A NOTE ON THE RETURN TIME OF STURMIAN SEQUENCES

Dong Han Kim

Abstract

Let R_{n} be the the first return time to its initial n word. Then the Ornstein-Weiss first return time theorem implies that $\log R_{n}$ divided by n converges to entropy. We consider the convergence of $\log R_{n}$ for Sturmian sequences which has the lowest complexity. In this case, we normalize the logarithm of the first return time by $\log n$. We show that for any numbers $1 \leq \alpha, \beta \leq \infty$, there is a Sturmian sequence of which limsup is α and liminf is $1 / \beta$.

1. Introduction

The asymptotic behavior of the first return time (recurrence time) is one of the main ingredients in studying dynamical systems. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a stationary ergodic process on the space of infinite sequences $\left(\mathcal{A}^{\mathbb{N}}, \Sigma, \mu\right)$, where \mathcal{A} is a finite set, Σ is the σ-field generated by finite dimensional cylinders and μ is a shift invariant ergodic probability measure. In this paper, we will consider $\mathcal{A}=\{0,1\}$ and a binary sequence $x=x_{1} x_{2} x_{3} \ldots$. Define $R_{n}(x)$ to be the first return time of the initial n-word $x_{1} \ldots x_{n}$, i.e.,

$$
R_{n}(x):=\min \left\{j \geq 1: x_{1} \ldots x_{n}=x_{j+1} \ldots x_{j+n}\right\} .
$$

The convergence of $\log R_{n}$ was first studied in relation to data compression algorithm. After Wyner and Ziv's work[12] for the convergence in probability, Ornstein and Weiss[9] showed that for an ergodic process

[^0]with entropy h
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log R_{n}(x)=h \tag{1}
\end{equation*}
$$

\]

almost surely.
A sequence $u=u_{1} u_{2} u_{3} \ldots$ is called Sturmian if its complexity function is $p_{u}(n)=n+1$, where the complexity function $p_{u}(n)$ denote the number of different words of length n occurring in u. Morse and Hedlund showed that Sturmian sequence has the least complexity function except for eventually periodic sequences (see e.g. [8]). A famous example of Sturmian sequence is the Fibonacci sequence 101101011011010110101 . .

Let $T:(X, \mu) \rightarrow(X, \mu)$ be a measure preserving transformation and $\mathcal{P}=\left\{I_{0}, I_{1}\right\}$ be a partition of X. Let $\left\{\mathcal{P}_{n}\right\}$ be a sequence of partitions of X obtained by $\mathcal{P}_{n}=\mathcal{P} \vee T^{-1} \mathcal{P} \vee \cdots \vee T^{-(n-1)} \mathcal{P}$, where $\mathcal{P} \vee \mathcal{Q}=\{P \cap Q$: $P \in \mathcal{P}, Q \in \mathcal{Q}\}$. We call $u=u_{1} u_{2} \ldots u_{n} \ldots$ the \mathcal{P}-trajectory of x under T if $T^{i-1} x \in I_{u_{i}}$ for $i=1, \ldots, n$. Let $I_{n}(x)$ be the element of \mathcal{P}_{n} which contains x.

For a measurable subset $E \subset X$ with $\mu(E)>0$ and a point $x \in E$ which returns to E under iteration of T, we define the first return time R_{E} on E by

$$
R_{E}(x)=\min \left\{j \geq 1: T^{j} x \in E\right\} .
$$

For each trajectory u of $x \in X$, we have $R_{I_{n}(x)}(x)=R_{n}(u)$.
Let $0<\theta<1$ be an irrational number and $T:[0,1) \rightarrow[0,1)$ be an irrational rotation by θ, which preserve the Lebesgue measure μ on $X=[0,1)$ i.e.,

$$
T(x)=x+\theta \quad(\bmod 1) .
$$

Let \mathcal{P} be a partition of X given by $\mathcal{P}=\{[0,1-\theta),[1-\theta, 1)\}$. A necessary and sufficient condition for the Sturmian sequence is that $u=$ $u_{1} u_{2} u_{3} \ldots$ is a \mathcal{P}-trajectory of an irrational rotation (see e.g. [8]). For an example, the Fibonacci sequence is a \mathcal{P}-trajectory of an irrational rotation by the golden mean $\frac{\sqrt{5}-1}{2}$. Since an irrational rotation has zero entropy, if we normalize $\log R_{n}$ by n as in (1), it should converges to 0 in almost everywhere sense. Considering the Shannon-McMillan-Breiman Theorem, we might expect that $\log R_{n}$ should be normalized by the logarithm of the size of each element of \mathcal{P}_{n}, which is roughly $1 /(n+1)$ when $n=q_{k}-1$ (Section 3).

Let θ be an irrational number of type η, which is defined in Section 2 . In [6] it is shown that for almost every Sturmian sequence u from the
\mathcal{P}-trajectory under the rotation by θ

$$
\liminf _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n}=\frac{1}{\eta} \quad \text { and } \quad \limsup _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n}=1 .
$$

That is, there exist many Sturmian sequences with the property that $\log R_{n}(u) / \log n$ does not converge.

An infinite sequence $u=u_{1} u_{2} u_{3} \ldots$ is called k-automatic if it is generated by a k-automaton. An infinite sequence is k-automatic if and only if it is the image under a coding of a fixed point of a k-uniform morphism[3]. A well known example of the automatic sequences is the Thue-Morse sequence, which is a fixed point of the 2-uniform morphism of $\sigma(0)=01$ and $\sigma(1)=10$. It is known[2] that for the Thue-Morse sequence

$$
\limsup \frac{p_{u}(n)}{n}=\frac{10}{3}, \quad \liminf \frac{p_{u}(n)}{n}=3
$$

Let u be a non-eventually periodic automatic sequence on alphabet \mathcal{A}. Then it is shown[6] that

$$
\lim _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n}=1
$$

In this paper we consider the first return time of Sturmian sequences. We can construct a Sturmian sequence with arbitrary limsup and liminf of the $\log R_{n} / \log n$:

Theorem 1.1. For any $1 \leq \alpha, \beta \leq \infty$, there is a Sturmian sequence u such that

$$
\limsup _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n}=\alpha, \quad \liminf _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n}=\frac{1}{\beta} .
$$

2. The diophantine types of irrational numbers

We need some properties on diophantine approximations. For more details, consult [4] and [10]. For an irrational number $0<\theta<1$, we have a unique continued fraction expansion;

$$
\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}
$$

if $a_{i} \geq 1$ for all $i \geq 1$. Put $p_{0}=0$ and $q_{0}=1$. Choose p_{i} and q_{i} for $i \geq 1$ such that $\left(p_{i}, q_{i}\right)=1$ and

$$
\frac{p_{i}}{q_{i}}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+1 / a_{i}}}} .
$$

We call each a_{i} the i-th partial quotient and p_{i} / q_{i} the i-th convergent. Then the denominator q_{i} and the numerator p_{i} of the i-th convergent satisfy the following properties: $q_{i+2}=a_{i+2} q_{i+1}+q_{i}, p_{i+2}=a_{i+2} p_{i+1}+p_{i}$ and

$$
\begin{equation*}
\frac{1}{2 q_{i+1}}<\frac{1}{q_{i+1}+q_{i}}<\left\|q_{i} \theta\right\|<\frac{1}{q_{i+1}} \tag{2}
\end{equation*}
$$

for $i \geq 1$.
For $t \in \mathbb{R}$ we denote $\|\cdot\|$ and $\{\cdot\}$ by the distances, respectively, to the nearest integer and the greatest integer less than or equal to t, i.e.,

$$
\|t\|=\min _{n \in \mathbb{Z}}|t-n|, \quad\{t\}=t-\lfloor t\rfloor,
$$

An irrational number $\theta, 0<\theta<1$, is said to be of type η if

$$
\eta=\sup \left\{t>0: \liminf _{j \rightarrow \infty} j^{t}\|j \theta\|=0\right\}
$$

Note that every irrational number is of type $\eta \geq 1$. The set of irrational numbers of type 1 has measure 1 and includes the set of irrational numbers with bounded partial quotients, which is of measure 0 . There exist numbers of type ∞, called Liouville numbers. Here we introduce a new definition on type of irrational numbers[5]:

Definition 2.1. An irrational number $\theta, 0<\theta<1$, is said to be of type (α, β) if

$$
\begin{aligned}
& \alpha=\sup \left\{t>0: \liminf _{j \rightarrow \infty} j^{t}\{-j \theta\}=0\right\}, \\
& \beta=\sup \left\{t>0: \liminf _{j \rightarrow \infty} j^{t}\{j \theta\}=0\right\} .
\end{aligned}
$$

For example, if the partial quotients of an irrational number θ is $a_{2 i}=2^{2^{i}}$ for $i \geq 1$ and $a_{2 i+1}=1$ for $i \geq 0$, then θ is of type $(2,1)$. Note that $\alpha, \beta \geq 1$ and $\eta=\max \{\alpha, \beta\}$. For each $\alpha, \beta>1$ there are uncountably many (but measure zero) θ 's which are of type (α, β).

3. Proof of the main theorem

It is well known[4] that $\|j \theta\| \geq\left\|q_{i} \theta\right\|$ for $0<j<q_{i+1}$ and $\theta-p_{i} / q_{i}$ is positive if and only if i is even. Thus, by the definition of type (α, β) in Definition 2.1, we have

$$
\begin{aligned}
& \eta=\sup \left\{t>0: \liminf _{i \rightarrow \infty} q_{i}^{t}\left\|q_{i} \theta\right\|=0\right\}, \\
& \alpha=\sup \left\{t>0: \liminf _{i \rightarrow \infty}^{t} q_{2 i+1}^{t}\left\|q_{2 i+1} \theta\right\|=0\right\}, \\
& \beta=\sup \left\{t>0: \liminf _{i \rightarrow \infty} q_{2 i}^{t}\left\|q_{2 i} \theta\right\|=0\right\} .
\end{aligned}
$$

And we have the following lemma[5]:
Lemma 3.1. For any $\epsilon>0$ and $C>0$, we have (i)

$$
q_{2 i+1}^{\alpha+\epsilon}\left\|q_{2 i+1} \theta\right\|>C \text { and } q_{2 i}^{\beta+\epsilon}\left\|q_{2 i} \theta\right\|>C .
$$

for sufficiently large integer i, and (ii) there are infinitely many odd i 's such that $q_{i}^{\alpha-\epsilon}\left\|q_{i} \theta\right\|<C$ and even i 's such that $q_{i}^{\beta-\epsilon}\left\|q_{i} \theta\right\|<C$.

For the irrational rotation, generally there are three values for the recurrence time R_{E} of an interval $E[11]$, but for some specific length of interval the recurrence time has only two values. For the proof consult [7].

Theorem 3.2. Let $b=\left\|q_{i-1} \theta\right\|-c\left\|q_{i} \theta\right\|, 0 \leq c<a_{i+1}$. If i is even, then

$$
R_{[0, b)}(x)= \begin{cases}q_{i}, & 0 \leq x<b-\left\|q_{i} \theta\right\|, \\ (c+1) q_{i}+q_{i-1}, & b-\left\|q_{i} \theta\right\| \leq x<b\end{cases}
$$

If i is odd, then

$$
R_{[0, b)}(x)= \begin{cases}(c+1) q_{i}+q_{i-1}, & 0 \leq x<\left\|q_{i} \theta\right\| \\ q_{i}, & \left\|q_{i} \theta\right\| \leq x<b\end{cases}
$$

Let $\mathcal{P}=\{[0,1-\theta),[1-\theta, 1)\}$ be a partition of $X=[0,1)$. Note that $\mathcal{P}_{n}=\vee_{k=0}^{n-1} T^{-k} \mathcal{P}$ is the partition of $[0,1)$ obtained by the orbit $\{-k \theta\}$, $0 \leq k \leq n$. The followings are well known, which is concerned with the lengths of the elements of \mathcal{P}_{n} and the number of elements of each length($[1],[11])$. Let $n=c q_{i}+q_{i-1}+\ell, 1 \leq c \leq a_{i+1}$ and $0 \leq \ell<q_{i}$. Then each length of element of \mathcal{P}_{n} has only three values: $\left\|q_{i} \theta\right\|,\left\|q_{i-1} \theta\right\|-c\left\|q_{i} \theta\right\|$ and $\left\|q_{i-1} \theta\right\|-(c-1)\left\|q_{i} \theta\right\|$. Moreover, the number of elements of \mathcal{P}_{n} with length $\left\|q_{i} \theta\right\|,\left\|q_{i-1} \theta\right\|-c\left\|q_{i} \theta\right\|$ and $\left\|q_{i-1} \theta\right\|-(c-1)\left\|q_{i} \theta\right\|$ is $n-q_{i}+1$,
$\ell+1$ and $q_{i}-\ell-1$ respectively. Note that since $q_{i+1}=a_{i+1} q_{i}+q_{i-1}$ for a given n we can choose i, c and ℓ such that $n=c q_{i}+q_{i-1}+\ell$ where $1 \leq c \leq a_{i+1}$ and $0 \leq \ell<q_{i}$.

Proof of Theorem 1.1. Let \mathcal{P}_{n} be the a partition of $[0,1)$ given by orbit $\{-k \theta\}, 0 \leq k \leq n$ and $I_{n}(x)$ be the element of \mathcal{P}_{n} which contains x.

Since $q_{i+2}=q_{i}+a_{i+2} q_{i+1}$, for a given n there is odd i and integer $c, 0 \leq c<a_{i+2}$ satisfying that $q_{i}+c q_{i+1} \leq n<q_{i}+(c+1) q_{i+1}$. Since $\|j \theta\| \geq\left\|q_{i} \theta\right\|$ for $0<j<q_{i+1}$ and $\theta q_{i}-p_{i}=(-1)^{i}\left\|q_{i} \theta\right\|$, we have

$$
I_{n}(0)=\left[0,\left\|q_{i} \theta\right\|-c\left\|q_{i+1} \theta\right\|\right)
$$

for each $q_{i}+c q_{i+1} \leq n<q_{i}+(c+1) q_{i+1}, 0 \leq c<a_{i+2}$. Let u be the trajectory of 0 under the rotation T. Then for each $q_{i} \leq n<q_{i+2}, i$ odd, we have by Theorem 3.2

$$
R_{n}(u)=R_{I_{n}(x)}(0)=q_{i+1} .
$$

By (2) we have for $q_{i} \leq n<q_{i+2}$

$$
\frac{\log q_{i+1}}{-\log \left\|q_{i+1} \theta\right\|}<\frac{\log q_{i+1}}{\log q_{i+2}}<\frac{\log R_{n}(u)}{\log n} \leq \frac{\log q_{i+1}}{\log q_{i}}<\frac{-\log \left\|q_{i} \theta\right\|}{\log q_{i}}
$$

For any C and $\epsilon>0$ by Lemma 3.1 (i) we have for large odd i

$$
\begin{aligned}
\frac{\log C-\log \left\|q_{i+1} \theta\right\|}{-(\beta+\epsilon) \log \left\|q_{i+1} \theta\right\|}<\frac{\log q_{i+1}}{-\log \left\|q_{i+1} \theta\right\|} & <\frac{\log R_{n}(u)}{\log n} \\
& \leq \frac{-\log \left\|q_{i} \theta\right\|}{\log q_{i}}<\frac{-(\alpha+\epsilon) \log \left\|q_{i} \theta\right\|}{\log C-\log \left\|q_{i} \theta\right\|} .
\end{aligned}
$$

Therefore, we have

$$
\limsup _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n} \leq \alpha, \quad \liminf _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n} \geq \frac{1}{\beta}
$$

By Lemma 3.1(ii) there are infinitely many odd i_{k} 's such that $q_{i_{k}}^{\alpha-\epsilon}\left\|q_{i_{k}} \theta\right\|<$ C. Let $n_{k}=q_{i_{k}}$. Then by (2) we have

$$
\frac{\log R_{n_{k}}(u)}{\log n_{k}}=\frac{\log q_{i_{k}+1}}{\log q_{i_{k}}}>\frac{-\log \left\|q_{i_{k}} \theta\right\|-\log 2}{\log q_{i_{k}}}>\frac{-(\alpha-\epsilon)\left(\log \left\|q_{i_{k}} \theta\right\|+\log 2\right)}{\log C-\log \left\|q_{i_{k}} \theta\right\|} .
$$

Hence we have

$$
\limsup _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n} \geq \alpha
$$

Similarly, Lemma 3.1 (ii) states that there are infinitely many even i_{k} 's such that $q_{i}^{\beta-\epsilon}\left\|q_{i} \theta\right\|<C$. Choose $n_{k}=q_{i_{k}+1}-1$. Then by (2) we have

$$
\begin{aligned}
\frac{\log R_{n_{k}}(u)}{\log n_{k}} & =\frac{\log q_{i_{k}}}{\log \left(q_{i_{k}+1}-1\right)}=\frac{\log q_{i_{k}}}{\log q_{i_{k}+1}+\log \left(1-1 / q_{i_{k}+1}\right)} \\
& <\frac{\log C-\log \left\|q_{i_{k}} \theta\right\|}{-(\beta-\epsilon)\left(\log \left\|q_{i_{k}} \theta\right\|+\log 2-\log \left(1-1 / q_{i_{k}+1}\right)\right)},
\end{aligned}
$$

which yields

$$
\liminf _{n \rightarrow \infty} \frac{\log R_{n}(u)}{\log n} \leq \frac{1}{\beta}
$$

References

[1] P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words, Enseign. Math. 44 (1998), 103-132.
[2] S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989), 83-96.
[3] A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192.
[4] A. Ya. Khinchin, Continued Fractions, Univ. Chicago Press, Chicago, 1964.
[5] D.H. Kim, The recurrence time of irrational rotations, Osaka J. Math. 43 (2006), 351-364.
[6] D.H. Kim and K.K. Park, The first return time properties of an irrational rotation, Proc. Amer. Math. Soc., 136 (2008) 3941-3951
[7] D.H. Kim and B.K. Seo, The waiting time for irrational rotations, Nonlinearity 16 (2003), 1861-1868.
[8] M. Lothaire, Algebraic Combinatorics on words, Cambridge Univ. Press, 2002.
[9] D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory 39 (1993), 78-83.
[10] A. Rockett and P. Szüsz, Continued Fractions, World Scientific, 1992.
[11] N. B. Slater, Gaps and steps for the sequence $n \theta(\bmod 1)$, Proc. Camb. Phil. Soc. 63 (1967), 1115-1123.
[12] A.D. Wyner and J. Ziv, Some asymptotic properties of the entropy of stationary ergodic data source with applications to data compression, IEEE Trans. Inform. Theory 35 (1989), 1250-1258.

Department of Mathematics,
The University of Suwon,
Hwaseong 445-743, Korea
E-mail: kimdh@suwon.ac.kr

[^0]: Received June 16, 2008. Revised June 20, 2008.
 2000 Mathematics Subject Classification: 37E10, 11K50.
 Key words and phrases: recurrence time, the first return time, irrational rotations.
 This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund)(KRF-2007-331C00016).

