ON PROPERTIES OF QUASI-CLASS A OPERATORS

JAE WON LEE AND IN HO JEON*

ABSTRACT. Let the set of all quasi-class A operators for which $\ker(A) \subseteq \ker(A^*)$ be denoted by $A \in \mathcal{QA}^*$. In this paper it is proved that an operator $T \in \mathcal{QA}^*$ is normal if and only if the Duggal transform of T is normal.

1. Introduction

Let $\mathscr{L}(\mathscr{H})$ denote the algebra of bounded linear operators on a complex infinite dimensional Hilbert space \mathscr{H} . Recall ([1], [3], [7]) that $T \in \mathscr{L}(\mathscr{H})$ is called *p*-hyponormal if $(T^*T)^p \geq (TT^*)^p$ for $p \in (0, 1]$, and T is called *paranormal* if $||T^2x|| \geq ||Tx||^2$ for all unit vector $x \in \mathscr{H}$. Following [6] and [5] we say that $T \in \mathscr{L}(\mathscr{H})$ belongs to class A if $|T^2| \geq |T|^2$. Recall ([9], [11]) that T is called *p*-quasihyponormal if $T^*(T^*T)^pT \geq T^*(TT^*)^pT$ for $p \in (0, 1]$. For brevity, we shall denote classes of *p*-hyponormal operators, *p*-quasihyponormal operators, paranormal operators, and class A operators by $\mathcal{H}(p)$, $\mathcal{QH}(p)$, \mathcal{PN} , and \mathcal{A} , respectively. It is well known that

(1.1) $\mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{PN} \text{ and } \mathcal{H}(p) \subset \mathcal{QH}(p) \subset \mathcal{PN}.$

In [8] Jeon and Kim considered an extension of the notion of class A operators, similar in spirit to the extension of the notion of p-hyponormality to p-quasihyponormality; we say that $T \in \mathscr{L}(\mathscr{H})$ is quasi-class A if

$$T^*|T^2|T \ge T^*|T|^2T.$$

For brevity, we shall denote the set of quasi-class A operators by \mathcal{QA} . As shown in [8], the class of quasi-class A operators properly contains

This paper was supported by Research Fund, Kumoh National Institute of Technology .

*Corresponding author.

Received July 15, 2008. Revised July 28, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 47B20.

Key words and phrases: quasi-class A operator, the property (β) .

classes of class A operators and p-quasihyponormal operators, i.e., the following inclusions holds;

(1.2)
$$\mathcal{H}(p) \subset \mathcal{QH}(p) \subset \mathcal{QA} \text{ and } \mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{QA}$$

In view of inclusions (1.1) and (1.2), it seems reasonable to expect that the operators in class QA are paranormal. But there exists an example [8] that one would be wrong in such an expectation.

Throughout this paper, restricting ourselves to those $A \in \mathcal{QA}$ for which ker $(A) \subseteq \text{ker}(A^*)$, denoted $A \in \mathcal{QA}^*$, we prove that an operator $T \in \mathcal{QA}^*$ is normal if and only if the Duggal transform of T is normal. From this result it is also proved that every operator $A \in \mathcal{QA}^*$ satisfies property (β) , and for densely intertwined operators \mathcal{QA}^* , their spectra, essential spectra, and indices are preserved.

2. Main results

If $T \in \mathscr{L}(\mathscr{H})$ has the polar decomposition T = U|T|, then $T^{\sim} = |T|U$ is called to be *Duggal transform* of T. It is well known that Duggal transform is one of very useful tools to study properties of operators ([4]). As an essential tool, to prove our main results below, we will use Duggal transforms of \mathcal{QA}^* operators.

THEOREM 2.1. The operator $A \in \mathcal{QA}^*$ is normal if and only if A^{\sim} is normal, and then $A = A^{\sim}$.

Proof. First, we claim that

 $A \in \mathcal{QA}^*$ if and only if $A^{\sim} \in \mathcal{A}$.

Let A have a decomposition $A = A_1 \oplus A_2$ with respect to some decomposition $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$ of \mathscr{H} , such that $A_1 = A|_{\mathscr{H}_1}$ is normal and $A_2 = A|_{\mathscr{H}_2}$ is pure. Let A_i have the polar decomposition $A_i = U_i|A_i|$. Then the partial isometry U_2 is an isometry, and we may choose the partial isometry U_1 to be a unitary such that the commutator

$$[|A_1|, U_1] = |A_1|U_1 - U_1|A_1| = 0.$$

Define the Duggal transform A^{\sim} of A by

$$A^{\sim} = A_1 \oplus A_2^{\sim} = (|A_1| \oplus |A_2|)(U_1 \oplus U_2).$$

350

Since $A_2 \in \mathcal{QA}^*$, A_2 is injective and $|A_2|$ is a quasiaffinity, it follows from the equivalence

$$A_2^*(|A_2^2| - |A_2|^2)A_2 \ge 0 \iff U_2^*(|A_2^2| - |A_2|^2)U_2 \ge 0$$

that

$$|A_{2}^{\sim}|^{2} = U_{2}^{*}|A_{2}|^{2}U_{2} \leq U_{2}^{*}|A_{2}^{2}|U_{2} \leq (U_{2}^{*}A_{2}^{*2}A_{2}^{2}U_{2})^{\frac{1}{2}} = |A_{2}^{\sim}|,$$

i.e., $A_2^{\sim} = |A_2|U_2 \in \mathcal{A}$. Hence A^{\sim} is a class A operator.

Now, if A is normal, then A_2 acts on the trivial space $\{0\}$, and so $A = A_1 = A^{\sim}$. If, instead, A^{\sim} is normal, then the normality of A_2^{\sim} implies that

$$|U_2^*|A_2|^2 U_2 = |A_2|^2 = |A_2|U_2U_2^*|A_2|.$$

Since $|A_2|$ is a quasiaffinity, $U_2U_2^* = I|_{H_2}$, so that U_2 is a unitary. But then $U_2^*|A_2|^2U_2 = |A_2|^2$, which implies that $[|A_2|, U_2] = 0$, i.e., A_2 is normal. Since A_2 is pure, A_2 acts on the trivial space $\{0\}$. Hence $A = A^{\sim} = A_1$.

Recall that a $T \in \mathscr{L}(\mathscr{H})$ has (Bishop's) property (β) if, for every open subset U of \mathbb{C} and every sequence of analytic functions $f_n : U \longrightarrow \mathscr{H}$ with the property that

$$(T-\lambda)f_n(\lambda) \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

uniformly on all compact subsets of U, it follows that $f_n(\lambda) \longrightarrow 0$ as $n \longrightarrow \infty$ locally uniformly on U [10, Definition 1.2.5].

COROLLARY 2.2. Every operator $A \in \mathcal{QA}^*$ satisfies property (β).

Proof. Let A and A^{\sim} be defined as in the proof of Theorem 2.1. Then observe that A has property (β) if and only if A_2 has property (β). Recall that if $R, S \in \mathscr{L}(\mathscr{H})$ are injective, then RS satisfies property (β) if and only if SR satisfies property (β) [3, Theorem 5]. Since the operators $|A_2|$ and U_2 are injective, and the operator $A_2^{\sim} = |A_2|U_2 \in \mathcal{A}$ satisfies property (β) [2], it follows that $A_2 = U_2|A_2|$ satisfies property (β). \Box

Recall that an operator $T \in \mathscr{L}(\mathscr{H})$ is *Fredholm* if $T(\mathscr{H})$ is closed, $\alpha(T) = \dim T^{-1}(0) < \infty$ and $\beta(T) = \dim T^{*-1}(0) < \infty$). If $T \in \mathscr{L}(\mathscr{H})$ is Fredholm, then the *index* of T, denoted i(T), is defined by $i(T) = \alpha(T) - \beta(T)$. The essential spectrum of T, denoted $\sigma_e(T)$, is the set of all $\lambda \in \mathbb{C}$ such that $T - \lambda I$ is not Fredholm. The operators $S, T \in \mathscr{L}(\mathscr{H})$ are said to be *densely intertwined* if there exist operators $X, Y \in \mathscr{L}(\mathscr{H})$ with dense range such that SX = XT and TY = YS.

COROLLARY 2.3. If $A, B \in \mathcal{QA}^*$ are densely intertwined, then $\sigma(A) = \sigma(B), \sigma_e(A) = \sigma_e(B)$ and $i(A - \lambda) = i(B - \lambda)$ for all $\lambda \in \mathbb{C} \setminus \sigma_e(A)$.

Proof. Both A and B have property (β) , and [10, Theorem 3.7.15] applies.

We conclude with comments on Putnam-Fuglede type commutativity theorem. In facts, we have tried to get a Putnam-Fuglede type commutativity theorem for operators in \mathcal{QA}^* . But, first of all, we must find the proof of the following conjecture on Putnam-Fuglede type commutativity theorem for operators in \mathcal{A} .

CONJECTURE 2.4. If $A, C^* \in \mathcal{A}$ are such that AX = XC for some non-trivial $X \in \mathscr{L}(\mathscr{H})$, then $A^*X = XC^*$, \overline{ranX} reduces A, $ker^{\perp}(X)$ reduces C, and $A|_{\overline{ranX}}$ and $C|_{ker^{\perp}(X)}$ are unitarily equivalent normal operators.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integr. Equa. Oper. Th.**13**(1990), 307-315.
- [2] M. Chō and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integr. Equ. Oper. Theory, 53(2005), 497–508.
- [3] L. Chen, Y. Zikun and R. Yingbin, Common properties of operators RS and SR and p-hyponormal operators, Integr. Equat. Oper. Th. 43(1999), 313-325.
- [4] C. Foias, I. B. Jung, E. Ko and C. Pearcy Complete contractivity of maps associated with the Aluthge and Duggal transforms, Pacific J. Math. 209 (2003), 249–259.
- [5] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London (2001).
- [6] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1(1998), 389-403.
- [7] I. H. Jeon and B. P. Duggal, *p-Hyponormal operators and quasisimilarity*, Integr. Equat. Oper. Th. 49(2004), 397-403.
- [8] In Ho Jeon and In Hyoun Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Linear Algebra and its Applications, **418**(2006), 854–862.

352

- [9] I. H. Jeon, J. I. Lee and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Ineq. Appl. 6(2003), 309-315.
- [10] K.B. Laursen and M.N. Neumann, Introduction to local spectral theory, Clarendon Press, Oxford (2000).
- [11] K. Tanahashi and Uchiyama, Isolated point of spectrum of p-qusihyponormal operators, Linear Algebra and its Applications, 341(2002), 345-350.

Department of Applied Mathematics Kumoh National Institute of Technology Gumi 730-701 Korea *E-mail*: ljaewon@mail.kumoh.ac.kr

Department of Mathematics Education Seoul National University of Education Seoul 137-742 Korea *E-mail*: jihmath@snue.ac.kr