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FOURIER-YEH-FEYNMAN TRANSFORM AND

CONVOLUTION ON YEH-WIENER SPACE

Byoung Soo Kim∗ and Young Kyun Yang

Abstract. We define Fourier-Yeh-Feynman transform and convo-
lution product on the Yeh-Wiener space, and establish the exis-
tence of Fourier-Yeh-Feynman transform and convolution product
for functionals in a Banach algebra S(Q). Also we obtain Parseval’s
relation for those functionals.

1. Introduction

In 1976 [2], Cameron and Storvick introduced an L2 analytic Fourier-
Feynman transform on classical Wiener space. In [9], Johnson and Sk-
oug developed an Lp analytic Fourier-Feynman transform theory for
1 ≤ p ≤ 2 that extended the results in [2]. In [7], Huffman, Park
and Skoug defined a convolution product for functionals on classical
Wiener space and they obtained various results on the Fourier-Feynman
transform and the convolution product [7,8]. In [11], Park, Skoug and
Storvick investigated various relationships among the first variation, the
convolution product, and the Fourier-Feynman transform for functionals
on classical Wiener space that belong to the Banach algebra S.

Recently Ahn, Chang, Kim and Yoo [1,5] extended the above rela-
tionships among the Fourier-Feynman transform, the convolution prod-
uct and the first variation for functionals in S on classical Wiener space
to those for functionals in the Fresnel class F(B) on abstract Wiener
space. Moreover they [6] obtained the above results for functionals in a
generalized Fresnel class FA1,A2 containing F(B).
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For a detailed survey of previous work on Fourier-Feynman transform
and related topics, see the expository paper [12] by Skoug and Storvick.

On the other hand, Yeh [13] extended Wiener space to Yeh-Wiener
space, that is, a space of functions of two variables. Much varied work
on the Yeh-Wiener space has been done. For example, the first author
[10] studied integral transforms of square integrable functionals on Yeh-
Wiener space.

The purpose of this paper is to extend the results for functionals on
Wiener space or on abstract Wiener space to those for functionals on
Yeh-Wiener space. In Section 2, we introduce Yeh-Wiener space and
Yeh-Feynman integral, and then define Fourier-Yeh-Feynman transform
and convolution of functionals on Yeh-Wiener space. In Section 3, we
establish the existence of Fourier-Yeh-Feynman transform and convolu-
tion product for functionals in a Banach algebra S(Q). Also we obtain
Parseval’s relation for those functionals.

2. Definitions and preliminaries

Let Q = [0, S] × [0, T ] and let C(Q) denote Yeh-Wiener space; that
is, the space of all real-valued continuous functions x(s, t) on Q with
x(s, 0) = x(0, t) = 0 for all 0 ≤ s ≤ S and 0 ≤ t ≤ T . Yeh [13] defined
a Gaussian measure mY on C(Q) (later modified in [14]) such that as
a stochastic process {x(s, t) : (s, t) ∈ Q} has mean E[x(s, t)] = 0 and
covariance E[x(s, t)x(u, v)] = min{s, u}min{t, v}.

LetM denote the class of all Yeh-Wiener measurable subsets of C(Q)
and we denote the Yeh-Wiener integral of a Yeh-Wiener integrable func-
tional F by

(2.1)

∫

C(Q)

F (x) dmY (x).

A subset E of C(Q) is said to be scale-invariant measurable provided
ρE is Yeh-Wiener measurable for every ρ > 0, and a scale-invariant
measurable set N is said to be scale-invariant null provided mY (ρN) = 0
for every ρ > 0. A property that holds except on a scale-invariant null
set is said to hold scale-invariant almost everywhere (s-a.e.). Given two
complex-valued functions F and G on C(Q), we say that F = G s-a.e.
and write F ≈ G if F (ρx) = G(ρx) for mY almost every x ∈ C(Q) for
all ρ > 0.
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Let C+ and C∼+ denote the set of complex numbers with positive real
part and nonzero complex numbers with nonnegative real part, respec-
tively.

Definition 2.1. Let F be a complex valued measurable functional
on C(Q) such that

(2.2) JF (λ) =

∫

C(Q)

F (λ−1/2x) dmY (x)

exists as a finite number for all real λ > 0. If there exists a function
J∗F (λ) analytic in C+ such that J∗F (λ) = JF (λ) for all λ > 0, then J∗F (λ)
is defined to be the analytic Yeh-Wiener integral of F over C(Q) with
parameter λ, and for λ ∈ C+ we write

(2.3)

∫ anwλ

C(Q)

F (x) dmY (x) = J∗F (λ).

If the following limit exists for nonzero real q, then we call it the analytic
Yeh-Feynman integral of F over C(Q) with parameter q and we write

(2.4)

∫ anfq

C(Q)

F (x) dmY (x) = lim
λ→−iq

∫ anwλ

C(Q)

F (x) dmY (x)

where λ approaches −iq through C+.

Now we introduce the definitions of analytic Fourier-Yeh-Feynman
transform and convolution product for functionals defined on C(Q). Let
1 ≤ p < ∞ and let q be a nonzero real number throughout this paper.

Definition 2.2. For λ ∈ C+ and y ∈ C(Q), let

(2.5) Tλ(F )(y) =

∫ anwλ

C(Q)

F (x + y) dmY (x).

For 1 < p < ∞, we define the Lp analytic Fourier-Yeh-Feynman trans-

form T
(p)
q (F ) of F on C(Q) by the formula (λ ∈ C+)

(2.6) T (p)
q (F )(y) = l. i. m.

λ→−iq
Tλ(F )(y),

whenever this limit exists; that is, for each ρ > 0,

(2.7) lim
λ→−iq

∫

C(Q)

|Tλ(F )(ρx)− T (p)
q (F )(ρx)|p′ dmY (x) = 0
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where 1/p + 1/p′ = 1. We define the L1 analytic Fourier-Yeh-Feynman

transform T
(1)
q (F ) of F by (λ ∈ C+)

(2.8) T (1)
q (F )(y) = lim

λ→−iq
Tλ(F )(y),

for s-a.e. y ∈ C(Q), whenever this limit exists.

By the definition of the analytic Yeh-Feynman integral and the L1

analytic Fourier-Yeh-Feynman transform, it is easy to see that for a
nonzero real number q,

(2.9) T (1)
q (F )(y) =

∫ anfq

C(Q)

F (x + y) dmY (x)

and

(2.10) T (1)
q (F )(0) =

∫ anfq

C(Q)

F (x) dmY (x).

In our next example we evaluate Fourier-Yeh-Feynman transforms of
some functionals.

Example 2.3. Let α be of bounded variation on Q in the sense of
Hardy and Krause. Let

F (x) =

∫

Q

x(s, t) dα(s, t), G(x) =

∫

Q

[x(s, t)]2 dα(s, t).

We evaluate Fourier-Yeh-Feynman transforms of F and G. For λ > 0,
using Fubini theorem we have

Tλ(F )(y) =

∫

Q

∫

C(Q)

[λ−1/2x(s, t) + y(s, t)] dmY (x) dα(s, t).

Since
∫

C(Q)
x(s, t) dmY (x) = 0, we have

Tλ(F )(y) =

∫

Q

y(s, t) dα(s, t)

and so

T (p)
q (F )(y) =

∫

Q

y(s, t) dα(s, t).

Similarly we have for λ > 0

Tλ(G)(y) =

∫

Q

∫

C(Q)

[λ−1/2x(s, t) + y(s, t)]2 dmY (x) dα(s, t).
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Since
∫

C(Q)
[x(s, t)]2 dmY (x) = st/2, we have

Tλ(G)(y) =

∫

Q

( 1

2λ
st + [y(s, t)]2

)
dα(s, t).

Letting λ → −iq we obtain

T (p)
q (G)(y) =

i

2q

∫

Q

st dα(s, t) +

∫

Q

[y(s, t)]2 dα(s, t).

Definition 2.4. Let F and G be functionals on C(Q). For λ ∈ C+,
we define their convolution product (if it exists) by

(2.11) (F ∗G)λ(y) =

∫ anwλ

C(Q)

F
(y + x√

2

)
G

(y − x√
2

)
dmY (x).

Moreover if λ = −iq for nonzero real q, the convolution product is defined
by

(2.12) (F ∗G)q(y) =

∫ anfq

C(Q)

F
(y + x√

2

)
G

(y − x√
2

)
dmY (x).

It is easy to see that commutative law and distributive law hold for
the convolution product.

Next we describe the class of functionals that we work with in this
paper. The Banach algebra S(Q) consists of functionals expressible in
the form

(2.13) F (x) =

∫

L2(Q)

exp{i〈α, x〉} df(α)

for s-a.e. x in C(Q), where f is an element of M(L2(Q)), the space of
complex valued countably additive Borel measures on L2(Q) and 〈α, x〉
denotes the Paley-Wiener-Zigmund stochastic integral

∫
Q

α(s, t) dx(s, t).

The Banach algebra S(Q) is the Yeh-Wiener space version of the
Banach algebra S on classical Wiener space introduced by Cameron and
Storvick in [3].

It is known that

(2.14)

∫

C(Q)

exp{i〈α, x〉} dmY (x) = exp
{
−1

2
‖α‖2

}
,
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where ‖α‖2 =
∫

Q
(α(s, t))2 ds dt. Moreover if F ∈ S(Q) is given by

(2.13), then F is analytic Yeh-Feynman integrable and

(2.15)

∫ anfq

C(Q)

F (x) dmY (x) =

∫

L2(Q)

exp
{
− i

2q
‖α‖2

}
df(α).

3. Fourier-Yeh-Feynman transform and convolution

We begin this section by proving the existence of Lp analytic Fourier-
Yeh-Feynman transform for functionals in S(Q).

Theorem 3.1. Let F ∈ S(Q) be given by (2.13). Then for all p
with 1 ≤ p < ∞ and for all nonzero real q, the Lp analytic Fourier-Yeh-

Feynman transform T
(p)
q (F ) exists, belongs to S(Q), and is given by the

formula

(3.1) T (p)
q (F )(y) =

∫

L2(Q)

exp{i〈α, y〉} dft(α)

for s-a.e. y in C(Q), where ft is the measure defined by

(3.2) ft(E) =

∫

E

exp
{
− i

2q
‖α‖2

}
df(α)

for E ∈ B(L2(Q)).

Proof. Using the Fubini theorem and integration formula (2.14) we
obtain

Tλ(F )(y) =

∫

C(Q)

F (λ−1/2x + y) dmY (x)

=

∫

L2(Q)

∫

C(Q)

exp{i〈α, λ−1/2x + y〉} dmY (x) df(α)

=

∫

L2(Q)

exp
{

i〈α, y〉 − 1

2λ
‖α‖2

}
df(α)

for all λ > 0 and s-a.e. y in C(Q). Let λ ∈ C∼+ and let {λn} be a sequence
in C∼+ which converges to λ. Then | exp{i〈α, y〉 − 1

2λn
‖α‖2}| ≤ 1 for all

n = 1, 2, . . . and so by the dominated convergence theorem, the right
hand side of the above equation is a bounded continuous function of



Fourier-Yeh-Feynman transform and convolution 341

λ ∈ C∼+. Let ∆ be a closed contour in C+. Then by the Fubini theorem
and the Cauchy theorem,

∫

∆

∫

L2(Q)

exp
{

i〈α, y〉 − 1

2λ
‖α‖2

}
df(α) dλ = 0

and so by the Morera theorem,
∫

L2(Q)
exp{i〈α, y〉 − 1

2λ
‖α‖2} df(α) is an

analytic function of λ ∈ C+. Hence for λ ∈ C+ and s-a.e. y ∈ C(Q),

Tλ(F )(y) =

∫

L2(Q)

exp
{

i〈α, y〉 − 1

2λ
‖α‖2

}
df(α).

In case p = 1, by the dominated convergence theorem,

T (1)
q (F )(y) = lim

λ→−iq
Tλ(F )(y) =

∫

L2(Q)

exp
{

i〈α, y〉 − i

2q
‖α‖2

}
df(α)

for s-a.e. y ∈ C(Q). If 1 < p < ∞, again by the dominated convergence
theorem,
∫

C(Q)

∣∣∣
∫

L2(Q)

exp
{

i〈α, ρy〉 − i

2q
‖α‖2

}
df(α)− Tλ(F )(ρy)

∣∣∣
p′

dmY (y) → 0

as λ → −iq for each ρ > 0. Hence T
(p)
q (F )(y) exists and is given by

T (p)
q (F )(y) =

∫

L2(Q)

exp
{

i〈α, y〉 − i

2q
‖α‖2

}
df(α)

for all desired values of p and q. Finally it is easy to see that the last
equation can be expressed as (3.1) and (3.2).

As we have seen in (2.10), the L1 analytic Fourier-Yeh-Feynman trans-
form of F evaluated at 0 is equal to the analytic Yeh-Wiener integral of
F . If we restrict our attention to the functional F ∈ S(Q), then from
(2.15) and Theorem 3.1, we have

(3.3) T (p)
q (F )(0) =

∫ anfq

C(Q)

F (x) dmY (x)

for all 1 ≤ p < ∞ and nonzero real q.
We adopt the convention 1

±∞ = 0. Thus if q = ±∞, then we mean

T
(p)
q (F ) to be F itself. Now the following corollary is immediate from

Theorem 3.1.
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Corollary 3.2. Let F ∈ S(Q) be given by (2.13). Let 1 ≤ p < ∞
and let q1, q2 be nonzero extended real numbers. Then

(3.4) T (p)
q1

(T (p)
q2

(F )) ≈ T (p)
q (F )

where q is an extended real number such that 1/q1 + 1/q2 = 1/q. If
q1 = −q2 in (3.4), then we obtain the following inverse transform theorem
for F ∈ S(Q)

(3.5) T
(p)
−q (T (p)

q (F )) ≈ F.

Moreover if n is a natural number, then

(3.6)

n times︷ ︸︸ ︷
T (p)

q (· · · (T (p)
q (F ))) ≈ T

(p)
q/n(F ).

In [4], Cameron and Storvick presented a new translation theorem for
the analytic Feynman integral on a classical Wiener space. In our next
theorem we will give a simple proof of a Yeh-Wiener space version of the
translation theorem.

Theorem 3.3. Let F ∈ S(Q) be given by (2.13) and let w ∈ C(Q).
Then for every nonzero real q, both members of the following equation
exist and satisfy

∫ anfq

C(Q)

F (x + w) dmY (x)

= exp
{iq

2
‖w‖2

} ∫ anfq

C(Q)

F (x) exp{−iq〈w, x〉} dmY (x).

(3.7)

Proof. Let G(x) = F (x) exp{−iq〈w, x〉}. Using (2.13) we can rewrite
G(x) as follows:

G(x) =

∫

L2(Q)

exp{i〈α− qw, x〉} df(α) =

∫

L2(Q)

exp{i〈β, x〉} df̃(β)
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where f̃ is a measure in M(L2(Q)) such that f̃(E) = f(E + qw) for
E ∈ B(L2(Q)). Thus by Theorem 3.1, we have

T (1)
q (G)(0) =

∫

L2(Q)

exp
{
− i

2q
‖α− qw‖2

}
df(α)

= exp
{
−iq

2
‖w‖2

} ∫

L2(Q)

exp
{

i〈α, w〉 − i

2q
‖α‖2

}
df(α)

= exp
{
−iq

2
‖w‖2

}
T (1)

q (F )(w).

By (2.9) and (2.10), the proof is completed.

In the next theorem we will show the existence of the convolution
product.

Theorem 3.4. Let F, G ∈ S(Q) with corresponding finite Borel mea-
sures f and g in M(L2(Q)), respectively. Then for all nonzero real q,
the convolution product (F ∗ G)q exists, belongs to S(Q) and is given
by the formula

(3.8) (F ∗G)q(y) =

∫

L2(Q)

exp{i〈γ, y〉} dhc(γ)

for s-a.e. y in C(Q), where hc = h ◦ φ−1 and φ : L2(Q)2 → L2(Q) is a
function defined by φ(α, β) = 1√

2
(α + β) and h is the measure defined

by

(3.9) h(E) =

∫

E

exp
{
− i

4q
‖α− β‖2

}
df(α) dg(β)

for E ∈ B(L2(Q)2).

Proof. For all λ > 0 and s-a.e. y in C(Q), using the Fubini theorem,
we have

(F ∗G)λ(y) =

∫

C(Q)

F
(y + λ−1/2x√

2

)
G

(y − λ−1/2x√
2

)
dmY (x)

=

∫

L2(Q)2

∫

C(Q)

exp
{ i√

2
〈α + β, y〉+

i√
2λ
〈α− β, x〉

}

dmY (x) df(α) dg(β).

By integration formula (2.14), we have

(F ∗G)λ(y) =

∫

L2(Q)2
exp

{ i√
2
〈α + β, y〉 − 1

4λ
‖α− β‖2

}
df(α) dg(β).
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But by the same method as in the proof of Theorem 3.1, we can show
that the last expression in the above equation is analytic in λ ∈ C+ and
is bounded continuous in λ ∈ C∼+. Hence (F ∗G)q exists and is given by

(F ∗G)q(y) =

∫

L2(Q)2
exp

{ i√
2
〈α + β, y〉 − i

4q
‖α− β‖2

}
df(α) dg(β).

Now it is easy to see that the last equation can be expressed as (3.8)
and (3.9).

Corollary 3.5. Let F and G be given as in Theorem 3.4. Let q1

and q2 be nonzero extended real numbers. Let 1 ≤ p < ∞. Then

(3.10) (T (p)
q1

(F ) ∗ T (p)
q2

(G))q(y) =

∫

L2(Q)

exp{i〈γ, y〉} dhtc(γ)

for s-a.e. y in C(Q), where htc = ht ◦ φ−1 and φ is the function as in
Theorem 3.4 and ht is the measure defined by

(3.11) ht(E) =

∫

E

exp
{
− i

2q1

‖α‖2− i

2q2

‖β‖2− i

4q
‖α−β‖2

}
df(α) dg(β)

for E ∈ B(L2(Q)2).

Proof. By Theorem 3.1 we know that T
(p)
q1 (F ) and T

(p)
q2 (G) exist and

belong to S(Q). Applying Theorem 3.4 to the corresponding expression

(3.1) for T
(p)
q1 (F ) and T

(p)
q2 (G), we obtain

(T (p)
q1

(F ) ∗ T (p)
q2

(G))q(y) =

∫

L2(Q)

exp{i〈γ, y〉} dhtc(γ)

for s-a.e. y in C(Q), where htc = ht ◦ φ−1 and φ is the function as in
Theorem 3.4 and ht is the measure defined by

ht(E) =

∫

E

exp
{
− i

4q
‖α− β‖2

}
dft(α) dgt(β).

Now using the corresponding expression (3.2) for ft and gt, we know that
ht above can be expressed as (3.11) and this completes the proof.

From now on we establish relationships between Fourier-Yeh-Feynman
transform and convolution product for functionals in S(Q).
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Theorem 3.6. Let F, G ∈ S(Q) be given as in Theorem 3.4. Let
1 ≤ p < ∞ and let q1, q2 be nonzero extended real numbers. Then for
all nonzero real q,

(3.12) T (p)
q (T (p)

q1
(F ) ∗ T (p)

q2
(G))q(y) = T

(p)
q′1

(F )
( y√

2

)
T

(p)
q′2

(G)
( y√

2

)

for s-a.e. y in C(Q), where q′j is a nonzero extended real number such
that 1/q + 1/qj = 1/q′j for j = 1, 2. Also both sides of the above
expression are given by the formula

(3.13)

∫

L2(Q)2
exp

{ i√
2
〈α + β, y〉 − i

2q′1
‖α‖2 − i

2q′2
‖β‖2

}
df(α) dg(β).

Proof. Note that (T
(p)
q1 (F ) ∗ T

(p)
q2 (G))q(y) is expressed as (3.10). Ap-

plying Theorem 3.1 to the expression in (3.10), we know that

T (p)
q (T (p)

q1
(F ) ∗ T (p)

q2
(G))q(y) =

∫

L2(Q)

exp{i〈γ, y〉} dhtct(γ),

where

htct(E) =

∫

E

exp
{
− i

2q
‖γ‖2

}
dhtc(γ)

and htc is given as in Corollary 3.5. Now a simple calculation together
with (3.11) shows that the left hand side of (3.12) is expressed as (3.13).
On the other hand, by Theorem 3.1, the right hand side of (3.12) also is
expressed as (3.13) and this completes the proof.

In our next theorem we establish an interesting Parseval’s relation for
Fourier-Yeh-Feynman transform on S(Q).

Theorem 3.7. Let F, G, p, q1 and q2 be given as in Theorem 3.6.
Then for all nonzero real q, the following Parseval’s relation holds.

T
(p)
−q [T (p)

q (T (p)
q1

(F ) ∗ T (p)
q2

(G))q](0)

=T (p)
q

(
T (p)

q1
(F )

( ·√
2

)
T (p)

q2
(G)

(
− ·√

2

))
(0).

(3.14)

Also both sides of the above expression are given by the formula

(3.15)

∫

L2(Q)2
exp

{
− i

2q1

‖α‖2 − i

2q2

‖β‖2 − i

4q
‖α− β‖2

}
df(α) dg(β).
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Proof. By the inverse transform theorem (3.5) we have

T
(p)
−q [T (p)

q (T (p)
q1

(F ) ∗ T (p)
q2

(G))q](0) = (T (p)
q1

(F ) ∗ T (p)
q2

(G))q(0).

But the right hand side of the above equation is expressed as (3.15)
by Corollary 3.5. On the other hand, applying Theorem 3.1 to the
expression

T (p)
q1

(F )
( y√

2

)
T (p)

q2
(G)

(
− y√

2

)

=

∫

L2(Q)2
exp

{ i√
2
〈α− β, y〉 − i

2q1

‖α‖2 − i

2q2

‖β‖2
}

df(α) dg(β)

we know that the right hand side of (3.14) is also expressed as (3.15)
which completes the proof.

Using (3.3) we can express (3.14) alternatively as the following corol-
lary.

Corollary 3.8. Let F, G, p, q1 and q2 be given as in Theorem 3.6.
Then for all nonzero real q, the following Parseval’s relation holds.

∫ anf−q

C(Q)

T (p)
q (T (p)

q1
(F ) ∗ T (p)

q2
(G))q(x) dmY (x)

=

∫ anfq

C(Q)

T (p)
q1

(F )
( x√

2

)
T (p)

q2
(G)

(
− x√

2

)
dmY (x).

(3.16)

In particular if q1 = q2 = ∞, then
∫ anf−q

C(Q)

T (p)
q (F )

( x√
2

)
T (p)

q (G)
( x√

2

)
dmY (x)

=

∫ anfq

C(Q)

F
( x√

2

)
G

(
− x√

2

)
dmY (x).

(3.17)

Our final corollary follows immediately from (3.17) by choosing G = F
for (3.18) and G = 1 for (3.19).

Corollary 3.9. Let F, p and q be given as in Theorem 3.6. Then
we have
(3.18)∫ anf−q

C(Q)

[
T (p)

q (F )
( x√

2

)]2

dmY (x) =

∫ anfq

C(Q)

F
( x√

2

)
F

(
− x√

2

)
dmY (x)
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and

(3.19)

∫ anf−q

C(Q)

T (p)
q (F )

( x√
2

)
dmY (x) =

∫ anfq

C(Q)

F
( x√

2

)
dmY (x).
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