INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH \(n \) EDGES

Sangwon Park

Abstract. We define injective and projective representations of quivers with two vertices with \(n \) arrows. In the representation of quivers we denote \(n \) edges between two vertices as \(\Rightarrow \) and \(n \) maps as \(f_1 \sim f_n \), and \(E \oplus E \oplus \cdots \oplus E \) (\(n \) times) as \(\oplus_n E \). We show that if \(E \) is an injective left \(R \)-module, then
\[
\oplus_n E \xrightarrow{p_1 \sim p_n} E
\]
is an injective representation of \(Q = \bullet \Rightarrow \bullet \) where \(p_i(a_1, a_2, \cdots , a_n) = a_i, \; i \in \{1, 2, \cdots , n\} \). Dually we show that if \(M_1 \xrightarrow{f_1 \sim f_n} M_2 \) is an injective representation of a quiver \(Q = \bullet \Rightarrow \bullet \) then \(M_1 \) and \(M_2 \) are injective left \(R \)-modules. We also show that if \(P \) is a projective left \(R \)-module, then
\[
P \xrightarrow{i_1 \sim i_n} \oplus_n P
\]
is a projective representation of \(Q = \bullet \Rightarrow \bullet \) where \(i_k \) is the \(k \)th injection. And if \(M_1 \xrightarrow{f_1 \sim f_n} M_2 \) is an projective representation of a quiver \(Q = \bullet \Rightarrow \bullet \) then \(M_1 \) and \(M_2 \) are projective left \(R \)-modules.

1. Introduction

A quiver is just a directed graph with vertices and edges (arrows) ([1]). We may consider many different types of quivers. We allow multiple edges and multiple arrows, and edges going from a vertex back to the same vertex. Originally a representation of quiver assigned a vector space to each vertex - and a linear map to each edge (or arrow) - with the linear map going from the vector space assigned to the initial vertex
to the one assigned to the terminal vertex. For example, a representation of the quiver $Q = \bullet \rightarrow \bullet$ is $V_1 \xrightarrow{f} V_2$, V_1 and V_2 are vector spaces and f is a linear map (morphism). Then we can define a morphism of two representations of the same quiver i.e., given a quiver $Q = \bullet \rightarrow \bullet$, we can define two representations $V_1 \xrightarrow{f} V_2$ and $W_1 \xrightarrow{g} W_2$.

Now we can define a morphism between these two representations. A morphism of $V_1 \xrightarrow{f} V_2$ to $W_1 \xrightarrow{g} W_2$ is given by a commutative diagram

$$
\begin{array}{ccc}
V_1 & \xrightarrow{f} & V_2 \\
\downarrow{s_1} & & \downarrow{s_2} \\
W_1 & \xrightarrow{g} & W_2
\end{array}
$$

with s_1, s_2 linear maps.

In ([3]) a homotopy of quiver was developed and in ([2]) cyclic quiver ring was studies. Recently, the theory of projective representations was developed in ([4]) and the theory of injective representation was studied in ([5]).

Definition 1.1. ([7]) A left R-module E is said to be injective if given any injective linear map $\sigma : M' \rightarrow M$ and any linear map $h : M' \rightarrow E$, there is a linear map $g : M \rightarrow E$ such that $g \circ \sigma = h$. That is

$$
\begin{array}{ccc}
0 & \rightarrow & M' & \xrightarrow{\sigma} & M \\
& \downarrow{h} & & \downarrow{g} & \\
& & E
\end{array}
$$

can always be completed to a commutative diagram.

Definition 1.2. ([7]) A left R-module P is said to be projective if given any surjective linear map $\sigma : M' \rightarrow M$ and any linear map $h : P \rightarrow M$, there is a linear map $g : P \rightarrow M'$ such that $\sigma \circ g = h$. That is

$$
\begin{array}{ccc}
P & \xrightarrow{g} & M' \xrightarrow{\sigma} & M \\
& & \downarrow{h} & \\
& & M \rightarrow 0
\end{array}
$$

can always be completed to a commutative diagram.
Let \(G = G_1 \times G_2 \times \cdots \times G_i \times \cdots \times G_n \) be a direct product of groups. The projection map \(\pi_i : G \to G_i \) where \(\pi_i(g_1, g_2, \cdots, g_i, \cdots, g_n) = g_i \) is a homomorphism for each \(i = 1, 2, \cdots, n \). This follows immediately from the fact that the binary operation of \(G \) coincides in the \(i \)th component with the binary operation in \(G_i \). Let \(\phi_i : G_i \to G_1 \times G_2 \times \cdots \times G_i \times \cdots \times G_n \) be given by \(\phi_i(g_i) = (e_1, e_2, \cdots, g_i, \cdots, e_n) \) where \(g_i \in G_i \) and \(e_j \) is the identity of \(G_j \). This is an injection map. Let \(F = \{X_i|i \in I\} \) be an indexed family of left \(R \)-modules \(X_i \) and denote \(P = \prod_{i \in I} X_i \) the cartesian product of \(F \). Define an element of \(P \) as a function \(f : I \to \bigcup_{i \in I} X_i \) such that \(f(i) \in X_i \) for every \(i \in I \), and \(0(i) = 0 \in X_i \) and \((-f)(i) = -[f(i)] \). Then easily \((P,+) \) is an abelian group. Define \(\mu : R \times P \to P \) by \((r f)(i) = r[f(i)] \) for every \(i \in I \). Then easily \(P \) is a left \(R \)-module. We say \(P \) as the direct product of \(F \) over \(R \). Consider \(S \) the subset of \(P \) such that \(f(i) = 0 \) except only finite \(i \in I \). Then easily \(S \) is a submodule of \(P \). We say \(S \) as direct sum of \(F \) and is denoted by \(S = \bigoplus_{i \in I} X_i \).

Remark 1. \(p_j|_s : \bigoplus_{i \in I} X_i \to X_j \) is called the natural projection of \(S = \bigoplus_{i \in I} X_i \).

So we have morphisms

\[
X_j \xrightarrow{d_j} \bigoplus_{i \in I} X_i \xrightarrow{i} \prod_{i \in I} X_i \xrightarrow{p_k} X_k
\]

\(p_k \circ i \circ d_j : X_j \to X_k \) is trivial if \(j \neq k \), and is identity if \(j = k \).

Remark 2. The natural injection \(d_j : X_j \to \bigoplus_{i \in I} X_i \) is a monomorphism and the natural projection \(p_j : \prod_{i \in I} X_i \to X_j \) is an epimorphism.

Notation : In the representation of quivers we denote \(n \) arrows between two vertices as \(\Rightarrow \) and \(n \) maps as \(f_1 \sim f_n \) and \(E \oplus E \oplus \cdots \oplus E \) (\(n \) times) as \(\oplus_n E \).

2. Injective representation of a quiver \(Q = \bullet \Rightarrow \bullet \) with \(n \) edges

We define injective representation of a quiver with two vertices and multiple arrows. And consider their various injective representations as left \(R \)-modules.
Definition 2.1. A representation $M_1 \xrightarrow{f_1 \sim f_n} M_2$ of a quiver $Q = \bullet \Rightarrow \bullet$ is called an injective representation if for any representation $N_1 \xrightarrow{g_1 \sim g_n} N_2$ with a subrepresentation

\[
\begin{array}{c}
S_1 \xrightarrow{s_1 | s_2 \sim s_n | s_1} S_2
\end{array}
\]

and morphisms

\[
\begin{array}{c}
S_1 \xrightarrow{h} S_2 \\
M_1 \xrightarrow{f_1 \sim f_n} M_2
\end{array}
\]

there exist $H \in \text{Hom}_R(N_1, M_1)$ and $K \in \text{Hom}_R(N_2, M_2)$ such that the following diagram

\[
\begin{array}{c}
N_1 \xrightarrow{g_1 \sim g_n} N_2 \\
M_1 \xrightarrow{f_1 \sim f_n} M_2
\end{array}
\]

commutes and $H|_{S_1} = h$, $K|_{S_2} = k$.

In other words, every diagram of representations

\[
\begin{array}{c}
(0 \xrightarrow{0}) \xrightarrow{h} (S_1 \xrightarrow{s_1 | s_2 \sim s_n | s_1} S_2) \xrightarrow{k} (N_1 \xrightarrow{g_1 \sim g_n} N_2)
\end{array}
\]

can be completed to a commutative diagram as follows:

\[
\begin{array}{c}
(0 \xrightarrow{0}) \xrightarrow{h} (S_1 \xrightarrow{s_1 | s_2 \sim s_n | s_1} S_2) \xrightarrow{k} (N_1 \xrightarrow{g_1 \sim g_n} N_2)
\end{array}
\]

Theorem 2.2. If E is an injective left R-module, then

\[
E \xrightarrow{} 0
\]

is an injective representation of $Q = \bullet \Rightarrow \bullet$.
Proof. Let M_1, M_2 be left R-modules, S_1 be a submodule of M_1, S_2 be a submodule of M_2 and $g : S_1 \rightarrow E$ be an R-linear map. Consider the following diagram

\[
(0 \longrightarrow 0) \longrightarrow (S_1 \longrightarrow S_2) \longrightarrow (M_1 \overset{g_1 \sim g_n}{\longrightarrow} M_2)
\]

Then since E is an injective left R-module, we can complete the following commutative diagram by h.

\[
0 \longrightarrow S_1 \longrightarrow M_1
\]

Then $0(h(m)) = 0 = 0(g_1(m)), 0(h(m)) = 0 = 0(g_2(m)), \cdots, 0(h(m)) = 0 = 0(g_n(m))$. Thus, we can complete the following diagram

\[
M_1 \overset{g_1 \sim g_n}{\longrightarrow} M_2
\]

as a commutative diagram by $0 : M_2 \rightarrow 0$.

Therefore, we can complete the diagram

\[
(0 \longrightarrow 0) \longrightarrow (S_1 \longrightarrow S_2) \longrightarrow (M_1 \overset{g_1 \sim g_n}{\longrightarrow} M_2)
\]

as a commutative diagram. Hence, $E \longrightarrow 0$ is an injective representation.

Theorem 2.3. If E is an injective left R-module, then

\[
\bigoplus_n E \overset{p_1 \sim p_n}{\longrightarrow} E
\]

is an injective representation of $Q = \bullet \rightarrow \bullet$ where $p_i(a_1, a_2, \cdots, a_n) = a_i$, $i \in \{1, 2, \cdots, n\}$.

Proof. Let M_1, M_2 be a left R-module, S_1 be a submodule of M_1, S_2 be a submodule of M_2 and $g : S_2 \to E$ be an R-linear map. Consider the following diagram

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & 0 & \longrightarrow & (S_1 & \longrightarrow & S_2) & \longrightarrow & (M_1 & \overset{f_1 \sim f_n}{\longrightarrow} & M_2) \\
& & & & g & \downarrow & \downarrow & & \downarrow & \\
& & & & (\oplus_n E & \overset{p_1 \sim p_n}{\longrightarrow} & E) & & & \\
\end{array}
$$

Then since E is an injective left R-module, we can consider the following commutative diagram

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & S_2 & \longrightarrow & M_2 \\
& & g & \downarrow & \downarrow & h \\
& & E & & \\
\end{array}
$$

by h. Define $H : M_1 \to \oplus_n E$ by $H(m) = (h(f_1(m)), h(f_2(m)), \ldots, h(f_n(m)))$. Then $p_i(H(m)) = h(f_i(m)), i = 1, 2, \ldots, n$ and we can complete the following diagram

$$
\begin{array}{ccccccccc}
M_1 & \overset{f_1 \sim f_n}{\longrightarrow} & M_2 \\
H & \downarrow & \downarrow & h \\
(\oplus_n E & \overset{p_1 \sim p_n}{\longrightarrow} & E) & & & & & & & & \\
\end{array}
$$

as a commutative diagram. Hence, we can complete the diagram

$$
\begin{array}{ccccccccc}
(0 & \longrightarrow & 0 & \longrightarrow & (S_1 & \longrightarrow & S_2) & \longrightarrow & (M_1 & \overset{f_1 \sim f_n}{\longrightarrow} & M_2) \\
& & & & H & \downarrow & \downarrow & h & \downarrow & \\
& & & & (\oplus_n E & \overset{p_1 \sim p_n}{\longrightarrow} & E) & & & \\
\end{array}
$$

as a commutative diagram. Therefore $\oplus_n E \overset{p_1 \sim p_n}{\longrightarrow} E$ is an injective representation. \qed

Theorem 2.4. If $M_1 \overset{f_1 \sim f_n}{\longrightarrow} M_2$ is an injective representation of a quiver $Q = \bullet \rightarrow \bullet$ then M_1 and M_2 are injective left R-modules.
Proof. First we show that M_2 is an injective left R-module. Let S be a submodule of N and $g : S \to M_2$ be an R-linear map and we consider the following diagram

$$
\begin{array}{c}
0 & \rightarrow & S & \rightarrow & N \\
\downarrow{g} & & \downarrow & & \\
& & M_2 & & \\
\end{array}
$$

Then since $M_1 \xrightarrow{f_1 \sim f_n} M_2$ is an injective representation, there exist $h : N \to M_2$ which completes the following

$$
\begin{array}{c}
(0 \rightarrow 0) & \rightarrow & (0 \rightarrow S) & \rightarrow & (0 \rightarrow N) \\
\downarrow & & \downarrow{h} & & \\
(M_1 \xrightarrow{f_1 \sim f_n} M_2) & & & & \\
\end{array}
$$

as a commutative diagram. Thus, $h : N \to M_2$ completes the above diagram as a commutative diagram. Therefore, M_2 is an injective left R-module.

Let $g : S \to M_1$ be an R-linear map and we consider the following diagram

$$
\begin{array}{c}
0 & \rightarrow & S & \rightarrow & N \\
\downarrow{g} & & \downarrow & & \\
& & M_1 & & \\
\end{array}
$$

Consider the following diagram

$$
\begin{array}{c}
(0 \rightarrow 0) & \rightarrow & (S \xrightarrow{i_1 \sim i_n} \oplus_n S) & \rightarrow & (N \xrightarrow{j_1 \sim j_n} \oplus_n N) \\
\downarrow{g} & & \downarrow{G} & & \\
(M_1 \xrightarrow{f_1 \sim f_n} M_2) & & & & \\
\end{array}
$$

where $G((s_1, s_2, \ldots, s_n)) = \sum_{k=1}^{n} f_k(g(s_k))$, and $i_k(s)$ is the kth injection.
Then since $M_1 \xrightarrow{f_1 \sim f_n} M_2$ is an injective representation, there exist $h : N \to M_1$ and $\alpha : \bigoplus_n E \to M_2$ such that the following diagram

\[
\begin{array}{ccc}
N & \xrightarrow{j_1 \sim j_n} & \bigoplus_n N \\
\downarrow h & & \downarrow \alpha \\
(M_1 \xrightarrow{f_1 \sim f_n} M_2) & & \\
\end{array}
\]

as a commutative diagram. Thus, $h : N \to M_1$ completes the following diagram

\[
\begin{array}{ccc}
0 & \to & S & \to & N \\
\downarrow g & & \downarrow h & & \\
M_1 & & \\
\end{array}
\]

as a commutative diagram. Therefore, M_1 is an injective left R-module.

\[
\square
\]

3. Projective representation of a quiver $Q = \bullet \Rightarrow \bullet$ with n edges

Definition 3.1. A representation $P_1 \xrightarrow{f_1 \sim f_n} P_2$ of a quiver $Q = \bullet \Rightarrow \bullet$ is called a projective representation if every diagram of representations

\[
\begin{array}{ccc}
(P_1 \xrightarrow{f_1 \sim f_n} P_2) & \to & (M_1 \xrightarrow{g_1 \sim g_n} M_2) \\
\downarrow & & \downarrow \\
(N_1 \xrightarrow{h_1 \sim h_n} N_2) & \to & (0 \to 0) \\
\end{array}
\]

can be completed to a commutative diagram as follows:

\[
\begin{array}{ccc}
(P_1 \xrightarrow{f_1 \sim f_n} P_2) & \xrightarrow{H} & (M_1 \xrightarrow{g_1 \sim g_n} M_2) \\
\downarrow & & \downarrow \\
(N_1 \xrightarrow{h_1 \sim h_n} N_2) & \to & (0 \to 0) \\
\end{array}
\]
Theorem 3.2. If P is a projective left R-module, then

$$0 \to P$$

is a projective representation of $Q = \bullet \to \bullet$.

Proof. Let M_1, M_2, N_1, N_2 be left R-modules, and $k : P \to N_2$ be an R-linear map. Consider the following diagram

$$
\begin{array}{ccc}
(M_1 & \xrightarrow{g_1 \sim g_n} & M_2) & \xrightarrow{k} & (N_1 & \xrightarrow{h_1 \sim h_n} & N_2) & \xrightarrow{0} & (0 & \to & 0) \\
M_1 & \xrightarrow{g_1 \sim g_n} & M_2 & & & & & & \end{array}
$$

Then since P is a projective left R-module, we can complete the following commutative diagram by h.

Then $0 : 0 \to M_1$ completes the following diagram

$$
\begin{array}{ccc}
(0 & \to & P) & \xrightarrow{h} & (0 & \to & 0) \\
M_1 & \xrightarrow{g_1 \sim g_n} & M_2 & & \xrightarrow{h} & (N_1 & \xrightarrow{h_1 \sim h_n} & N_2) & \xrightarrow{0} & (0 & \to & 0) \\
M_1 & \xrightarrow{g_1 \sim g_n} & M_2 & & & & & & \end{array}
$$

as a commutative diagram. Hence, $0 \to P$ is a projective representation.

Theorem 3.3. If P is a projective left R-module, then

$$P \xrightarrow{i_1 \sim i_n} \oplus_n P$$

is a projective representation of $Q = \bullet \to \bullet$ where i_k is the kth injection.
Proof. Let \(M_1, M_2, N_1, N_2 \) be left \(R \)-modules and \(g : P \to N_1 \) be a \(R \)-linear map. Consider the following diagram

\[
\begin{array}{ccc}
(P \xrightarrow{i_1 \sim i_n} \oplus_n P) & \rightarrow & (N_1 \rightarrow N_2 \rightarrow 0) \\
g & & \\
(M_1 \xrightarrow{f_1 \sim f_n} M_2) & \rightarrow & (0 \rightarrow 0)
\end{array}
\]

Since \(P \) is a projective left \(R \)-module we can complete the following diagram by \(h \).

\[
\begin{array}{ccc}
P & \rightarrow & M_1 \rightarrow N_1 \rightarrow 0 \\
\nearrow & & \downarrow h & \\
& & g & \downarrow
\end{array}
\]

Define \(H((a_1, a_2, \cdots, a_n)) = f_1(h(a_1)) + f_2(h(a_2)) + \cdots + f_n(h(a_n)) \). Then \(f_1(h(a)) = H(i_1(a)), f_2(h(a)) = H(i_2(a)), \ldots, f_n(h(a)) = H(i_n(a)) \).

Thus we can complete the following diagram

\[
\begin{array}{ccc}
(P \xrightarrow{i_1 \sim i_n} \oplus_n P) & \rightarrow & (N_1 \rightarrow N_2 \rightarrow 0) \\
\nearrow h & & \\
(M_1 \xrightarrow{f_1 \sim f_n} M_2) & \rightarrow & (0 \rightarrow 0)
\end{array}
\]

as a commutative diagram. Hence, \(P \xrightarrow{i_1 \sim i_n} \oplus_n P \) is a projective representation.

Theorem 3.4. If \(M_1 \xrightarrow{f_1 \sim f_n} M_2 \) is an projective representation of a quiver \(Q = \bullet \Rightarrow \bullet \) then \(M_1 \) and \(M_2 \) are projective left \(R \)-modules.

Proof. First we show that \(M_1 \) is a projective left \(R \)-module. Let \(S \) and \(N \) be left \(R \)-modules and \(g : M_1 \to S \) be an \(R \)-linear map and we consider the following diagram

\[
\begin{array}{ccc}
M_1 & \rightarrow & N \rightarrow S \rightarrow 0 \\
g & & \downarrow
\end{array}
\]
Then since $M_1 \to M_2$ is a projective representation, there exist $h : M_1 \to N$ which completes the following diagram:

\[
\begin{array}{c}
(M_1 \xrightarrow{f_1 \sim f_n} M_2) \\
\downarrow h \\
(N \xrightarrow{0} S \xrightarrow{0} (0 \to 0))
\end{array}
\]

Therefore, M_1 is a projective left R-module. Let $g : M_2 \to S$ be an R-linear map and we consider the following diagram:

\[
\begin{array}{c}
M_2 \\
\downarrow g \\
N \xrightarrow{g} S \xrightarrow{0}
\end{array}
\]

Define $G : M_1 \to \bigoplus_{i=1}^n S_i$ where $p_k(G(m)) = g(f_k(m))$, for $k = 1, \ldots, n$ and $G(m) = (g(f_1(m)), g(f_2(m)), \ldots, g(f_n(m)))$, and $p_k((a_1, a_2, \ldots, a_n)) = a_k$, and consider the following diagram:

\[
\begin{array}{c}
(M_1 \xrightarrow{f_1 \sim f_n} M_2) \\
\downarrow G \\
(\bigoplus_{i=1}^n N_i \xrightarrow{q_i \sim q_n} N) \xrightarrow{g} (\bigoplus_{n} S \xrightarrow{p_1 \sim p_n} S) \xrightarrow{0}
\end{array}
\]

Then since $M_1 \xrightarrow{f_1 \sim f_n} M_2$ is a projective representation, there exist $h : M_1 \to \bigoplus_n N$ and $\alpha : M_2 \to N$ such that the following diagram:

\[
\begin{array}{c}
M_1 \xrightarrow{f_1 \sim f_n} M_2 \\
\downarrow h \\
(\bigoplus_n N \xrightarrow{i_1 \sim i_n} N)
\end{array}
\]

\[\alpha\]

\[\alpha\]
as a commutative diagram. Thus, $\alpha : M_2 \to N$ completes the following diagram

\[
\begin{array}{ccc}
M_2 & \xrightarrow{\alpha} & N \\
\downarrow{g} & & \downarrow{g} \\
N & \xrightarrow{} & S & \xrightarrow{} & 0
\end{array}
\]

Therefore, M_2 is a projective left R-module.

References

Department of Mathematics,
Dong-A University,
Pusan, Korea 604-714
E-mail: swpark@donga.ac.kr