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SOME RESULTS OF R-GROUP STRUCTURES

Yong Uk Cho

Abstract. In this paper, we initiate a study of faithful R-group G
and some substructures of R and G. Next, we investigate a faithful
representation of near-ring R and some properties of monogenic R-
groups.

1. Introduction

A (left) near-ring R is an algebraic system (R, +, ·) with two binary
operations, say + and · such that (R, +) is a group (not necessarily
abelian) with neutral element 0, (R, ·) is a semigroup and a(b + c) =
ab + ac for all a, b, c in R. If R has a unity 1, then R is called unitary.
An element d in R is called distributive if (a + b)d = ad + bd for all a
and b in R.

An ideal of R is a subset I of R such that (i) (I, +) is a normal
subgroup of (R, +), (ii) a(I + b) − ab ⊂ I for all a, b ∈ R, (iii)
(I + a)b − ab ⊂ I for all a, b ∈ R. If I satisfies (i) and (ii) then it is
called a left ideal of R. If I satisfies (i) and (iii) then it is called a right
ideal of R.

On the other hand, an R-subgroup of R is a subset H of R such that
(i) (H, +) is a subgroup of (R, +), (ii) RH ⊂ H and (iii) HR ⊂ H.
If H satisfies (i) and (ii) then it is called a left R-subgroup of R. If H
satisfies (i) and (iii) then it is called a right R-subgroup of R. In case,
(H, +) is normal in above, we say that normal R-subgroup, normal
left R-subgroup and normal right R-subgroup instead of R-subgroup,
left R-subgroup and right R-subgroup, respectively.

We consider the following notations: Given a near-ring R, R0 = {a ∈
R | 0a = 0} is called the zero symmetric part of R, Rc = {a ∈ R | 0a =
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a} is called the constant part of R, and Rd = {a ∈ R | a is distributive}
is called the distributive part of R.

We note that R0 and Rc are subnear-rings of R, but Rd is not a
subnear-ring of R. A near-ring R with the extra axiom 0a = 0 for
all a ∈ R, that is, R = R0 is said to be zero symmetric, also, in case
R = Rc, R is called a constant near-ring, and in case R = Rd, R is
called a distributive near-ring.

Let (G, +) be a group (not necessarily abelian). In the set

M(G) = {f | f : G −→ G}

of all the self maps of G, if we define the sum f +g of any two mappings
f, g in M(G) by the rule x(f + g) = xf + xg for all x ∈ G and the
product f ·g by the rule x(f ·g) = (xf)g for all x ∈ G, then (M(G), +, ·)
becomes a near-ring. It is called the self map near-ring of the group
G. Also, if we define the set

M0(G) = {f ∈ M(G) | 0f = 0},

then (M0(G), +, ·) is a zero symmetric near-ring.
Let R and S be two near-rings. Then a mapping θ from R to

S is called a near-ring homomorphism if (i) (a + b)θ = aθ + bθ, (ii)
(ab)θ = aθbθ. We can replace homomorphism by momomorphism, epi-
morphism, isomorphism, endomorphism and automorphism, if these
terms have their usual meanings as for ring theory([1]).

Let R be any near-ring and G an additive group. Then G is called
an R-group if there exists a near-ring homomorphism

θ : (R, +, ·) −→ (M(G), +, ·).

Such a homomorphism θ is called a representation of R on G, we write
that xr (right scalar multiplication in R) for x(rθ) for all x ∈ G and
r ∈ R. If R is unitary, then R-group G is called unitary. Thus an
R-group is an additive group G satisfying (i) x(a + b) = xa + xb, (ii)
x(ab) = (xa)b and (iii) x1 = x ( If R has a unity 1 ), for all x ∈ G
and a, b ∈ R. Evidently, every near-ring R can be given the structure
of an R-group (unitary if R is unitary) by right multiplication in R.
Moreover, every group G has a natural M(G)-group structure, from
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the representation of M(G) on G given by applying the f ∈ M(G) to
the x ∈ G as a scalar multiplication xf .

A representation θ of R on G is called faithful if Kerθ = {0}. In
this case, we say that G is called a faithful R-group.

For an R-group G, a subgroup T of G such that TR ⊂ T is called
an R-subgroup of G, a normal subgroup N of G such that NR ⊂ N
is called a normal R-subgroup of G and an R-ideal of G is a normal
subgroup N of G such that (N + x)a− xa ⊂ N for all x ∈ G, a ∈ R.
Also, note that normal R-subgroups of G are not equivalent to an
R-ideals of R.

Let R be a near-ring and let G be an R-group. If there exists x in
G such that G = xR, that is, G = {xr | r ∈ R}, then G is called a
monogenic R-group and the element x is called a generator of G, more
specially, if G is monogenic and for each x ∈ G, xR = 0 or xR = G,
then G is called a strongly monogenic R-group. It is clearly proved that
G 6= 0 if and only if GR 6= 0 for any monogenic or strongly monogenic
R-group G. For the remainder concepts and results on near-rings, we
refer to [6].

2. Some Properties of monogenic R-Groups

A near-ring R is called distributively generated (briefly, d.g.) if it
contains a subsemigroup S of (Rd, ·) which generates the additive group
(R, +), we denote it by (R, S).

On the other hand, the set of all distributive elements of M(G) are
obviously the semigroup End(G) of all endomorphisms of the group G
under composition. Here we denote that E(G) is the d.g. near-ring gen-
erated by End(G), that is, E(G) is d.g. subnear-ring of (M0(G), +, ·)
generated by End(G). It is said to be that E(G) is the endomorphism
near-ring of the group G.

Let (R, S) and (T,U) be d.g. near-rings. Then a near-ring homo-
morphism

θ : (R, S) −→ (T, U)

is called a d.g. near-ring homomorphism if Sθ ⊆ U . Note that a semi-
group homomorphism θ : S −→ U is a d.g. near-ring homomorphism
if it is a group homomorphism from (R, +) to (T, +) (C.G. Lyons and
J.D.P. Meldrum [3], [4]).
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Example 2.1. If R is a distributive near-ring with unity 1, then R
is a ring. Furthermore, if R is a distributive near-ring with unity 1,
then every (R,R)-group is a unitary R-module.

Proof. Let G be an (R, R)-group. Since G is unitary, x(1+1) = x+x,
for all x ∈ G. Thus we have that

x + y + x + y = (x + y)(1 + 1) = x(1 + 1) + y(1 + 1) = x + x + y + y,

for all x, y ∈ G. This implies that (G, +) is abelian. Since R = S, the
set of all distributive elements, (x + y)r = xr + yr, for all x, y ∈ G and
all r ∈ R. Hence G becomes a unitary R-module. ¤

Lemma 2.2 ([5]). Let (R, S) be a d.g. near-ring. Then all R-
subgroups and all R-homomorphic images of a (R,S)-group are also
(R, S)-groups.

Now, we consider that the substructures of R and G, also quotients
of substructure relations between them.

Let G be an R-group and K, K1 and K2 be subsets of G. Define

(K1 : K2) := {a ∈ R; K2a ⊂ K1}.

We abbreviate that for x ∈ G

({x} : K2) =: (x : K2).

Similarly for (K1 : x). (0 : K) is called the annihilator of K, denoted
it by A(K). We say that G is a faithful R-group or that R acts faithfully
on G if A(G) = {0}, that is, (0 : G) = {0}.

A subgroup H of G such that xa ∈ H for all x ∈ H, a ∈ R, is an
R-subgroup of G, and an R-ideal of G is a normal subgroup N of G
such that

(x + g)a− ga ∈ N

for all g ∈ G, x ∈ N and a ∈ R (J.D.P. Meldrum [6]).

Lemma 2.3. Let G be an R-group and K1 and K2 subsets of G.
Then

(1) If K1 is a normal R-subgroup of G, then (K1 : K2) is a normal
right R- subgroup of the near-ring R.
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(2) If K1 is an R-subgroup of G, then (K1 : K2) is a right R-
subgroup.

(3) If K1 is an R-ideal of G and K2 is an R-subgroup of G, then
(K1 : K2) is a two-sided ideal of R.

Proof. (1) and (2) are proved by J.D.P. Meldrum [6]. Now, we
will prove only (3) : Using the condition (1), (K1 : K2) is a normal
subgroup of R. Let a ∈ (K1 : K2) and r ∈ R. Then

K2(ra) = (K2r)a ⊂ K2a ⊂ K1,

so that ra ∈ (K1 : K2). Whence (K1 : K2) is a left ideal of R.
Next, let r1, r2 ∈ R and a ∈ (K1 : K2). Then

k{(a + r1)r2 − r1r2} = (ka + kr1)r2 − kr1r2 ∈ K1

for all k ∈ K2, since K2a ⊂ K1 and K1 is an ideal of G. Thus (K1 : K2)
is a right ideal of R. Therefore (K1 : K2) is a two-sided ideal of R. ¤

Corollary 2.4 ([6]). Let R be a near-ring and G an R-group.
Then

(1) For any x ∈ G, (0 : x) is a right ideal of R.
(2) For any R-subgroup K of G, (0 : K) is a two-sided ideal of R.
(3) For any subset K of G, (0 : K) =

⋂
x∈K(0 : x).

Proposition 2.5. Let R be a near-ring and G an R-group. Then

(1) A(G) is a two-sided ideal of R. Moreover G is a faithful R/A(G)-
group.

(2) For any x ∈ G, we get xR ∼= R/(0 : x) as R-groups.

Proof. (1) By Corollary 2.4 and Lemma 2.3, A(G) is a two-sided
ideal of R. We now make G an R/A(G)-group by defining, for r ∈
R, r + A(G) ∈ R/A(G), the action x(r + A(G)) = xr. If r + A(G) =
r′ + A(G), then −r′ + r ∈ A(G) hence x(−r′ + r) = 0 for all x in G,
that is to say, xr = xr′. This tells us that

x(r + A(G)) = xr = xr′ = x(r′ + A(G));
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thus the action of R/A(G) on G has been shown to be well defined. The
verification of the structure of an R/A(G)-group is a routine triviality.
Finally, to see that G is a faithful R/A(G)-group, we note that if x(r+
A(G)) = 0 for all x ∈ G, then by the definition of R/A(G)-group
structure, we have xr = 0. Hence r ∈ A(G). This says that only the
zero element of R/A(G) annihilates all of G. Thus G is a faithful
R/A(G)-group.
(2) For any x ∈ G, clearly xR is an R-subgroup of G. The map φ :
R −→ xR defined by φ(r) = xr is an R-ephimorphism, so that from
the isomorphism theorem, since the kernel of φ is (0 : x), we deduce
that

xR ∼= R/(0 : x)

as R-groups. ¤

Corollary 2.6. Let G be a monogenic R-group with x as a gen-
erator. Then we have the following isomorphic relation.

G ∼= R/(0 : x).

Proposition 2.7. If R is a near-ring and G an R-group, then
R/A(G) is isomorphic to a subnear-ring of M(G).

Proof. Let a ∈ R. We define τa : G −→ G by xτa = xa for each
x ∈ G. Then τa is in M(G). Consider the mapping φ : R −→ M(G)
defined by φ(a) = τa. Then obviously, we see that

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b),

that is, φ is a near-ring homomorphism from R to M(G).
Next, we must show that Kerφ = A(G). Indeed, if a ∈ Kerφ, then

τa = 0, which implies that Ga = Gτa = 0, that is, a ∈ A(G). On
the other hand, if a ∈ A(G), then by the definition of A(G), Ga = 0
hence 0 = τa = φ(a), this implies that a ∈ Kerφ. Therefore from the
first isomorphism theorem on R− groups, the image of R is a near-
ring isomorphic to R/A(G). Consequently, R/A(G) is isomorphic to a
subnear-ring of M(G). ¤

Thus we can obtain the following important statement as in ring
theory.



Some results of R-group structures 277

Corollary 2.8. If G is a faithful R-group, then R is embedded in
M(G).

Corollary 2.9. If (R,S) is a d.g. near-ring, then every monogenic
R-group is an (R,S)-group.

Proof. Let G be a monogenic R-group with x as a generator. Then
the map φ : r 7→ xr is an R-epimorphism from R to G as R-groups.
We see that by the Corollary 2.6,

G ∼= R/A(x),

where A(x) = (0 : x) = Kerφ. From the Lemma 2.2, we see that G is
an (R, S)-group. ¤

Now, we get the following useful results of monogenic R-groups to
make primitive near-rings.

Proposition 2.10. Let G be a monogenic R-group with generator
x. Then

(1) For any right ideal I of R, xI is an R-ideal of G.
(2) If I is a left R-subgroup of R and xI is an R-ideal of G, then

I is an ideal of R.
(3) If e is a right identity of R and if G is a faithful R-group, then

e is a two-sided identity of R.

Proof. (1) Let a ∈ G. Then there exists t ∈ R such that a = xt.
Thus for each xy ∈ xI, r ∈ R, and a ∈ G,

(a + xy)r − ar = (xt + xy)r − (xt)r = x(t + y)r − x(tr)

= x{(t + y)r − tr} ∈ xI

By using similar method, it can be easily shown that xI is an additive
normal subgroup of G. Therefore xI is an R-ideal of G.
(2) For any y ∈ I and a, b ∈ R, we obtain the following equality:

x{(y + a)b− ab} = x(y + a)b− x(ab) = (xy + xa)b− (xa)b) ∈ xI
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Hence (y+a)b−ab ∈ xI. Similarly, we can show that I is an additive
normal subgroup of R. Consequently, I is an ideal of R.
(3) First, let e be a right identity of R and g = xt be any element in
G. Then we have the relation that

ge = (xt)e = x(te) = xt = g

Next, let r be any element of R and g be an arbitrary element in G.
Then one gets the following equality that

g(er − r) = g(er) + g(−r) = (ge)r − gr = gr − gr = 0

Thus (er − r) ∈ (0 : G) = A(G).
Since G is faithful, it implies that er−r = 0, that is, er = r. Hence

e is a two-sided identity of R. ¤

We note that, in the above Proposition 2.10 (2), if R satisfies DCCN
and G satisfies DCCI, then R satisfies DCCI.

Lemma 2.11 (Wielandt and Betsch [2]). If R is a zero sym-
metric near-ring and A, B, K are R-ideals of an R-group G, then

(1) We get an additive abelian group:

G′ = [(A + K) ∩ (B + K)]/[(A ∩B) + K]

and for any x, y ∈ G′, and r ∈ R, we have (x + y)r = xr + yr.
(2) We obtain a quotient ring R/(0 : G′).

Proposition 2.12. Let G be a faithful monogenic R-group with
generator x, where R is a zero symmetric near-ring. If I and J are
right ideals of R and I ∩ J ⊆ (0 : x), then R is a ring.

Proof. From the Proposition 2.5 (2), we have that

G = xR ∼= R/(0 : x) = [(I +(0 : x)∩J +(0 : x)]/[(I ∩J)+(0 : x)] = G′

On the other hand, since G is faithful, by the definition, we see that
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(0 : G′) ∼= (0 : G) = A(G) = 0
Consequently, Lemma 2.11 implies that R is a ring. ¤

For an R-group G, we have the following:
F or any x in G, xR is an R-subgroup of G.
F or any R-subgroup A of G, we have that 0R = 0Rc ⊆ A, where 0 is

the additive identity of G.
0R is the smallest R-subgroup of G under all R-subgroups of G, So

throughout this paper, we will write that

0R = 0Rc =: Ω.

We note that if R is zero symmetric, then Ω = 0, and Ω = xRc for
all x ∈ G.

Also, we can define the following concepts: An R-group G is called
simple if G has no non-trivial ideal, that is, G has no ideals except o
and G. Similarly, we can define simple near-ring as in the case of ring.
Also, R-group G is called R-simple if G has no R-subgroups except Ω
and G.

Lemma 2.13. For an R-group G and a subgroup A of G, we have
the following:

(1) A is an R-ideal of G if and only if A is an R0-ideal of G.
(2) A is an R-subgroup of G if and only if A is an R0-subgroup of

G and Ω ⊆ A.

Proof. (1) Obviously, an R-ideal of G is an R0-ideal of G. Con-
versely, suppose A is an R0-ideal of G. Let a ∈ A, x ∈ G and r ∈ R.
Then since R = R0 ⊕Rc, we rewrite that r = s + t, where s ∈ R0 and
t ∈ Rc. Thus we have

(a + x)r−xr = (a + x)(s + t)−x(s + t) = (a + x)s + (a + x)t−xt−xs

Here, since t ∈ Rc, (a+x)t-xt=t-t=0 so that (a + x)r − xr = (a +
x)s−xs. Also since s ∈ R0 and A is an R0-ideal of G, (a+x)s−xs ∈ A,
that is (a + x)r − xr ∈ A. Consequently, A is an R-ideal of G.
(2) The statement (2) can be proved by using similar method of the
proof of case (1). ¤
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Theorem 2.14. Let G be a monogenic R-group with generator x.
Then we have the following:

(1) If I is a left R-subgroup of R and xI is an R-ideal of G, then
(xI : x) is an ideal of R.

(2) If G is R0-simple, then either GR = 0 or G is strongly mono-
genic.

Proof. (1) For any y ∈ I and a, b ∈ R, we obtain the following
equality:

x{(y + a)b− ab} = x(y + a)b− x(ab) = (xy + xa)b− (xa)b) ∈ xI

Hence (y + a)b− ab ∈ (xI : x). In this way, we can show that (xI : x)
is an additive normal subgroup of R. Consequently, (xI : x) is an ideal
of R.
(2) Suppose that G is R0-simple and G = GR 6= 0 (See the note below
the definition of monogenic R-group). Then G has no R-subgroups
except Ω = 0 and G. Let x ∈ G and xR 6= 0. Then since xR is an R-
subgroup, moreover an R0-subgroup by Lemma 2.13 (2) of G, G = xR.
Hence G is strongly monogenic. ¤

References

1. F. W. Anderson and K.R. Fuller, Rings and categories of modules, Springer-
Verlag, New York, Heidelberg, Berlin, 1974.

2. G. Betsch, Primitive near-rings, Math. Z. 130 (1973), 351-361.
3. C.G. Lyons and J.D.P. Meldrum, Characterizing series for faithful D.G. near-

rings, Proc. Amer. Math. Soc. 72 (1978), 221-227.
4. S.J. Mahmood and J.D.P. Meldrum, D.G. near-rings on the infinite dihe-

dral groups, Near-rings and Near-fields (1987), Elsevier Science Publishers
B.V.(North-Holland), 151-166.

5. J.D.P. Meldrum, Upper faithful D.G. near-rings, Proc. Edinburgh Math. Soc.
26 (1983), 361-370.

6. J.D.P, Meldrum, Near-rings and their links with groups, Pitman Advanced
Publishing Program, Boston, London, Melbourne, 1985.

Department of Mathmatics Education,
College of Education, Silla University,
Pusan 617-736, Korea,
E-mail : yucho@silla.ac.kr


