronger self-limitation abilities than
cooperation ones. The above results imply that they must have strong
enough reproduction capacities in order to survive peacefully under this
weak cooperation abilities.
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