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UNIQUE POSITIVE SOLUTION FOR A CLASS OF THE

SYSTEM OF THE NONLINEAR SUSPENSION BRIDGE

EQUATIONS

Tacksun Jung and Q-Heung Choi∗

Abstract. We prove the existence of a unique positive solution for
a class of systems of the following nonlinear suspension bridge equa-
tions with Dirichlet boundary conditions and periodic conditions{

utt + uxxxx + 1
4uttxx +av+ = φ00 + ε1h1(x, t) in (−π

2 , π
2 )×R,

vtt + vxxxx + 1
4uttxx +bu+ = φ00 + ε2h2(x, t) in (−π

2 , π
2 )×R,

where u+ = max{u, 0}, ε1, ε2 are small numbers and h1(x, t), h2(x, t)
are bounded, π-periodic in t and even in x and t and ‖h1‖ = ‖h2‖ =
1. We first show that the system has a positive solution, and then
prove the uniqueness by the contraction mapping principle on a Ba-
nach space.

1. Introduction and main result

In this paper we investigate the uniqueness of the solution of the fol-
lowing system of the nonlinear suspension bridge equations with Dirich-
let boundary conditions and periodic conditions





utt + uxxxx +1
4
uttxx + av+ = φ00 + ε1h1(x, t)

in (−π
2
, π

2
)×R,

vtt + vxxxx +1
4
uttxx + bu+ = φ00 + ε2h2(x, t)

in (−π
2
, π

2
)×R, (1.1)

u(±π
2
, t) = uxx(±π

2
, t) = v(±π

2
, t) = vxx(±π

2
, t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t),
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where u+ = max{u, 0}, ε1, ε2 are small numbers and h1(x, t), h2(x, t)
are bounded, π-periodic in t, even in x and t and ‖h1‖ = ‖h2‖ = 1.
Here the effect of the inertia term uttxx is weak in the oscillation of the
beam. So we take the small coefficient 1

4
. McKenna and Walter([6])

found the physical model of jumping problem from a bridge suspended
by cables under a load. System (1.1) of the nonlinear suspension bridge
equations with Dirichlet boundary condition is considered as a model of
the cross of the two nonlinear oscillations in differential equation. For
the case of the single suspension bridge equation McKenna and Walter
([6]), Choi and Jung ([3], [4] and [5]) etc., investigate the multiplicity
of the solutions via the degree theory or the critical point theory or the
variational reduction method. In this paper we improve the multiplicity
results of the single suspension bridge equation to the case of the system
of the nonlinear suspension bridge equations. The system (1.1) can be
rewritten by





Utt + Uxxxx +1
4
Uttxx + AU+ =

(
φ00+ε1h1(x,t)
φ00+ε2h2(x,t)

)
, (1.2)

U(±π
2
, t) = Uxx(±π

2
, t) =

(
0
0

)
,

U(x, t + π) = U(x, t) = U(−x, t) = U(x,−t),

where U =
(

u
v

)
, U+ =

(
u+

v+

)
, Utt =

(
utt

vtt

)
, Uxxxx =

(
uxxxx

vxxxx

)
, Uttxx =

(
uttxx

vttxx

)
,

A =

(
0 a
b 0

)
∈ M2×2(R). The eigenvalue problem for u(x, t),

utt + uxxxx +
1

4
uttxx = λu in (−π

2
,
π

2
)×R,

u(±π

2
, t) = uxx(±π

2
, t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t)

has infinitely many eigenvalues

λmn = (2n + 1)4 + (2n + 1)2m2 − 4m2 (m,n = 0, 1, 2, . . .)

and corresponding normalized eigenfunctions φmn (m,n ≥ 0) given by

φ0n =

√
2

π
cos(2n + 1)x for n ≥ 0,

φmn =
2

π
cos 2mt · cos(2n + 1)x for m > 0, n ≥ 0.
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We can check easily that the eigenvalues in the interval (-26,81) are given
by

λ20 = −11 < λ10 = −1 < λ00 = 1.

The main result of this paper is the following:

Theorem 1.1. (Existence of the unique positive solution)
Assume that

λ2
mn + ab 6= 0, for all m,n (1.3)

a < 0, b < 0 and 1− ab > 0. (1.4)

Then, for each h1(x, t), h2(x, t) ∈ H with ‖h1(x, t)‖ = 1, ‖h2(x, t)‖ = 1,
there exist small numbers ε1 and ε2 such that system (1.1) has a unique
positive solution.

In section 2 we show that system (1.1) has a positive solution by direct
computation. In section 3 we prove the uniqueness by the contraction
mapping principle on the Banach space.

2. Existence of the positive solution

Let Q be the square (−π
2
, π

2
) × (−π

2
, π

2
) and H0 the Hilbert space

defined by

H0 = {u ∈ L2(Q)| u is even in x and t and

∫

Q

u = 0}.

The set of functions {φmn} is an orthonormal basis in H0. Let us denote
an element u, in H0, by

u =
∑

hmnφmn.

We define a subspace H of H0 as follows

H = {u ∈ H0 :
∑
mn

|λmn|h2
mn < ∞}.

Then this space is a Banach space with norm

‖u‖2 = [
∑

|λmn|h2
mn]

1
2 .

Let us set E = H ×H. We endow the Hilbert space E the norm

‖(u, v)‖2
E = ‖u‖2 + ‖v‖2 ∀(u, v) ∈ E.
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We are looking for the weak solutions of (1.1) in E, that is, (u, v) such
that u ∈ H, v ∈ H, utt+uxxxx+av+ = cos x+ε1h1(x, t), vtt+vxxxx+bu+ =
cos x + ε2h2(x, t).

Since |λmn| ≥ 1 for all m, n, we have that

Lemma 2.1. (i) ‖u‖ ≥ ‖u‖L2(Q), where ‖u‖L2(Q) denotes the L2 norm
of u.
(ii) ‖u‖ = 0 if and only if ‖u‖L2(Q) = 0.
(iii) utt + uxxxx ∈ H implies u ∈ H.

Lemma 2.2. Suppose that c is not an eigenvalue of L, Lu = utt+uxxxx,
and let f ∈ H0. Then we have (L− c)−1f ∈ H.

Proof. When n is fixed, we define

λ+
n = inf

m
{λmn : λmn > 0} = 8n2 + 8n + 1,

λ−n = sup
m
{λmn : λmn < 0} = −8n2 − 8n− 3.

We see that λ+
n → +∞ and λ−n → −∞ as n → ∞. Hence the number

of elements in the set {λmn : |λmn| < |c|} is finite, where λmn is an
eigenvalue of L. Let

f =
∑

hmnφmn.

Then

(L− c)−1f =
∑ 1

λmn − c
hmnφmn.

Hence we have the inequality

‖(L− c)−1f‖ =
∑

|λmn| 1

(λmn − c)2
h2

mn ≤ C
∑

h2
mn

for some C, which means that

‖(L− c)−1f‖ ≤ C1‖f‖L2(Q), C1 =
√

C.

Lemma 2.3. Assume that conditions (1.3) and (1.4) hold. Then the
system



utt + uxxxx +1
4
uttxx + av = φ00 in (−π

2
, π

2
),

vtt + vxxxx +1
4
uttxx + bu = φ00 in (−π

2
, π

2
), (2.1)

u(±π
2
, t) = uxx(±π

2
, t) = v(±π

2
, t) = vxx(±π

2
, t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t),
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has a positive solution (u∗, v∗) ∈ E, which is of the form

u∗ = [
−a

λ00

−b + λ00

λ2
00 − ab

+
1

λ00

]φ00, (2.2)

v∗ = [
−b + λ00

λ2
00 − ab

]φ00.

Proof. We note that (u∗, v∗) is a solution of the system (2.1) with
u∗ > 0 and v∗ > 0.

Define LU = (Lu,Lv), Lu = utt + uxxxx + 1
4
uttxx. We need to find a

spectral analysis for the linear operator LU +AU . The following lemma
need a simple ‘Fourier Series’ argument.

Lemma 2.4. Let a, b ∈ R and let Lab : H ×H → H0×H0 be defined
by Lab(u, v) = (Lu + av, Lv + bu). For µ ∈ R we have
(a) if (λmn − µ)2 6= ab for every m, n, then

(Lab − µI)−1 : H0 ×H0 → H0 ×H0

is well defined and continuous;
(b) if (λmn − µ)2 = ab for some m, n, then

Ker(Lab − µI) = span{φmn : (λmn − µ)2 = ab};
moreover if Xµ = span{φmn : (λmn − µ)2 6= ab}, then

(Lab − µI)−1 : Xµ ×Xµ → Xµ ×Xµ

is well defined and continuous.
Notice that if ab < 0, the second case can never occur.

Proof. To prove (a) we take (f, g) in H0 × H0. We can write f =∑
mn fmnφmn with

∑
mn f 2

mn < +∞ and g =
∑

mn gmnφmn with
∑

mn g2
mn <

+∞. We define, for m, n integers,

umn =
(λmn − µ)fmn − agmn

(λmn − µ)2 − ab
, vmn =

(λmn − µ)gmn − bfmn

(λmn − µ)2 − ab
,

which make sense since (λmn − µ)2 6= ab for every m, n. We have

|umn| ≤ C

|λmn|(|fmn|+ |gmn|) =⇒ λ2
mnu

2
mn ≤ C1(f

2
mn + g2

mn)

for suitable constants C, C1 not depending on mn. The same inequality
applies for vmn. So if u =

∑
mn umnφmn, v =

∑
mn vmnφmn, then (u, v) ∈

H × H. Arguing componentwise it is simple to check that Lab(u, v) −
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µI(u, v) = (f, g). So (Lab − µI)−1 : H0 ×H0 → H0 ×H0 is well defined.
To prove (b) we first observe that if (λmn − µ)2 = ab, then (Lab −
µI)φmn = 0, as one can easily check. Secondly given (f, g) in Xµ we
can argue as in the first case since fmn = gmn = 0 for all mn such that
(λmn − µ)2 = ab. This allows to define umn and vmn as before for all
mn such that (λmn − µ)2 6= ab and umn = vmn = 0 for all mn such that
(λmn − µ)2 = ab.

Using Lemma 2.4 with the case µ = 0 we can easily derive Lemma
2.5

Lemma 2.5. Assume that the conditions (1.3) and (1.4) hold. Then
for each h1(x, t), h2(x, t) ∈ H0 with ‖h1‖ = 1 and ‖h2‖ = 1, there exist
small numbers ε1 and ε2 such that system

the system





utt + uxxxx +av = ε1h1(x, t),
vtt + vxxxx +bu = ε2h2(x, t), (2.3)
u(±π

2
, t) = uxx(±π

2
, t) = v(±π

2
, t) = vxx(±π

2
, t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t),

has a unique solution (uε1ε2 , vε1ε2) ∈ E = H ×H.

Proof of the existence of a positive solution By Lemma
2.3 and Lemma 2.5, (u∗ + uε1ε2 , v∗ + vε1ε2) is a solution of the system





utt + uxxxx +av = φ00 + ε1h1(x, t),
vtt + vxxxx +bv = φ00 + ε2h2(x, t), (2.4)
u(±π

2
, t) = uxx(±π

2
, t) = v(±π

2
, t) = vxx(±π

2
, t) = 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t),

where u∗ = [ −a
λ00

−b+λ00

λ2
00−ab

+ 1
λ00

]φ00 > 0, v∗ = [−b+λ00

λ2
00−ab

]φ00 > 0. By Lemma

2.4, uε1ε2 ∈ H and vε1ε2 ∈ H. Since the elements of H lies in C1, the
elements uε1ε2 , vε1ε2 ∈ C1. Thus we can find small numbers ε1 and ε2

such that u∗ + uε1ε2 > 0 and v∗ + vε1ε2 > 0, which is also a positive
solution of system (1.1).
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3. Uniqueness

Assume that the conditions (1.3) and (1.4) hold. To prove the unique-
ness of Theorem 1.1 we will use the contraction mapping principle.
By the assumption (1.4), −1 < −

√
ab < 0 <

√
ab < 1 < 3 = −λ10. Let

us set δ = −1
2
(−3 + 1) = 1. The system (1.2) is equivalent to

U = (L+ δI)−1[(δI − A)U+ − δIU− +

(
φ00 + ε1h1(x, t)

φ00 + ε2h2(x, t)

)
], (3.1)

where U+ =
(

u+

v+

)
, U− =

(
u−
v−

)
and (L + δ)−1 is a compact, self-adjoint,

linear map from H0 ×H0 into H0 ×H0 with norm 1
2
. We note that

‖(δI−A)(U+
2 −U+

1 )−δI(U−
2 −U−

1 )‖ ≤ max det(δI − A), det(δI)‖U2−U1‖
< ‖U2 − U1‖.

It follows that the right hand side of (3.1) defines a Lipschitz mapping
of H0 × H0 into H0 × H0 with Lipschitz constant γ < 1. Therefore,
by the contraction mapping principle, there exists a unique solution
U =

(
u
v

) ∈ H0 ×H0 of (1.2). By Lemma 2.2, U =
(

u
v

) ∈ H ×H. Thus
the uniqueness of the solution of System (1.1) is proved. Thus the posi-
tive solution (u∗+uε1ε2 , v∗+ vε1ε2) is the unique solution of system (1.1).
Thus we prove Theorem 1.1.
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