R-SEMI-GENERALIZED FUZZY COMPACTNESS

Chun-Kee Park* and Won Keun Min

ABSTRACT. In this paper, we introduce several types of r-semigeneralized fuzzy compactness and fuzzy r-compactness in fuzzy topological spaces and investigate the relations between these compactness.

1. Introduction

R. Badard [1] introduced the concept of the fuzzy topological space which is an extension of Chang's fuzzy topological space [4]. Many mathematical structures in fuzzy topological spaces were introduced and studied. In particular, M. Demirci [6] studied several types of compactness in fuzzy topological spaces. K. C. Chattopadhyay and S. K. Samanta [5] and S. J. Lee and E. P. Lee [7] introduced the concepts of fuzzy r-closure and fuzzy r-interior in fuzzy topological spaces and obtained their properties. S. J. Lee and E. P. Lee [7] also introduced the concepts of fuzzy r-semi-open sets and fuzzy r-semi-continuous maps in fuzzy topological spaces which are generalizations of fuzzy semiopen sets and fuzzy semi-continuous maps in Chang's fuzzy topological space and obtained their properties. P. Bhattacharya and B. K. Lahiri [3] introduced the concepts of semi-generalized open sets and semigeneralized closed sets in fuzzy topological spaces. In [9] we introduced the concepts of r-semi-generalized fuzzy open sets, r-semi-generalized fuzzy closed sets and r-semi-generalized fuzzy continuous maps in fuzzy topological spaces and obtained their properties.

Received May 21, 2008. Revised June 25, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 54A05, 54C08.

Key words and phrases: r-semi-generalized fuzzy closed sets, r-semi-generalized fuzzy open sets, r-semi-generalized fuzzy continuous maps, r-semi-generalized fuzzy compactness, fuzzy r-compactness.

^{*}Corresponding author

In this paper, we introduce several types of r-semi-generalized fuzzy compactness and fuzzy r-compactness in fuzzy topological spaces and investigate the relations between these compactness.

2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0, 1] and $I_0 = (0, 1]$. The family of all fuzzy sets of X will be denoted by I^X . By $\tilde{0}$ and $\tilde{1}$ we denote the characteristic functions of ϕ and X, respectively. For any $\mu \in I^X$, μ^c denotes the complement of μ , i.e., $\mu^c = \tilde{1} - \mu$.

A fuzzy topology [1, 10], which is also called a smooth topology, on X is a map $\tau: I^X \to I$ satisfying the following conditions:

(O1) $\tau(\tilde{0}) = \tau(\tilde{1}) = 1;$

(O2) $\forall \mu_1, \mu_2 \in I^X, \ \tau(\mu_1 \wedge \mu_2) \ge \tau(\mu_1) \wedge \tau(\mu_2);$

(O3) for every subfamily $\{\mu_i : i \in \Gamma\} \subseteq I^X$, $\tau(\bigcup_{i \in \Gamma} \mu_i) \ge \wedge_{i \in \Gamma} \tau(\mu_i)$. The pair (X, τ) is called a *fuzzy topological space* (for short, fts) which is also called a *smooth topological space*.

DEFINITION 2.1[5, 7]. Let (X, τ) be a fts. For $\mu \in I^X$ and $r \in I_0$, the fuzzy r-closure of μ is defined by

$$cl(\mu, r) = \wedge \{ \rho \in I^X \mid \mu \le \rho, \ \tau(\rho^c) \ge r \}$$

and the *fuzzy* r-interior of μ is defined by

$$int(\mu, r) = \lor \{ \rho \in I^X \mid \mu \ge \rho, \ \tau(\rho) \ge r \}.$$

For $r \in I_0$, we call μ a fuzzy r-open set of X if $\tau(\mu) \ge r$ and μ a fuzzy r-closed set of X if $\tau(\mu^c) \ge r$.

DEFINITION 2.2[7]. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. Then a map $f: (X, \tau) \to (Y, \sigma)$ is called

- (1) a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ of Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-closed set of X for each fuzzy r-closed set μ of Y.
- (2) a fuzzy r-open map if $f(\mu)$ is a fuzzy r-open set of Y for each fuzzy r-open set μ of X.
- (3) a fuzzy r-closed map if $f(\mu)$ is a fuzzy r-closed set of Y for each fuzzy r-closed set μ of X.

DEFINITION 2.3[7]. Let (X, τ) be a fts, $\mu \in I^X$ and $r \in I_0$.

- (1) A fuzzy set μ is called fuzzy *r*-semi-open if there is a fuzzy r-open set ρ of X such that $\rho \leq \mu \leq cl(\rho, r)$.
- (2) A fuzzy set μ is called *fuzzy r-semi-closed* if there is a fuzzy r-closed set ρ of X such that $int(\rho, r) \leq \mu \leq \rho$.

DEFINITION 2.4[7]. Let (X, τ) be a fts. For $\mu \in I^X$ and $r \in I_0$, the fuzzy r-semi-closure of μ is defined by

 $scl(\mu, r) = \land \{ \rho \in I^X | \mu \le \rho, \rho \text{ is fuzzy r-semi-closed} \}.$

and the fuzzy r-semi-interior of μ is defined by

 $sint(\mu, r) = \forall \{ \rho \in I^X | \mu \ge \rho, \rho \text{ is fuzzy r-semi-open} \}.$

DEFINITION 2.5[7]. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. Then a map $f : (X, \tau) \to (Y, \sigma)$ is called

- (1) a fuzzy r-semi-continuous map if $f^{-1}(\mu)$ is a fuzzy r-semi-open set of X for each fuzzy r-open set μ of Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-semi-closed set of X for each fuzzy r-closed set μ of Y.
- (2) a fuzzy r-semi-open map if $f(\mu)$ is a fuzzy r-semi-open set of Y for each fuzzy r-open set μ of X.
- (3) a fuzzy r-semi-closed map if $f(\mu)$ is a fuzzy r-semi-closed set of Y for each fuzzy r-closed set μ of X.

DEFINITION 2.6[9]. Let (X, τ) be a fts, $\mu, \rho \in I^X$ and $r \in I_0$.

- (1) A fuzzy set μ is called *r*-semi-generalized fuzzy closed (for short, r-sgfc) if $scl(\mu, r) \leq \rho$ whenever $\mu \leq \rho$ and ρ is r-semi-open.
- (2) A fuzzy set μ is called *r-semi-generalized fuzzy open* (for short, r-sgfo) if μ^c is r-sgfc.

DEFINITION 2.7[9]. Let (X, τ) be a fts. For $\mu \in I^X$ and $r \in I_0$, the *r-semi-generalized fuzzy closure of* μ is defined by

$$sgcl(\mu, r) = \land \{ \rho \in I^X \mid \mu \le \rho, \ \rho \text{ is r-sgfc} \}.$$

and the *r*-semi-generalized fuzzy interior of μ is defined by

 $sgint(\mu, r) = \lor \{ \rho \in I^X | \ \mu \ge \rho, \ \rho \text{ is r-sgfo} \}.$

THEOREM 2.8[9]. Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- (1) $sgcl(\tilde{0},r) = \tilde{0}$,
- (2) $\mu \leq sgcl(\mu, r),$
- (3) $sgcl(\mu, r) \leq sgcl(\mu, s)$ if $r \leq s$,
- (4) $sgcl(\mu, r) \leq sgcl(\lambda, r)$ if $\mu \leq \lambda$,
- (5) $sgcl(\mu \lor \lambda, r) \ge sgcl(\mu, r) \lor sgcl(\lambda, r),$
- (6) $sgcl(sgcl(\mu, r), r) = sgcl(\mu, r).$

THEOREM 2.9[9]. Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- (1) $sgint(\tilde{1}, r) = \tilde{1},$
- (2) $sgint(\mu, r) \leq \mu$,
- (3) $sgint(\mu, r) \ge sgint(\mu, s)$ if $r \le s$,
- (4) $sgint(\mu, r) \leq sgint(\lambda, r)$ if $\mu \leq \lambda$,
- (5) $sgint(\mu \wedge \lambda, r) \leq sgint(\mu, r) \wedge sgint(\lambda, r),$
- (6) $sgint(sgint(\mu, r), r) = sgint(\mu, r).$

DEFINITION 2.10[9]. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a map.

- (1) f is called *r*-semi-generalized fuzzy continuous (for short, r-semi-gf-continuous) if $f^{-1}(\mu)$ is a r-sgfc set of X for each fuzzy r-closed set μ of Y.
- (2) f is called *strongly r-semi-generalized fuzzy continuous* (for short, strongly r-semi-gf-continuous) if $f^{-1}(\mu)$ is a fuzzy r-closed set of X for each r-sgfc set μ of Y.
- (3) f is called *r-semi-generalized fuzzy irresolute* (for short, r-semi-gf-irresolute) if $f^{-1}(\mu)$ is a r-sgfc set of X for each r-sgfc set μ of Y.
- (4) f is called *r-semi-generalized fuzzy open* (for short, r-semi-gf-open) if $f(\mu)$ is a r-sgfo set of Y for each fuzzy r-open set μ of X.
- (5) f is called *strongly r-semi-generalized fuzzy open* (for short, strongly r-semi-gf-open) if $f(\mu)$ is a r-sgfo set of Y for each r-sgfo set μ of X.

THEOREM 2.11[9]. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a map. Then the following are equivalent:

(1) f is r-semi-gf-continuous.

(2) $f^{-1}(\mu)$ is a r-sgfo set of X for each fuzzy r-open set μ of Y.

THEOREM 2.12[9]. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. If $f:(X,\tau)\to (Y,\sigma)$ is a r-semi-gf-continuous map, then $f(sgcl(\mu,r))\leq$ $cl(f(\mu), r)$ for each $\mu \in I^X$.

THEOREM 2.13[9]. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. Then $f:(X,\tau)\to (Y,\sigma)$ is a r-semi-gf-irresolute map if and only if $f^{-1}(\mu)$ is a r-sgfo set of X for each r-sgfo set μ of Y.

THEOREM 2.14[9]. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. If $f: (X, \tau) \to (Y, \sigma)$ is a r-semi-gf-irresolute map, then

- (1) $f(sgcl(\mu, r)) \leq sgcl(f(\mu), r)$ for each $\mu \in I^X$,
- (2) $sgcl(f^{-1}(\mu), r) \leq f^{-1}(sgcl(\mu, r))$ for each $\mu \in I^Y$, (3) $f^{-1}(sgint(\mu, r)) \leq sgint(f^{-1}(\mu), r)$ for each $\mu \in I^Y$.

THEOREM 2.15[9]. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. If f: $(X,\tau) \to (Y,\sigma)$ is a strongly r-semi-gf-open map, then $f(sgint(\mu,r)) \leq$ $sgint(f(\mu), r)$ for each $\mu \in I^X$.

3. Results

A collection $\{\mu_i \mid i \in \Gamma\}$ of fuzzy r-open sets of X is called a fuzzy r-open cover of X if $\forall_{i \in \Gamma} \mu_i = \tilde{1}$.

A collection $\{\mu_i | i \in \Gamma\}$ of r-sgfo sets of X is called a r-sgfo cover of X if $\forall_{i \in \Gamma} \mu_i = 1$.

DEFINITION 3.1. Let (X, τ) be a fts and $r \in I_0$.

- (1) (X,τ) is called fuzzy r-compact if for every fuzzy r-open cover $\{\mu_i \mid i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\vee_{i\in\Gamma_0}\mu_i=1.$
- (2) (X, τ) is called *nearly fuzzy r-compact* if for every fuzzy r-open cover $\{\mu_i \mid i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\bigvee_{i \in \Gamma_0} int(cl(\mu_i, r), r) = 1$.
- (3) (X, τ) is called *almost fuzzy r-compact* if for every fuzzy r-open cover $\{\mu_i \mid i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\bigvee_{i \in \Gamma_0} cl(\mu_i, r) = 1.$

Chun-Kee Park and Won Keun Min

DEFINITION 3.2. Let (X, τ) be a fts and $r \in I_0$.

- (1) (X, τ) is called *r*-semi-generalized fuzzy compact (for short, r-semi-gf-compact) if for every r-sgfo cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} \mu_i = \tilde{1}$.
- (2) (X, τ) is called *nearly r-semi-generalized fuzzy compact* (for short, nearly r-semi-gf-compact) if for every r-sgfo cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that

 $\vee_{i\in\Gamma_0} sgint(sgcl(\mu_i, r), r) = 1.$

- (3) (X, τ) is called *almost r-semi-generalized fuzzy compact* (for short, almost r-semi-gf-compact) if for every r-sgfo cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\bigvee_{i \in \Gamma_0} sgcl(\mu_i, r) = \tilde{1}.$
- (4) (X, τ) is called *r-semi-generalized fuzzy regular* (for short, r-semi-gf-regular) if each r-sgfo set μ of X can be written as $\mu = \vee \{\rho \in I^X | \rho \text{ is r-sgfo}, sgcl(\rho, r) \leq \mu\}.$

THEOREM 3.3. Let (X, τ) be a fts and $r \in I_0$. Then (X, τ) is r-semi-gf-compact $\Rightarrow (X, \tau)$ is nearly r-semi-gf-compact $\Rightarrow (X, \tau)$ is almost r-semi-gf-compact.

Proof. Let (X, τ) be r-semi-gf-compact. Then for every r-sgfo cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} \mu_i = \tilde{1}$. Since $\mu_i = sgint(\mu_i, r)$ for each $i \in \Gamma$,

 $\mu_i = sgint(\mu_i, r) \leq sgint(sgcl(\mu_i, r), r)$ for each $i \in \Gamma$.

Hence $\hat{1} = \bigvee_{i \in \Gamma_0} \mu_i \leq \bigvee_{i \in \Gamma_0} sgint(sgcl(\mu_i, r), r)$, i.e., $\bigvee_{i \in \Gamma_0} sgint(sgcl(\mu_i, r), r) = \tilde{1}$. Thus (X, τ) is nearly r-semi-gf-compact.

Now let (X, τ) be nearly r-semi-gf-compact. Then for every r-sgfo cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} sgint(sgcl(\mu_i, r), r) = \tilde{1}$. Since $sgint(sgcl(\mu_i, r), r) \leq sgcl(\mu_i, r)$ for each $i \in \Gamma$, $\tilde{1} = \forall_{i \in \Gamma_0} sgint(sgcl(\mu_i, r), r) \leq \forall_{i \in \Gamma_0} sgcl(\mu_i, r)$, i.e., $\forall_{i \in \Gamma_0} sgcl(\mu_i, r) = \tilde{1}$. Hence (X, τ) is almost r-semi-gf-compact.

THEOREM 3.4. Let (X, τ) be a fts and $r \in I_0$. If (X, τ) is almost r-semi-gf-compact and r-semi-gf-regular, then (X, τ) is r-semi-gf-compact.

Poof. Let $\{\mu_i \mid i \in \Gamma\}$ be a r-sgfo cover of X. Since (X, τ) is r-semigf-regular, $\mu_i = \bigvee_{j_i \in J_i} \{\rho_{j_i} \in I^X \mid \rho_{j_i} \text{ is r-sgfo}, sgcl(\rho_{j_i}, r) \leq \mu_i\}$ for each $i \in \Gamma$. Since $\bigvee_{i \in \Gamma} \mu_i = \bigvee_{i \in \Gamma} (\bigvee_{j_i \in J_i} \rho_{j_i}) = \tilde{1}$ and (X, τ) is almost rsemi-gf-compact, there exists a finite subfamily $\{\rho_j \in I^X \mid \rho_j \text{ is r-sgfo}, j \in J\}$ such that $\bigvee_{j \in J} sgcl(\rho_j, r) = \tilde{1}$. Since for each $j \in J$ there exists $i \in \Gamma$ such that $sgcl(\rho_j, r) \leq \mu_i$, we have $\bigvee_{i \in \Gamma_0} \mu_i = \tilde{1}$, where Γ_0 is a finite subset of Γ . Hence (X, τ) is r-semi-gf-compact.

THEOREM 3.5. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a surjective r-semi-gf-continuous map. If (X, τ) is r-semi-gf-compact, then (Y, σ) is fuzzy r-compact.

Proof. Let $\{\mu_i \mid i \in \Gamma\}$ be a fuzzy r-open cover of Y. Since f is r-semi-gf-continuous, by Theorem 2.11 $\{f^{-1}(\mu_i) \mid i \in \Gamma\}$ is a r-sgfo cover of X. Since (X, τ) is r-semi-gf-compact, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} f^{-1}(\mu_i) = \tilde{1}_X$. Since f is surjective, $\tilde{1}_Y = f(\tilde{1}_X) = f(\forall_{i \in \Gamma_0} f^{-1}(\mu_i)) = \forall_{i \in \Gamma_0} f(f^{-1}(\mu_i)) = \forall_{i \in \Gamma_0} \mu_i$, i.e., $\forall_{i \in \Gamma_0} \mu_i = \tilde{1}_Y$. Hence (Y, σ) is fuzzy r-compact.

THEOREM 3.6. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a surjective r-semi-gf-continuous map. If (X, τ) is almost r-semi-gf-compact, then (Y, σ) is almost fuzzy r-compact.

Proof. Let $\{\mu_i \mid i \in \Gamma\}$ be a fuzzy r-open cover of Y. Since f is r-semi-gf-continuous, by Theorem 2.11 $\{f^{-1}(\mu_i) \mid i \in \Gamma\}$ is a r-sgfo cover of X. Since (X, τ) is almost r-semi-gf-compact, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} sgcl(f^{-1}(\mu_i), r) = \tilde{1}_X$. Since f is surjective, $\tilde{1}_Y = f(\tilde{1}_X) = f(\forall_{i \in \Gamma_0} sgcl(f^{-1}(\mu_i), r)) = \forall_{i \in \Gamma_0} f(sgcl(f^{-1}(\mu_i), r))$. Since f is r-semi-gf-continuous, by Theorem 2.12 $f(sgcl(f^{-1}(\mu_i), r)) \leq cl(f(f^{-1}(\mu_i)), r)$. Hence $\tilde{1}_Y = \forall_{i \in \Gamma_0} f(sgcl(f^{-1}(\mu_i), r)) \leq \forall_{i \in \Gamma_0} cl(f(f^{-1}(\mu_i)), r) = \forall_{i \in \Gamma_0} cl(\mu_i, r)$. Thus $\forall_{i \in \Gamma_0} cl(\mu_i, r) = \tilde{1}_Y$. Hence (Y, σ) is almost fuzzy r-compact.

THEOREM 3.7. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a surjective r-semi-gf-irresolute map. Then (1) If (X, τ) is r-semi-gf-compact, then (Y, σ) is r-semi-gf-compact.

Chun-Kee Park and Won Keun Min

(2) If (X, τ) is almost r-semi-gf-compact, then (Y, σ) is almost r-semi-gf-compact.

Proof. (1) Let $\{\mu_i | i \in \Gamma\}$ be a r-sgfo cover of Y. Since f is r-semigf-irresolute, by Theorem 2.13 $\{f^{-1}(\mu_i) | i \in \Gamma\}$ is a r-sgfo cover of X. Since (X, τ) is r-semi-gf-compact, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} f^{-1}(\mu_i) = \tilde{1}_X$. Since f is surjective, $\tilde{1}_Y = f(\tilde{1}_X) = f(\forall_{i \in \Gamma_0} f^{-1}(\mu_i)) = \forall_{i \in \Gamma_0} f(f^{-1}(\mu_i)) = \forall_{i \in \Gamma_0} \mu_i$, i.e., $\forall_{i \in \Gamma_0} \mu_i = \tilde{1}_Y$. Hence (Y, σ) is r-semi-gf-compact.

(2) Let $\{\mu_i | i \in \Gamma\}$ be a r-sgfo cover of Y. Since f is r-semi-gfirresolute, by Theorem 2.13 $\{f^{-1}(\mu_i) | i \in \Gamma\}$ is a r-sgfo cover of X. Since (X, τ) is almost r-semi-gf-compact, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} sgcl(f^{-1}(\mu_i), r) = \tilde{1}_X$. Since f is surjective, $\tilde{1}_Y = f(\tilde{1}_X) = f(\forall_{i \in \Gamma_0} sgcl(f^{-1}(\mu_i), r)) = \forall_{i \in \Gamma_0} f(sgcl(f^{-1}(\mu_i), r))$. Since f is r-semi-gf-irresolute, by Theorem 2.14 $f(sgcl(f^{-1}(\mu_i), r)) \leq sgcl(f(f^{-1}(\mu_i)), r)$. Hence $\tilde{1}_Y = \forall_{i \in \Gamma_0} f(sgcl(f^{-1}(\mu_i), r)) \leq \forall_{i \in \Gamma_0} sgcl(f^{-1}(\mu_i)), r) = \forall_{i \in \Gamma_0} sgcl(\mu_i, r)$ and so $\forall_{i \in \Gamma_0} sgcl(\mu_i, r) = \tilde{1}_Y$. Hence (Y, σ) is almost r-semi-gf-compact.

THEOREM 3.8. Let (X,τ) and (Y,σ) be fts's and $r \in I_0$ and let $f: (X,\tau) \to (Y,\sigma)$ be a surjective, r-semi-gf-irresolute and strongly r-semi-gf-open map. If (X,τ) is nearly r-semi-gf-compact, then (Y,σ) is nearly r-semi-gf-compact.

Proof. Let $\{\mu_i | i \in \Gamma\}$ be a r-sgfo cover of Y. Since f is r-semigf-irresolute, by Theorem 2.13 $\{f^{-1}(\mu_i) | i \in \Gamma\}$ is a r-sgfo cover of X. Since (X, τ) is nearly r-semi-gf-compact, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} sgint(sgcl(f^{-1}(\mu_i), r), r) = \tilde{1}_X$. Since f is surjective, $\tilde{1}_Y = f(\tilde{1}_X) = f(\forall_{i \in \Gamma_0} sgint(sgcl(f^{-1}(\mu_i), r), r)) = \forall_{i \in \Gamma_0} f(sgint(sgcl(f^{-1}(\mu_i), r), r))$.

Since f is strongly r-semi-gf-open, by Theorem 2.15 $f(sgint(sgcl(f^{-1}(\mu_i), r), r)) \leq sgint(f(sgcl(f^{-1}(\mu_i), r)), r))$ for each $i \in \Gamma$.

Since f is r-semi-gf-irresolute, by Theorem 2.14 $f(sgcl(f^{-1}(\mu_i), r)) \leq$

298

 $sgcl(f(f^{-1}(\mu_i)), r)$. Hence we have

$$\begin{split} \tilde{1}_Y &= \bigvee_{i \in \Gamma_0} f(sgint(sgcl(f^{-1}(\mu_i), r), r)) \\ &\leq \bigvee_{i \in \Gamma_0} sgint(f(sgcl(f^{-1}(\mu_i), r)), r) \\ &\leq \bigvee_{i \in \Gamma_0} sgint(sgcl(f(f^{-1}(\mu_i)), r), r) \\ &= \bigvee_{i \in \Gamma_0} sgint(sgcl(\mu_i, r), r). \end{split}$$

Thus $\forall_{i \in \Gamma_0} sgint(sgcl(\mu_i, r), r) = \tilde{1}_Y$. Therefore (Y, σ) is nearly r-semigf-compact.

References

- R. Badard, Smooth axiomatics, First IFSA Congress, Palma de Mallorca (July 1986).
- 2. J. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1997), 93-100.
- P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987), 375-382.
- 4. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212.
- M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems 90 (1997), 83-88.
- S. J. Lee and E. P. Lee, Fuzzy r-continuous and fuzzy r-semicontinuous maps, Int. J. Math. Math. Sci. 27 (2001), no. 1, 53-63.
- N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo 19 (1970), 89-96.
- C. K. Park and W. K. Min, *r-semi-generalized fuzzy continuous maps*, Kangwon-Kyungki Math. J. 15 (2007), no. 1, 27-37.
- A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.

Department of Mathematics Kangwon National University, Chuncheon 200-701, Korea *E-mail*: ckpark@kangwon.ac.kr

Department of Mathematics

Chun-Kee Park and Won Keun Min

Kangwon National University, Chuncheon 200-701, Korea *E-mail*: wkmin@kangwon.ac.kr