ON THE STABILITY OF PEXIDER TYPE TRIGONOMETRIC FUNCTIONAL EQUATIONS

Gwang Hui Kim

Abstract

The aim of this paper is to study the stability problem for the pexider type trigonometric functional equation $f(x+y)-$ $f(x-y)=2 g(x) h(y)$, which is related to the d'Alembert, the Wilson, the sine, and the mixed trigonometric functional equations.

1. Introduction

J. Baker, J. Lawrence and F. Zorzitto in [4], and Bourgin [5] introduced the following: if f satisfies the inequality $|f(x+y)-f(x) f(y)| \leq \delta$, then either $|f(x)| \leq \max (4,4 \delta)$, or $f(x+y)=f(x) f(y)$. This is frequently referred to as superstability.

In next year, J. Baker [3] proved the superstability of the cosine functional equation (also called the d'Alembert equation)

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \tag{A}
\end{equation*}
$$

which is improved by P. Gǎvruta [7].
And also the sine functional equation

$$
\begin{equation*}
f(x) f(y)=f\left(\frac{x+y}{2}\right)^{2}-f\left(\frac{x-y}{2}\right)^{2} \tag{S}
\end{equation*}
$$

is investigated by P.W. Cholewa [6].

Received July 25, 2008. Revised August 16, 2008.
2000 Mathematics Subject Classification: 39B82, 39B52.
Key words and phrases: stability, superstability, sine functional equation, d'Alembert equation, trigonometric functional equation.

The cosine functional equation (A) is generalized to the following functional equations

$\left(A_{f g}\right)$	$f(x+y)+f(x-y)=2 f(x) g(y)$,
$\left(A_{g f}\right)$	$f(x+y)+f(x-y)=2 g(x) f(y)$,
$\left(A_{g g}\right)$	$f(x+y)+f(x-y)=2 g(x) g(y)$,

where the two unknown functions f, g are to be determined. The equation $\left(A_{f g}\right)$ introduced by Wilson, is sometimes referred to as the Wilson equation. Their stability have been investigated by Badora, Ger, Kannappan, $\operatorname{Kim}([1],[2],[8],[10])$ and others.

Motivated by some trigonometric identities (for example, $\sin (\alpha+\beta)-$ $\sin (\alpha-\beta)=2 \cos \alpha \sin \beta$), we consider the following trigonometric functional equation
$\left(T_{g h}\right) \quad f(x+y)-f(x-y)=2 g(x) h(y)$,
which has special cases as follow :
$f(x+y)-f(x-y)=2 f(x) f(y)$,
$f(x+y)-f(x-y)=2 f(x) g(y)$,
$\left(T_{g f}\right)$
$f(x+y)-f(x-y)=2 g(x) f(y)$,
$\left(T_{g g}\right)$
$f(x+y)-f(x-y)=2 g(x) g(y)$.
The aim of this paper is to investigate stability problem for the pexider type trigonometric functional equations $\left(T_{g h}\right)$.

As a consequence, we obtain the stability of the above trigonometric type equations $(T),\left(T_{f g}\right),\left(T_{g f}\right),\left(T_{g g}\right)$ as corollaries, and also extend the obtained results to the Banach algebra.

In this paper, let $(G,+)$ be an Abelian group, \mathbb{C} the field of complex numbers, and \mathbb{R} the field of real numbers. Whenever we deal with (S), we need to assume additionally that $(G,+)$ is a uniquely 2 -divisible group. We will write then "under 2-divisibility", for short. We may assume that f, g and h are non-zero functions and ε is a nonnegative real constant.

2. Stability of the equation $\left(T_{g h}\right)$

In this section, we investigate the stability of the pexider type trigonometric functional equation $\left(T_{g h}\right)$ related to the d'Alembert (A), the Wilson types $\left(A_{f g}\right)$ and $\left(A_{g f}\right)$ the sine (S), and the mixed type functional equations $\left(T_{f g}\right)$ and ($T_{g f}$).

Theorem 1. Suppose that $f, g, h: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)-f(x-y)-2 g(x) h(y)| \leq \varepsilon \quad \forall x, y \in G \tag{2.1}
\end{equation*}
$$

If h fails to be bounded, then
(i) g satisfies (S) under 2-divisibility and one of the cases $g(0)=0$, $f(x)=f(-x)$,
(ii) if, additionally, h satisfies (A) or (T), g and h are solutions of Wilson type :
($A_{g g h}$)

$$
g(x+y)+g(x-y)=2 g(x) h(y) .
$$

Proof. (i) Let h be unbounded. Then we can choose a sequence $\left\{y_{n}\right\}$ in G such that

$$
\begin{equation*}
0 \neq\left|h\left(y_{n}\right)\right| \rightarrow \infty, \quad \text { as } \quad n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

Taking $y=y_{n}$ in (2.1) we obtain

$$
\left|\frac{f\left(x+y_{n}\right)-f\left(x-y_{n}\right)}{2 h\left(y_{n}\right)}-g(x)\right| \leq \frac{\varepsilon}{\left|2 h\left(y_{n}\right)\right|},
$$

that is,

$$
\begin{equation*}
g(x)=\lim _{n \rightarrow \infty} \frac{f\left(x+y_{n}\right)-f\left(x-y_{n}\right)}{2 h\left(y_{n}\right)} \quad \forall y \in G . \tag{2.3}
\end{equation*}
$$

Using (2.1), we have

$$
\begin{aligned}
& \mid f\left(x+\left(y+y_{n}\right)\right)-f\left(x-\left(y+y_{n}\right)\right)-2 g(x) h\left(y+y_{n}\right) \\
& \quad-f\left(x+\left(y-y_{n}\right)\right)+f\left(x-\left(y-y_{n}\right)\right)+2 g(x) h\left(y-y_{n}\right) \mid
\end{aligned}
$$

$\leq 2 \varepsilon$
so that

$$
\begin{aligned}
& \left\lvert\, \frac{\left.f\left((x+y)+y_{n}\right)-f\left((x+y)-y_{n}\right)\right)}{2 h\left(y_{n}\right)}\right. \\
& \left.+\frac{\left.f\left((x-y)+y_{n}\right)-f\left((x-y)-y_{n}\right)\right)}{2 h\left(y_{n}\right)}-2 g(x) \cdot \frac{h\left(y+y_{n}\right)-h\left(y-y_{n}\right)}{2 h\left(y_{n}\right)} \right\rvert\,
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{\varepsilon}{\left|h\left(y_{n}\right)\right|} \tag{2.4}
\end{equation*}
$$

for all $x, y \in G$.
Taking the limit as $n \longrightarrow \infty$ with the use of (2.2) and (2.3), we conclude that, for every $y \in G$, there exists the limit

$$
\begin{equation*}
k_{1}(y):=\lim _{n \rightarrow \infty} \frac{h\left(y+y_{n}\right)-h\left(y-y_{n}\right)}{h\left(y_{n}\right)}, \tag{2.5}
\end{equation*}
$$

where the function $k_{1}: G \rightarrow \mathbb{C}$ obtained in that way has to satisfy the equation

$$
\begin{equation*}
g(x+y)+g(x-y)=g(x) k_{1}(y) \quad \forall x, y \in G \tag{2.6}
\end{equation*}
$$

Applying the case $g(0)=0$ in (2.6), it implies that g is an odd function. Keeping this in mind, by means of (2.6), we infer the equality

$$
\begin{align*}
g(x+y)^{2}-g(x-y)^{2} & =[g(x+y)+g(x-y)][g(x+y)-g(x-y)] \\
& =g(x) k_{1}(y)[g(x+y)-g(x-y)] \\
& =g(x)[g(x+2 y)-g(x-2 y)] \\
& =g(x)[g(2 y+x)+g(2 y-x)] \\
& =g(x) g(2 y) k_{1}(x) . \tag{2.7}
\end{align*}
$$

Putting $y=x$ in (2.6) we get the equation

$$
g(2 x)=g(x) k_{1}(x), \quad x \in G .
$$

This (2.7), in return, leads to the equation

$$
g(x+y)^{2}-g(x-y)^{2}=g(2 x) g(2 y)
$$

valid for all $x, y \in G$ which, in the light of the unique 2-divisibility of G, states nothing else but (S).

Next, in particular case $f(x)=f(-x)$, it is enough to show that $g(0)=0$. Suppose that this is not the case.

Putting $x=0$ in (2.1), from the above assumption and a given condition, we obtain the inequality

$$
|h(y)| \leq \frac{\varepsilon}{2|g(0)|}, \quad y \in G
$$

This inequality means that h is globally bounded - a contradiction. Thus the claimed $g(0)=0$ holds.
(ii) if h satisfies (T), the defined limit k_{1} of (2.5) states nothing else but $2 h$, so (2.6) validates $\left(A_{g g h}\right)$.

Finally, an obvious slight change in the steps of the proof applied after (2.3) gives us the inequality

$$
\begin{aligned}
& \mid f\left(x+\left(y+y_{n}\right)\right)-f\left(x-\left(y+y_{n}\right)\right)-2 g(x) h\left(y+y_{n}\right) \\
& \quad+f\left(x+\left(-y+y_{n}\right)\right)-f\left(x-\left(-y+y_{n}\right)\right)-2 g(x) h\left(-y+y_{n}\right) \mid
\end{aligned}
$$

$$
\leq 2 \varepsilon
$$

so that

$$
\begin{align*}
& \left\lvert\, \frac{\left.f\left((x+y)+y_{n}\right)-f\left((x+y)-y_{n}\right)\right)}{2 h\left(y_{n}\right)}\right. \\
& +\frac{\left.f\left((x-y)+y_{n}\right)-f\left((x-y)-y_{n}\right)\right)}{2 h\left(y_{n}\right)} \tag{2.8}\\
& \left.-2 g(x) \cdot \frac{h\left(y+y_{n}\right)+h\left(-y+y_{n}\right)}{2 h\left(y_{n}\right)} \right\rvert\, \\
& \leq \frac{\varepsilon}{\left|h\left(y_{n}\right)\right|}
\end{align*}
$$

for all $x, y \in G$. Taking the limit as $n \longrightarrow \infty$ with the use of (2.3), and since h satisfies (A), so (2.8) implies $\left(A_{g g h}\right)$.

Theorem 2. Suppose that $f, g, h: G \rightarrow \mathbb{C}$ satisfy the inequality (2.1) for all $x, y \in G$.

If g fails to be bounded, then
(i) h satisfies (S) under 2-divisibility,
(ii) if, additionally, g satisfies (A), g and h are solutions of $h(x+$ $y)-h(x-y)=2 g(x) h(y)$ and $h(x+y)+h(x-y)=2 h(x) g(y)$.

Proof. Let g be unbounded solution of the inequality (2.1). Then, there exists a sequence $\left\{x_{n}\right\}$ in G such that $0 \neq\left|g\left(x_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Taking $x=x_{n}$ in the inequality (2.1), dividing both sides by $\left|2 g\left(x_{n}\right)\right|$ and passing to the limit as $n \rightarrow \infty$ we obtain that

$$
\begin{equation*}
h(y)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}+y\right)-f\left(x_{n}-y\right)}{2 g\left(x_{n}\right)}, \quad x \in G . \tag{2.9}
\end{equation*}
$$

Replacing x by $x_{n}+x$ and $x_{n}-x$ in (2.1), we can, with an application of (2.9), state the existence of a limit function

$$
k_{2}(x):=\lim _{n \rightarrow \infty} \frac{g\left(x_{n}+x\right)+g\left(x_{n}-x\right)}{g\left(x_{n}\right)}
$$

where the function $k_{2}: G \rightarrow \mathbb{C}$ satisfies the equation

$$
\begin{equation*}
h(x+y)-h(x-y)=k_{2}(x) h(y) \quad \forall x, y \in G . \tag{2.10}
\end{equation*}
$$

From the definition of k_{2}, we get the equality $k_{2}(0)=2$, which jointly with (2.10) implies that h has to be odd.
(i) Run along the same lines applied after (2.6), which states nothing else but (S).
(ii) if g satisfies (A), the defined limit function k_{2} is simply $2 g$, so (2.10) implies $h(x+y)-h(x-y)=2 g(x) h(y)$.

Secondly, as above, replacing x by $x_{n}+y$ and $x_{n}-y$, and replacing y by x in (2.1), respectively. Then, since g satisfies (A), we obtain, with an application of (2.9), the equation $h(x+y)+h(x-y)=2 h(x) g(y)$.

By replacing h by f, g by f, h by g in Theorem 1 and Theorem 2, we obtain the following corollaries.

Corollary 1. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)-f(x-y)-2 g(x) f(y)| \leq \varepsilon \quad \forall x, y \in G \tag{2.11}
\end{equation*}
$$

Then either f is bounded or g satisfies (A).
Proof. Replacing h by f in (2.1) of Theorem 1. An obvious slight change in the steps of the proof of Theorem 1 , gives that k_{1} of (2.5) states nothing else but $2 g$. Hence, from (2.6), g satisfies the equation (A).

Corollary 2. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality (2.11)

If g fails to be bounded, then
(i) g satisfies (A),
(ii) f and g are solutions of $\left(T_{g f}\right)$ and $\left(A_{f g}\right)$.

Proof. Replacing h by f in (2.1) of Theorem 2.
(i) It is enough from Corollary 1 to show that the boundedness of f implies the boundedness of g. Namely, If f is bounded, choose $y_{0} \in G$ such that $f\left(y_{0}\right) \neq 0$, and then by (2.11) we obtain

$$
\begin{aligned}
|g(x)| & -\left|\frac{f\left(x+y_{0}\right)-f\left(x-y_{0}\right)}{2 f\left(y_{0}\right)}\right| \\
& \leq\left|\frac{f\left(x+y_{0}\right)-f\left(x-y_{0}\right)}{2 f\left(y_{0}\right)}-g(x)\right| \\
& \leq \frac{\varepsilon}{2\left|f\left(y_{0}\right)\right|},
\end{aligned}
$$

from which follows that g is also bounded on G. Since f is nonzero, the unboundedness of g implies the unboundedness of f. Hence, from Corollary $1, g$ satisfies (A).
(ii) Since we known that g satisfies (A) by (i), Following steps applied in Theorem 2, then the equation ($T_{g f}$) holds from (2.10).

For the case $\left(A_{g f}\right)$, replacing x by $x_{n}+y$ and $x_{n}-y$, and y by x in (2.11), respectively. other step runs same as above.

Corollary 3. Suppose that $f, h: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)-f(x-y)-2 f(x) h(y)| \leq \varepsilon \quad \forall x, y \in G \tag{2.12}
\end{equation*}
$$

If f fails to be bounded, then
(i) h satisfies (S) under 2-divisibility,
(ii) If, additionally, f satisfies (A), f and h are solutions of $h(x+$ $y)-h(x-y)=2 f(x) h(y)$ and $h(x+y)+h(x-y)=2 h(x) f(y)$.

Corollary 4. Suppose that $f, h: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
|f(x+y)-f(x-y)-2 f(x) h(y)| \leq \varepsilon \quad \forall x, y \in G
$$

If h fails to be bounded, then
(i) f satisfies (S) under 2-divisibility and one of the cases $f(0)=0$, $f(x)=f(-x)$,
(ii) if, additionally, h satisfies (A) or (T), f and h are solutions of $f(x+y)+f(x-y)=2 f(x) h(y)$,
(iii) h satisfies (S) under 2-divisibility,
(iv) if, additionally, f satisfies (A), f and h are solutions of $h(x+$ $y)-h(x-y)=2 f(x) h(y)$ and $h(x+y)+h(x-y)=2 h(x) f(y)$.

Proof. It is trivial from Theorem 2 except for (iii) and (iv).
As a boundedness proof of (ii) in Corollary 1, we can see that the unboundedness of h implies the unboundedness of f, so (v) and (vi) follows from (i) and (ii) immediately .

From Theorem 2, we obtain easily the following result :
Corollary 5. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
|f(x+y)-f(x-y)-2 g(x) g(y)| \leq \varepsilon \quad \forall x, y \in G .
$$

Then either g is bounded or g satisfies (S) under 2-divisibility.
Proof. It is trivial from (i) of Theorem 2.
Corollary 6. ([12]) Suppose that a non-zero function $f: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
|f(x+y)-f(x-y)-2 f(x) f(y)| \leq \varepsilon \quad \forall x, y \in G
$$

Then f is bounded.
Proof. Assume that f is not bounded. Then, by applying $g=h=f$ in Corollary 1 and Corollary 2, f satisfies simultaneously (A) and (T). This forces that f is a zero function. But we know that there exists the cosine function which satisfies (A) as a non-zero. Hence we arrive the result by a contradiction.

3. Extension to the Banach algebra

The obtained results for the functional equations $\left(T_{g h}\right)$ in section 2 can be extended to the Banach algebra. For simplify, we only will represent one of them, and the applications to the other theorems and corollaries will be omitted.

Given mappings $f, g, h: G \rightarrow \mathbb{C}$, for above equations, we will denote a difference for each equation by an operator $D T_{g h}: G \times G \rightarrow \mathbb{C}$ as

$$
D T_{g h}(x, y):=f(x+y)-f(x-y)-2 g(x) h(y) .
$$

Theorem 3. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g, h: G \rightarrow E$ satisfy the inequality

$$
\begin{equation*}
\|f(x+y)-f(x-y)-2 g(x) h(y)\| \leq \varepsilon \quad \forall x, y \in G . \tag{3.1}
\end{equation*}
$$

For an arbitrary linear multiplicative functional $x^{*} \in E^{*}$,
if the superposition $x^{*} \circ g$ fails to be bounded, then
(i) h satisfies (S) under 2-divisibility,
(ii) if, additionally, $x^{*} \circ g$ satisfies (A), g and h are solutions of the equation $h(x+y)-h(x-y)=2 g(x) h(y)$.

Proof. (i) Assume that (3.1) holds, and fix arbitrarily a linear multiplicative functional $x^{*} \in E^{*}$. As is well known, we have $\left\|x^{*}\right\|=1$ whence, for every $x, y \in G$, we have

$$
\begin{aligned}
\varepsilon & \geq\|f(x+y)-f(x-y)-2 g(x) h(y)\| \\
& =\sup _{\left\|y^{*}\right\|=1}\left|y^{*}(f(x+y)-f(x-y)-2 g(x) h(y))\right| \\
& \geq\left|x^{*}(f(x+y))-x^{*}(f(x-y))-2 x^{*}(g(x)) x^{*}(h(y))\right|,
\end{aligned}
$$

which states that the superpositions $x^{*} \circ f, x^{*} \circ g$ and $x^{*} \circ h$ yield a solution of inequality (2.1).

Since, by assumption, the superposition $x^{*} \circ g$ is unbounded, an appeal to Theorem 2 shows that the function $x^{*} \circ h$ solves the equation (S). In other words, bearing the linear multiplicativity of x^{*} in mind, for all $x, y \in G$, the difference $D S_{h}(x, y):=h(x) h(y)-h\left(\frac{x+y}{2}\right)^{2}+h\left(\frac{x-y}{2}\right)^{2}$ falls into the kernel of x^{*}. Therefore, in view of the unrestricted choice of x^{*}, we infer that

$$
D S_{h}(x, y) \in \bigcap\left\{\operatorname{ker} x^{*}: x^{*} \in E^{*}\right\}
$$

for all $x, y \in G$. Since the algebra E has been assumed to be semisimple, the last term of the above formula coincides with the singleton $\{0\}$, i.e.

$$
h(x) h(y)-h\left(\frac{x+y}{2}\right)^{2}+h\left(\frac{x-y}{2}\right)^{2}=0 \quad \text { for all } \quad x, y \in G,
$$

as claimed.
(ii) Under the assumption that the superposition $x^{*} \circ g$ satisfies (A), we know from Theorem 2 that the superpositions $x^{*} \circ h$ and $x^{*} \circ g$ are solutions of the equation

$$
x^{*}(h(x+y))-x^{*}(h(x-y))=2 x^{*}(g(x)) x^{*}(h(y)) .
$$

Namely,

$$
\begin{aligned}
h(x+y) & -h(x-y)-2 g(x) h(y) \\
& \in \bigcap\left\{\operatorname{ker} x^{*}: x^{*} \in E^{*}\right\} .
\end{aligned}
$$

The other argument is similar.

References

[1] R. Badora, On the stability of cosine functional equation, Rocznik NaukowoDydak., Prace Mat., 15 (1998), 1-14.
[2] R. Badora and R. Ger, On some trigonometric functional inequalities, Functional Equations- Results and Advances, (2002), 3-15.
[3] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc., 80 (1980), 411-416.
[4] J. A. Baker, J. Lawrence and F. Zorzitto, The stability of the equation $f(x+y)=$ $f(x) f(y)$, Proc. Amer. Math. Soc., 74 (1979), 242-246.
[5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16, (1949), 385-397.
[6] P.W. Cholewa, The stability of the sine equation, Proc. Amer. Math. Soc., 88 (1983). 631-634.
[7] P. Găvruta, On the stability of some functional equations, in : Th. M. Rassias and J. Tabor(Eds.), Stability of mappings of Hyers-Ulam type, Hadronic Press, 1994, pp. 93-98.
[8] Pl. Kannappan and G. H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Pedagog. Crac. Stud. Math., 1 (2001), 49-58.
[9] G. H. Kim, The Stability of the d'Alembert and Jensen type functional equations, Jour. Math. Anal \& Appl., 325 (2007), 237-248.
\qquad , A Stability of the generalized sine functional equations, Jour. Math. Anal \& Appl., 331 (2007), 886-894.
[11] , On the Stability of the generalized sine functional equations, Acta Sinica, preprint.
[12] \qquad and Y.W. Lee, Boundedness of approximate trigonometric functions, Appl. Math. Letters, preprint.

Department of Mathematics, Kangnam University
Youngin, Gyeonggi, 446-702, Korea
E-mail: ghkim@kangnam.ac.kr

