INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES

Sangwon Park

Abstract. We define injective and projective representations of quivers with two vertices with n arrows. In the representation of quivers we denote n edges between two vertices as \Rightarrow and n maps as $f_{1} \sim f_{n}$, and $E \oplus E \oplus \cdots \oplus E$ (n times) as $\oplus_{n} E$. We show that if E is an injective left R-module, then

$$
\oplus_{n} E \xrightarrow{p_{1} \sim p_{n}} E
$$

is an injective representation of $Q=\bullet \Rightarrow \bullet$ where $p_{i}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=$ $a_{i}, i \in\{1,2, \cdots, n\}$. Dually we show that if $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ is an injective representation of a quiver $Q=\bullet \Rightarrow \bullet$ then M_{1} and M_{2} are injective left R-modules. We also show that if P is a projective left R-module, then

$$
P \xrightarrow{i_{1} \sim i_{n}} \oplus_{n} P
$$

is a projective representation of $Q=\bullet \Rightarrow \bullet$ where i_{k} is the k th injection. And if $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ is an projective representation of a quiver $Q=\bullet \Rightarrow \bullet$ then M_{1} and M_{2} are projective left R-modules.

1. Introduction

A quiver is just a directed graph with vertices and edges (arrows) ([1]). We may consider many different types of quivers. We allow multiple edges and multiple arrows, and edges going from a vertex back to the same vertex. Originally a representation of quiver assigned a vector space to each vertex - and a linear map to each edge (or arrow) - with the linear map going from the vector space assigned to the initial vertex

[^0]to the one assigned to the terminal vertex. For example, a representation of the quiver $Q=\bullet \rightarrow \bullet$ is $V_{1} \xrightarrow{f} V_{2}, V_{1}$ and V_{2} are vector spaces and f is a linear map (morphism). Then we can define a morphism of two representations of the same quiver i.e., given a quiver $Q=\bullet \rightarrow \bullet$, we can define two representations $V_{1} \xrightarrow{f} V_{2}$ and $W_{1} \xrightarrow{g} W_{2}$.

Now we can define a morphism between these two representations. A morphism of $V_{1} \xrightarrow{f} V_{2}$ to $W_{1} \xrightarrow{g} W_{2}$ is given by a commutative diagram

with s_{1}, s_{2} linear maps.
In ([3]) a homotopy of quiver was developed and in ([2]) cyclic quiver ring was studies. Recently, the theory of projective representations was developed in ([4]) and the theory of injective representation was studied in ([5]).

Definition 1.1. ([7]) A left R-module E is said to be injective if given any injective linear map $\sigma: M^{\prime} \rightarrow M$ and any linear map $h: M^{\prime} \rightarrow E$, there is a linear map $g: M \rightarrow E$ such that $g \circ \sigma=h$. That is

can always be completed to a commutative diagram.
Definition 1.2. ([7]) A left R-module P is said to be projective if given any surjective linear map $\sigma: M^{\prime} \rightarrow M$ and any linear map $h: P \rightarrow M$, there is a linear map $g: P \rightarrow M^{\prime}$ such that $\sigma \circ g=h$. That is

can always be completed to a commutative diagram.

Let $G=G_{1} \times G_{2} \times \cdots \times G_{i} \times \cdots \times G_{n}$ be a direct product of groups. The projection map $\pi_{i}: G \rightarrow G_{i}$ where $\pi_{i}\left(g_{1}, g_{2}, \cdots, g_{i}, \cdots, g_{n}\right)=g_{i}$ is a homomorphism for each $i=1,2, \cdots, n$. This follows immediately from the fact that the binary operation of G coincides in the i th component with the binary operation in G_{i}. Let $\phi_{i}: G_{i} \rightarrow G_{1} \times G_{2} \times \cdots \times G_{i} \times \cdots \times G_{n}$ be given by $\phi_{i}\left(g_{i}\right)=\left(e_{1}, e_{2}, \cdots, g_{i}, \cdots, e_{n}\right)$ where $g_{i} \in G_{i}$ and e_{j} is the identity of G_{j}. This is an injection map. Let $F=\left\{X_{i} \mid i \in I\right\}$ be an indexed family of left R-modules X_{i} and denote $P=\prod_{i \in I} X_{i}$ the cartesian product of F. Define an element of P as a function f : $I \rightarrow \bigcup_{i \in I} X_{i}$ such that $f(i) \in X_{i}$ for every $i \in I$. Define $(P,+)$ by $(f+g)(i)=f(i)+g(i) \in X_{i}$ for every $i \in I$, and $0(i)=0 \in X_{i}$ and $(-f)(i)=-[f(i)]$. Then easily $(P,+)$ is an abelian group. Define $\mu: R \times P \rightarrow P$ by $(r f)(i)=r[f(i)]$ for every $i \in I$. Then easily P is a left R-module. We say P as the direct product of F over R. Consider S the subset of P such that $f(i)=0$ except only finite $i \in I$. Then easily S is a submodule of P. We say S as direct sum of F and is denoted by $S=\bigoplus_{i \in I} X_{i}$.

Remark 1. $\left.p_{j}\right|_{s}: \bigoplus_{i \in I} X_{i} \rightarrow X_{j}$ is called the natural projection of $S=\bigoplus_{i \in I} X_{i}$.

So we have morphisms

$$
X_{j} \xrightarrow{d_{j}} \bigoplus_{i \in I} X_{i} \xrightarrow{i} \prod_{i \in I} X_{i} \xrightarrow{p_{k}} X_{k}
$$

$p_{k} \circ i \circ d_{j}: X_{j} \rightarrow X_{k}$ is trivial if $j \neq k$, and is identity if $j=k$.
Remark 2. The natural injection $d_{j}: X_{j} \rightarrow \bigoplus_{i \in I} X_{i}$ is a monomorphism and the natural projection $p_{j}: \prod_{i \in I} X_{i} \rightarrow X_{j}$ is an epimorphism.

Notation : In the representation of quivers we denote n arrows between two vertices as \Rightarrow and n maps as $f_{1} \sim f_{n}$ and $E \oplus E \oplus \cdots \oplus E$ (n times) as $\oplus_{n} E$.

2. Injective representation of a quiver $Q=\bullet \Rightarrow \bullet$ with n edges

We define injective representation of a quiver with two vertices and multiple arrows. And consider their various injective representations as left R-modules.

DEFINITION 2.1. A representation $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ of a quiver $Q=\bullet \Rightarrow$ \bullet is called an injective representation if for any representation $N_{1} \xrightarrow{g_{1} \sim g_{n}} N_{2}$ with a subrepresentation

$$
S_{1}^{S_{2}} \xlongequal{\left|g_{1}\right| S_{1} \sim_{S_{2}}\left|g_{n}\right| S_{S_{1}}} S_{2}
$$

and morphisms

there exist $H \in \operatorname{Hom}_{R}\left(N_{1}, M_{1}\right)$ and $K \in \operatorname{Hom}_{R}\left(N_{2}, M_{2}\right)$ such that the following diagram

commutes and $\left.H\right|_{S_{1}}=\left.h K\right|_{S_{2}}=k$.
In other words, every diagram of representations

can be completed to a commutative diagram as follows :

Theorem 2.2. If E is an injective left R-module, then

$$
E \Longrightarrow 0
$$

is an injective representation of $Q=\bullet \Rightarrow \bullet$.

Proof. Let M_{1}, M_{2} be left R-modules, S_{1} be a submodule of M_{1}, S_{2} be a submodule of M_{2} and $g: S_{1} \rightarrow E$ be an R-linear map. Consider the following diagram

Then since E is an injective left R-module, we can complete the following commutative diagram by h.

Then $0(h(m))=0=0\left(g_{1}(m)\right), 0(h(m))=0=0\left(g_{2}(m)\right), \cdots, 0(h(m))=$ $0=0\left(g_{n}(m)\right)$. Thus, we can complete the following diagram

as a commutative diagram by $0: M_{2} \rightarrow 0$.
Therefore, we can complete the diagram

as a commutative diagram. Hence, $E \Longrightarrow 0$ is an injective representation.

Theorem 2.3. If E is an injective left R-module, then

$$
\oplus_{n} E \xrightarrow{p_{1} \sim p_{n}} E
$$

is an injective representation of $Q=\bullet \Rightarrow \bullet$ where $p_{i}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=a_{i}$, $i \in\{1,2, \cdots, n\}$.

Proof. Let M_{1}, M_{2} be a left R-module, S_{1} be a submodule of M_{1}, S_{2} be a submodule of M_{2} and $g: S_{2} \rightarrow E$ be an R-linear map. Consider the following diagram

Then since E is an injective left R-module, we can consider the following commutative diagram

by h. Define $H: M_{1} \rightarrow \oplus_{n} E$ by $H(m)=\left(h\left(f_{1}(m)\right), h\left(f_{2}(m)\right), \cdots, h\left(f_{n}(m)\right)\right)$. Then $p_{i}(H(m))=h\left(f_{i}(m)\right), i=1,2, \cdots, n$ and we can complete the following diagram

as a commutative diagram. Hence, we can complete the diagram

as a commutative diagram. Therefore $\oplus_{n} E \xrightarrow{p_{1} \sim p_{n}} E$ is an injective representation.

THEOREM 2.4. If $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ is an injective representation of a quiver $Q=\bullet \Rightarrow \bullet$ then M_{1} and M_{2} are injective left R-modules.

Proof. First we show that M_{2} is an injective left R-module. Let S be a submodule of N and $g: S \rightarrow M_{2}$ be an R-linear map and we consider the following diagram

Then since $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ is an injective representation, there exist h : $N \rightarrow M_{2}$ which completes the following

as a commutative diagram. Thus, $h: N \rightarrow M_{2}$ completes the above diagram as a commutative diagram. Therefore, M_{2} is an injective left R-module.

Let $g: S \rightarrow M_{1}$ be an R-linear map and we consider the following diagram

Consider the following diagram

where $G\left(\left(s_{1}, s_{2}, \cdots, s_{n}\right)\right)=\sum_{k=1}^{n} f_{k}\left(g\left(s_{k}\right)\right)$, and $i_{k}(s)$ is the k th injection.

Then since $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ is an injective representation, there exist h : $N \rightarrow M_{1}$ and $\alpha: \oplus_{n} E \rightarrow M_{2}$ such that the following diagram

as a commutative diagram.
Thus, $h: N \rightarrow M_{1}$ completes the following diagram

as a commutative diagram. Therefore, M_{1} is an injective left R-module.
3. Projective representation of a quiver $Q=\bullet \Rightarrow$ • with n edges

DEFINITION 3.1. A representation $P_{1} \xrightarrow{f_{1} \sim f_{n}} P_{2}$ of a quiver $Q=$ is called a projective representation if every diagram of representations

can be completed to a commutative diagram as follows :

Theorem 3.2. If P is a projective left R-module, then

$$
0 \Longrightarrow P
$$

is a projective representation of $Q=\bullet \bullet \bullet$.
Proof. Let $M_{1}, M_{2}, N_{1}, N_{2}$ be left R-modules, and $k: P \rightarrow N_{2}$ be an R-linear map. Consider the following diagram

Then since P is a projective left R-module, we can complete the following commutative diagram by h.

Then $0: 0 \rightarrow M_{1}$ completes the following diagram

as a commutative diagram. Hence, $0 \Longrightarrow P$ is a projective representation.

Theorem 3.3. If P is a projective left R-module, then

$$
P \xrightarrow{i_{1} \sim i_{n}} \oplus_{n} P
$$

is a projective representation of $Q=\bullet \Rightarrow \bullet$ where i_{k} is the k th injection.

Proof. Let $M_{1}, M_{2}, N_{1}, N_{2}$ be left R-modules and $g: P \rightarrow N_{1}$ be a R-linear map. Consider the following diagram

Since P is a projective left R-module we can complete the following diagram by h.

Define $H\left(\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right)=f_{1}\left(h\left(a_{1}\right)\right)+f_{2}\left(h\left(a_{2}\right)\right)+\cdots+f_{n}\left(h\left(a_{n}\right)\right)$. Then $f_{1}(h(a))=H\left(i_{1}(a)\right), f_{2}(h(a))=H\left(i_{2}(a)\right), \cdots, f_{n}(h(a))=H\left(i_{n}(a)\right)$. Thus we can complete the following diagram

as a commutative diagram. Hence, $P \xrightarrow{i_{1} \sim i_{n}} \oplus_{n} P$ is a projective representation.

THEOREM 3.4. If $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ is an projective representation of a quiver $Q=\bullet \Rightarrow$ then M_{1} and M_{2} are projective left R-modules.

Proof. First we show that M_{1} is a projective left R-module. Let S and N be left R-modules and $g: M_{1} \rightarrow S$ be an R-linear map and we consider the following diagram

Then since $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ is a projective representation, there exist h : $M_{1} \rightarrow N$ which completes the following

Therefore, M_{1} is a projective left R-module. Let $g: M_{2} \rightarrow S$ be an R-linear map and we consider the following diagram

Define $G: M_{1} \rightarrow \oplus_{i=1}^{n} S_{i}$ where $p_{k}(G(m))=g\left(f_{k}(m)\right)$, for $k=1, \ldots, n$ and $G(m)=\left(g\left(f_{1}(m)\right), g\left(f_{2}(m)\right), \cdots, g\left(f_{n}(m)\right)\right)$, and $p_{k}\left(\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right)=$ a_{k}, and consider the following diagram

Then since $M_{1} \xrightarrow{f_{1} \sim f_{n}} M_{2}$ is a projective representation, there exist h : $M_{1} \rightarrow \oplus_{n} N$ and $\alpha: M_{2} \rightarrow N$ such that the following diagram

as a commutative diagram. Thus, $\alpha: M_{2} \rightarrow N$ completes the following diagram

Therefore, M_{2} is a projective left R-module.

References

[1] R. Diestel, Graph Theory, G.T.M. No.88, Springer-Verlag, New York (1997).
[2] E. Enochs, I. Herzog, S. Park, Cyclic quiver rings and polycyclic-by-finite group rings, Houston J. Math. (1), 25 (1999) 1-13.
[3] E. Enochs, I. Herzog, A homotopy of quiver morphism with applications to representations, Canad J. Math. (2), 51 (1999), 294-308.
[4] S. Park, Projective representations of quivers, IJMMS(2), 31 (2002), 97-101.
[5] S. Park, D. Shin, Injective representation of quiver, Commun. Korean Math. Soc. (1), 21 (2006), 37-43.
[6] R. S. Pierce, Associative Algebras, G.T.M. No.173, Springer-Verlag, New York (1982).
[7] J. Rotman, An Introduction to Homological Algebra, Academic Press Inc., New York (1979).

Department of Mathematics,
Dong-A University,
Pusan, Korea 604-714
E-mail: swpark@donga.ac.kr

[^0]: Received July 2, 2008. Revised July 16, 2008.
 2000 Mathematics Subject Classification: Primary 16E30; Secondary 13C11, 16D80.

 Key words and phrases: injective module, injective representation, quiver.
 This paper was supported by Dong-A University Research fund, in 2006.

