LINDELÖFICATION OF BIFRAMES

Mee Kyung Khang

Abstract

We introduce countably strong inclusions $\triangleleft=\left(\triangleleft_{1}, \triangleleft_{2}\right)$ on a biframe $\mathrm{L}=\left(\mathrm{L}_{0}, \mathrm{~L}_{1}, \mathrm{~L}_{2}\right)$ and i-strongly regular σ-ideals $(i=$ $1,2)$ and then using them, we construct biframe Lindelöfication of L. Furthermore, we obtain a sufficient condition for which L has a unique countably strong inclusion.

1. Introduction and preliminaries

This section is a collection of basic definitions and results on frames. For general notions and facts concerning frames, we refer to Johnstone[9] and Khang[10], and for compactifications to [1], [2], [3], [5].

1.1. Frames.

Definition 1.1. (1) A frame is a complete lattice L in which binary meet distributes over arbitrary join, that is, $x \wedge \bigvee S=$ $\bigvee\{x \wedge s \in S\}$ for any x in L and any subset S of L.
(2) A frame homomorphism is a map $h: L \rightarrow M$ between frames L and M preserving all finitary meets and binary joins.

We will denote the bottom element of a frame L by 0 or 0_{L} and the top element by e or e_{L}.

For any element a of a frame L , the map $a \wedge_{-}: \mathrm{L} \rightarrow \mathrm{L}$ preserves arbitraty joins; hence it has a right adjont, which will be denoted by $a \rightarrow{ }_{-} \mathrm{L} \rightarrow \mathrm{L}$. In particular, $a \rightarrow 0$ exists for any a in L and we write $a \rightarrow 0=a^{*}$, called the pseudocomplement of a.

Received August 1, 2008. Revised August 6, 2008.
2000 Mathematics Subject Classification: Primary 06D22 ; Secondary ,54D35.
Key words and phrases: biframe, Lindelöf biframe, Lindelöfication, countably strong inclusion, σ-ideal, countably approximating biframe.

This paper was supported by Pai Chai University Research Grant at 2008.

Definition 1.2. (1) Let L be a frame and a, b in L. We say that a is rather below b if there exists c in L such that $a \wedge c=0$ and $b \vee c=e$, equivalently, $a^{*} \vee b=e$. In this case, we write $a \prec b$.
(2) A frame L is said to be regular if for any a in $L, a=\bigvee\{b \in L \mid b \prec$ $a\}$.

We note that $u \prec v$ in $\Omega(\mathrm{X})$ means $\bar{u} \subseteq v$, for a topological space ($\mathrm{X}, \Omega(\mathrm{X})$) and it is clear that a topological space ($\mathrm{X}, \Omega(\mathrm{X})$) is regular if and only if $\Omega(\mathrm{X})$ is a regular frame.

Definition 1.3. ([7], [11]) Let L be a complete lattice and a, b in L. We say that a is way below (countably way below, resp.) b and write $a \ll b\left(a<_{c} b\right.$, resp. $)$ if for any subset S of $L, b \leq \bigvee S$ implies $a \leq \bigvee C$ for some finite (countable, resp.) subset C of S.

Example 1.4. (1) Let A and B be subsets of a set X. Then $A<_{c}$ B in the frame $\wp(X)$ of the power set of X if and only if there is a countable subset C of X with $A \subseteq C \subseteq B$.
(2) In $\Omega(X)$ of a topological space $(X, \Omega(X)), u<_{c} v$ if there is a Lindelöf subset w of X with $u \subseteq w \subseteq v$. If X is locally Lindelöf, then the converse also holds.

Proposition 1.5. Let L be a frame and a, b, x, y in L. Then
(1) $0 \ll_{c} a$.
(2) $a<_{c} b$ implies $a \leq b$.
(3) If $x \leq a<_{c} b \leq y$, then $x<_{c} y$.
(4) If $a_{n}<_{c} b$ for all $n \in N$, then $\bigvee_{n \in N} a_{n}<_{c} b$.
(5) If $a \ll b$, then $a \ll_{c} b$.

Definition 1.6. ([11]) A complete lattice L is said to be countably approximating if for any x in $L, x=\bigvee\left\{a \in L \mid a<_{c} x\right\}$.

The following definition is a natural generalization of compact frames.
Definition 1.7. A frame L is said to be a Lindelöf frame if for any subset S of L with $\bigvee S=e$, there is a countable subset C of S with $\bigvee C=e$.

A 1-1 frame homomorphism is clearly codense and therefore the following is immedate :

Proposition 1.8. If $h: L \rightarrow M$ is a 1-1 frame homomorphism and M is a Lindelöf frame, then L is a Lindelöf frame.

Definition 1.9. ([6]) A frame L is said to be a $D\left(\aleph_{1}\right)$ frame if for any a in L and any sequence $\left(b_{n}\right)_{n \in N}$ in $L, a \vee\left(\bigwedge_{n \in N} b_{n}\right)=\bigwedge_{n \in N}\left(a \vee b_{n}\right)$.

Proposition 1.10. If $x_{n} \prec y$ for all n in N in a $D\left(\aleph_{1}\right)$ frame L, then $\bigvee_{n \in N} x_{n} \prec y$ in L.

1.2. Lindelöfication of a Frame.

Using a concept of countably strong inclusions, we have obtained a Lindelöfication of a frame L, i.e. a dense, onto frame homomorphism $h: \mathrm{L} \rightarrow \mathrm{M}$ such that M is a Lindelöf regular frame.([10])

Definition 1.11. A binary relation \triangleleft on a frame L is said to be a countably strong inclusion, if it satisfies :
(1) if $x \leq a \triangleleft b \leq y$, then $x \triangleleft y$.
(2) \triangleleft is closed under finite meets and countable joins.
(3) $a \triangleleft b$ implies $a \prec b$.
(4) \triangleleft interpolates.
(5) $a \triangleleft b$ implies $b^{*} \triangleleft a^{*}$.
(6) $a=\bigvee\{x \in L \mid x \triangleleft a\}$ for any a in L.

Proposition 1.12. ([10]) If L is a Lindelöf regular $D\left(\aleph_{1}\right)$ frame, then \prec is a countably strong inclusion.

Definition 1.13. A subset I of a frame L is said to be a σ-ideal if it is a countably directed lower set, equivalently, it is a lower set and closed under countable joins.

Let σ IdL denote the set of all σ-ideals in L. Then σ IdL is clearly closed under arbitrary intersections in the power set lattice $\wp(\mathrm{L})$ of L and therefore it is a complete lattice.

Using the fact that for $\left(\mathrm{I}_{\lambda}\right)_{\lambda \in \Lambda} \subseteq \sigma \mathrm{IdL}, \underset{\lambda \in \Lambda}{ } \mathrm{I}_{\lambda}=\left\{\bigvee_{k \in N} x_{k} \mid\left(x_{k}\right)_{k \in N}\right.$ is a sequence in $\left.\bigcup_{\lambda \in \Lambda} \mathrm{I}_{\lambda}\right\}$ in σ IdL, one has :

Proposition 1.14. σ IdL is a Lindelöf frame.
Definition 1.15. Let \triangleleft be a countably strong inclusion on a frame L. Then a σ-ideal I is said to be a $\triangleleft-\sigma$-ideal if for any a in I, there is b in I such that $a \triangleleft b$.

Let $S(\triangleleft)$ denote the subframe of σ IdL determined by $\triangleleft-\sigma$-ideals, then the join map $j_{0}: S(\triangleleft) \rightarrow \mathrm{L}$ is indeed a Lindelöfication of $\mathrm{L}([10])$.

2. Lindelöfication of Biframes

In order to set up a frame version for bitopological spaces, a concept of biframes was introduced ([4]).

In this chapter, we deal with Lindelöfications of biframes.
Definition 2.1. (1) A biframe is a triple $L=\left(L_{0}, L_{1}, L_{2}\right)$ where L_{1} and L_{2} are subframes of a frame L_{0} such that L_{0} is generated by $L_{1} \cup L_{2}$.
(2) Let $L=\left(L_{0}, L_{1}, L_{2}\right)$ and $M=\left(M_{0}, M_{1}, M_{2}\right)$ be biframes. A map $h: L \rightarrow M$ is said to be a biframe homomorphism, if $h: L_{0} \rightarrow M_{0}$ is a frame homomorphism and satisfies $h\left(L_{i}\right) \subseteq M_{i}$ for $i=1,2$.

EXAMPLE 2.2. (1) Let $L_{0}=\Omega(R)$ the open set lattice of the real line R, L_{1} all open downsets and L_{2} all open upsets in R. Then $L=\left(L_{0}, L_{1}, L_{2}\right)$ is a biframe.
(2) If we let $L_{0}=L_{1}=L_{2}=L$ for a frame L, then $L=\left(L_{0}, L_{1}, L_{2}\right)$ is a biframe.

Definition 2.3. Let $L=\left(L_{0}, L_{1}, L_{2}\right)$ be a biframe.
(1) L is said to be a Lindelöf biframe if L_{0} is a Lindelöf frame.
(2) Let $i, k=1,2$ and $i \neq k$,
a) $x \prec_{i} y$ if $x, y \in L_{i}$ and there is c in L_{k} with $x \wedge c=0$ and $y \vee c=e$.
b) L is said to be regular if for any x in $L_{i}, x=\bigvee\left\{y \mid y \prec_{i} x\right\}$.
c) For any $x \in L_{i}(i=1,2)$, let $x^{\bullet}=\bigvee\left\{z \in L_{k} \mid z \wedge x=0\right\}$.
(3) L is said to be $D\left(\aleph_{1}\right)$ if L_{0} is a $D\left(\aleph_{1}\right)$ frame.

In the above example (1), $u \prec_{i} v$ if and only if $u \subseteq v$ such that one of the following holds :
i) $u \neq v$,
ii) $u=v=\varnothing$,
iii) $u=v=R$.

Remark. Let L be a biframe and $a, b \in \mathrm{~L}_{0}$. For any $i=1,2$,
(1) $a \prec_{i} b$ implies $a \leq b$.
(2) $a \prec_{i} b$ if and only if $a^{\bullet} \vee b=e$.

Definition 2.4. A biframe homomorphism $h: L \rightarrow M$ is said to be :
(1) dense if $h: L_{0} \rightarrow M_{0}$ is dense.
(2) onto if $\left.h\right|_{L_{1}}$ and $\left.h\right|_{L_{2}}$ are both onto.

Definition 2.5. A Lindelöfication of a biframe L is a dense, onto biframe homomorphism $h: M \rightarrow L$ such that M is a Lindelöf regular biframe.

We now introduce a concept of countably strong inclusion on a biframe.
Definition 2.6. Let $L=\left(L_{0}, L_{1}, L_{2}\right)$ be a biframe and $\triangleleft_{i} \subseteq L_{i} \times L_{i}$, for $i=1,2$. Then $\triangleleft=\left(\triangleleft_{1}, \triangleleft_{2}\right)$ is said to be a countably strong inclusion on L if \triangleleft satisfies the following, where $i, k=1,2$ and $i \neq k$.

1) If $x \leq a \triangleleft_{i} b \leq y$, then $x \triangleleft_{i} y$.
2) \triangleleft_{i} is closed under finite meets and countable joins.
3) If $a \triangleleft_{i} b$, then $a \prec_{i} b$.
4) \triangleleft_{i} interpolates.
5) If $a \triangleleft_{i} b$, then there are u, v in L_{k} such that $u \triangleleft_{k} v, a \wedge v=0$ and $b \vee u=e$.
6) For any $a \in L_{i}, a=\bigvee\left\{x \in L_{i} \mid x \triangleleft_{i} a\right\}$.

Remark. (1) The condition 5) in the above definition may be replaced by the following : $a \triangleleft_{i} b$ implies $b^{\bullet} \triangleleft_{k} a^{\bullet}$.
Indeed, suppose $a \triangleleft_{i} b$, then there are u, v in L_{k} such that $u \triangleleft_{k} v$, $a \wedge v=0$ and $b \vee u=e$. Thus $v \leq a^{\bullet}$ and $b^{\bullet}=b^{\bullet} \wedge e=b^{\bullet} \wedge(b \vee u)=$ $b^{\bullet} \wedge u$; hence $b^{\bullet} \leq u$. Therefore $b^{\bullet} \leq u \triangleleft_{k} v \leq a^{\bullet}$, so that $b^{\bullet} \triangleleft_{k} a^{\bullet}$. Conversely, suppose $a \triangleleft_{i} b$ then by 4), there is x in L_{i} such that $a \triangleleft_{i} x \triangleleft_{i} b$. Thus $x^{\bullet} \triangleleft_{k} a^{\bullet}$, so that $x^{\bullet} \triangleleft_{k} a^{\bullet}, a \wedge a^{\bullet}=0$. Moreover $x^{\bullet} \vee b=e$, for $x \triangleleft_{i} b$ implies $x \prec_{i} b$.
(2) By the exactly same arguments as those in Proposition 1.12, $\prec=$ $\left(\prec_{1}, \prec_{2}\right)$ in a Lindelöf regular $D\left(\aleph_{1}\right)$ biframe L is a countably strong inclusion on L .
Proof for the following lemma is straightforward and hence we omit it.

Lemma 2.7. Let $h: N \rightarrow L$ be an onto biframe homomorphism. If $\triangleleft=\left(\triangleleft_{1}, \triangleleft_{2}\right)$ is a countably strong inclusion on N, then $\hat{\triangleleft}=\left(\stackrel{2}{h}\left(\triangleleft_{1}\right), \stackrel{2}{h}\left(\triangleleft_{2}\right)\right)$ is a countably strong inclusion on L.

We now have the following by the above Lemma and Remark.
Corollary 2.8. If a biframe L has a $D\left(\aleph_{1}\right)$ Lindelöfication, then it has a countably strong inclusion.

For a biframe $\mathrm{L}=\left(\mathrm{L}_{0}, \mathrm{~L}_{1}, \mathrm{~L}_{2}\right)$, let $j_{i}: \mathrm{L}_{i} \rightarrow \mathrm{~L}_{0}$ be the inclusion homomorphism and let $\tilde{j}_{i}: \sigma \mathrm{IdL}_{i} \rightarrow \sigma \mathrm{IdL}_{0}$ be the frame homomorphism induced by j_{i} between the frames of σ-ideals of L_{i} and L_{0} respectively $(i=1,2)$. Then for any $\mathrm{J} \in \sigma \mathrm{IdL}_{i}, \tilde{j}_{i}(\mathrm{~J})=\downarrow \mathrm{J}$. Moreover, $\tilde{j}_{i}\left(\sigma \mathrm{IdL}_{i}\right)=\{\downarrow$ $\left.\mathrm{J} \mid \mathrm{J} \in \sigma \mathrm{IdL}_{i}\right\}$ is a subframe of $\sigma \mathrm{IdL}_{0}$, which will be denoted by $\sigma \mathrm{Id}_{b} \mathrm{~L}_{i}$.

Definition 2.9. Let $\triangleleft=\left(\triangleleft_{1}, \triangleleft_{2}\right)$ be a countably strong inclusion on a biframe $L=\left(L_{0}, L_{1}, L_{2}\right)$ and $i=1,2$. A σ-ideal J on L_{0} is said to be i-strongly regular if $J \in \sigma I d_{b} L_{i}$ and for any x in $J \cap L_{i}$, there is y in $J \cap L_{i}$ with $x \triangleleft_{i} y$.

Let \Re_{i} denote the set of all i-strongly regular σ-ideals in a biframe $\mathrm{L}=\left(\mathrm{L}_{0}, \mathrm{~L}_{1}, \mathrm{~L}_{2}\right)(i=1,2)$.

Using these notions, we now have the following immediately :
Proposition 2.10. \Re_{i} is a subframe of $\sigma I d L_{0}$.
Now let \Re_{0} be the subframe of $\sigma \operatorname{IdL}_{0}$ generated by $\Re_{1} \cup \Re_{2}$, then $\Re=\left(\Re_{0}, \Re_{1}, \Re_{2}\right)$ is a biframe.

Since $\sigma \mathrm{IdL}_{0}$ is a Lindelöf frame, so is \Re_{0}. Thus \Re is a Lindelöf biframe.
Since $j: \sigma \mathrm{IdL}_{0} \rightarrow \mathrm{~L}_{0}$ defined by $j(\mathrm{~J})=\mathrm{V} \mathrm{J}$ is dense, the restriction $j_{0}: \Re_{0} \rightarrow \mathrm{~L}_{0}$ of j to \Re_{0} is also dense, so that the biframe homomorphism $j_{0}: \Re \rightarrow \mathrm{L}$ is dense.

Consider $\gamma_{i}: \mathrm{L}_{i} \rightarrow \Re_{i}$ defined by $\gamma_{i}(a)=\downarrow\left\{x \in \mathrm{~L}_{i} \mid x \triangleleft_{i} a\right\}$. Then γ_{i} is well-defined, because $\left\{x \in \mathrm{~L}_{i} \mid x \triangleleft_{i} a\right\}$ is a $\triangleleft_{i}-\sigma$-ideal in L by the definition of countably strong inclutions. Furthermore, for any a in L_{i}, $a=\bigvee \gamma_{i}(a)=j_{0}\left(\gamma_{i}(a)\right)$; therefore j_{0} is onto.

Lemma 2.11. If $a \triangleleft_{i} b$, then $\gamma_{i}(a) \prec_{i} \gamma_{i}(b)(i=1,2)$.
Proof. Since \triangleleft_{i} interpolates, there is c in L_{i} such that $a \triangleleft_{i} c \triangleleft_{i} b$. Since $a \triangleleft_{i} c$ there are u, v in L_{k} such that $v \triangleleft_{k} u, a \wedge u=0$ and $c \vee v=e$. For any z in $\gamma_{i}(a) \wedge \gamma_{k}(u)=\gamma_{i}(a) \cap \gamma_{k}(u), z \triangleleft_{i} a$ and $z \triangleleft_{k} u$ and hence $z \leq a \wedge u=0$. Thus $\gamma_{i}(a) \wedge \gamma_{k}(u)=\{0\}$. Since $c \vee v=e \in \gamma_{i}(b) \cap \gamma_{k}(u)$, $\gamma_{i}(b) \wedge \gamma_{k}(u)=\mathrm{L}_{0}$. So $\gamma_{i}(a) \prec_{i} \gamma_{i}(b)$.

Lemma 2.12. For any J in $\Re_{i}, J=\underset{a \in J \cap L_{i}}{\bigvee} \gamma_{i}(a)$, for $i=1,2$.

Proof. Since $\mathrm{J} \in \sigma \operatorname{Id}_{b} \mathrm{~L}_{i}, \mathrm{~J}=\downarrow\left(\mathrm{J} \cap \mathrm{L}_{i}\right)$ and therefore $x \in \mathrm{~J}$ if and only if there are a,b in $\mathrm{J} \cap \mathrm{L}_{i}$, such that $x \leq a \triangleleft_{i} b$. Thus we have $\mathrm{J}=\bigvee_{a \in \mathrm{~J} \cap \mathrm{~L}_{i}} \gamma_{i}(a)$.

Proposition 2.13. \Re is regular.
Proof. For any J in \Re_{i} and any a in $\mathrm{J} \cap \mathrm{L}_{i}$, there is b in $\mathrm{J} \cap \mathrm{L}_{i}$ with $a \triangleleft_{i} b$, so that $\gamma_{i}(a) \prec \gamma_{i}(b) \leq \mathrm{J}$. Hence $\mathrm{J}=\underset{a \in \mathrm{~J} \mathrm{\cap L}}{i}{ }_{i}(a) \leq \bigvee\left\{\mathrm{I} \in \Re_{i} \mid \mathrm{I} \prec_{i}\right.$ $\mathrm{J}\} \leq \mathrm{J}$. Thus $\mathrm{J}=\bigvee\left\{\mathrm{I} \in \Re_{i} \mid \mathrm{I} \prec_{i} \mathrm{~J}\right\}$.

Collecting the above results, we have:
Theorem 2.14. If \triangleleft is a countably strong inclusion on a biframe L, then $j_{0}: \Re \rightarrow L$ is a Lindelöfication of L.

Let $\mathrm{CS}_{b}(\mathrm{~L})$ be the set of all countably strong inclusions on a biframe L . Then $\left(\mathrm{CS}_{b}(\mathrm{~L}), \subseteq\right)$ is a poset.

Definition 2.15. Let $f: M \rightarrow L$ and $g: N \rightarrow L$ be Lindelöfications of a biframe L. If there is a biframe homomorphism $h: M \rightarrow N$ with $g \circ h=f$, then we say that f is smaller than g and write $f \leq g$.

Clearly, \leq is a preoder on the class of Lindelöfications of a biframe L and the relation $\leq \cap \leq^{\mathrm{op}}$ is an equivalence relation on the class and let $\operatorname{Lind}_{b}(\mathrm{~L})$ be the set of all equivalence classes of Lindelöfications of a biframe L. Then $\left(\operatorname{Lind}_{b}(\mathrm{~L}), \leq\right)$ is a poset, where $[f] \leq[g]$ in $\operatorname{Lind}_{b}(\mathrm{~L})$ means $f \leq g$.

Define $\varphi: \operatorname{Lind}^{*}(\mathrm{~L}) \rightarrow \mathrm{CS}_{b}(\mathrm{~L})$ by $\varphi(h: \mathrm{M} \rightarrow \mathrm{L})=\left(\stackrel{2}{h}\left(\prec_{1}\right), \stackrel{2}{h}\left(\prec_{2}\right)\right)$ and $\psi: \mathrm{CS}_{b}(\mathrm{~L}) \rightarrow \operatorname{Lind}(\mathrm{L})$ by $\psi(\triangleleft)=\left(j_{0}: \Re \rightarrow \mathrm{L}\right)$, where $\operatorname{Lind}^{*}(\mathrm{~L})$ denotes the set of all $D\left(\aleph_{1}\right)$ Lindelöfications of a biframe L . Then φ and ψ are isotones. Using the exactly same arguments as those in section 2 in [10], we have the following :

Theorem 2.16. 1) Suppose that \triangleleft is a countably strong inclusion on a biframe L such that \Re is $D\left(\aleph_{1}\right)$. Then $\varphi(\psi(\triangleleft))=\triangleleft$.
2) For a $D\left(\aleph_{1}\right)$ Lindelöfication $h: M \rightarrow L$ of a biframe $L, \psi(\varphi(h)) \cong$ M.

We will introduce stably countably approximating frames and we will then find smallest countably strong inclusion.

Definition 2.17. A frame M is said to be stably countably approximating if M is countably approximating and $<_{c}$ is closed under finite meets in M.

Example 2.18. (1) If M is Lindelöf regular $D\left(\aleph_{1}\right)$, then M is stably countably approximating, since $<_{c}$ and \prec are same in a Lindelöf regular $D\left(\aleph_{1}\right)$ frame.([10])
(2) It is known that $I<_{c} J$ in $\sigma I d L$ if and only if $I \subseteq \downarrow a \subseteq J$, for some a in L ([11]). Thus σ IdL is stably countably approximating.
Lemma 2.19. Let $L=\left(L_{0}, L_{1}, L_{2}\right)$ be a regular $D\left(\aleph_{1}\right)$ biframe. Then each L_{i} is stably countably approximating and $<_{c i}$ satisfies the condition 5) in Definition 2.6 of countably strong inclusion if and only if $\left(<_{c 1},<_{c 2}\right)$ is a countably strong inclusion on L.

Proof. (\Leftarrow) By the condition 2), 5) and 6) of countably strong inclusion, it is trivial.
(\Rightarrow)

1) It follows from (3) in Proposition 1.5 .
2) Since each L_{i} is stably countably approximating, each $<_{c i}$ is closed under finite meets and by (4) in Proposition 1.5, each $<_{c i}$ is closed under countably joins.
3) Since L is regular $D\left(\aleph_{1}\right), x<_{c i} y$ implies $x \prec_{i} y$.
4) Since each L_{i} is countably approximating, each $<_{c i}$ interpolates.
5) It is trivial by the assumption.
6) If follows from the fact that each L_{i} is countably approximating.

Proposition 2.20. If L is a regular $D\left(\aleph_{1}\right)$ biframe such that each L_{i} is stably countably approximating and $<_{c i}$ satisfies the condition 5) in Definition 2.6 of countably strong inclusion, then $\left(<_{c 1},<_{c 2}\right)$ is the smallest countably strong inclusion on L.

Proof. Let $\left(\triangleleft_{1}, \triangleleft_{2}\right)$ be any countably strong inclusion on L. If $x \ll{ }_{c i} y$, then $x<_{c i} y=\bigvee\left\{z \in \mathrm{~L}_{i} \mid z \triangleleft_{i} y\right\}$. Thus there is a countable subset $\left\{z_{n} \mid n \in N\right\}$ of L_{i} such that for any $n \in N, z_{n} \triangleleft_{i} y$ and $x \leq \bigvee_{n \in N} z_{n}$ and hence $x \leq \bigvee_{n \in N} z_{n} \triangleleft_{i} y$, so $x \triangleleft_{i} y$. In all, $\left(<_{c 1},<_{c 2}\right) \subseteq\left(\triangleleft_{1}, \triangleleft_{2}\right)$.

Lemma 2.21. Let L be a regular $D\left(\aleph_{1}\right)$ biframe in which each L_{i} is countably approximating and $a \prec_{i} b$ implies that $a<_{c i} b$ whenever $a<e$. Then $\left(\prec_{1}, \prec_{2}\right)$ is a countably strong inclusion on L.

Proof. Conditions 1), 2), 3) are trivial.
4) We note that for $a<e, a \prec_{i} b$ if and only if $a<_{c i} b$ since L is regular $D\left(\aleph_{1}\right)$. Since L_{i} is countably approximating, there is z in L_{i} such that $a<_{c i} z<_{c i} b$ and hence $a \prec_{i} z \prec_{i} b$. For $a=e$, there is nothing to prove.
5) Suppose that $a \prec_{i} b$. Then by 4), there is c in L_{i} such that $a \prec_{i} c \prec_{i} b$. So there are s, t in L_{k} such that $a \wedge s=0, c \vee s=e$, $c \wedge t=0$ and $b \vee t=e$. Thus $a \wedge s=0, t \prec_{k} s$ and $b \vee t=e$.
6) It follows from the regularity of L_{i}.

Theorem 2.22. Let L be a regular $D\left(\aleph_{1}\right)$ biframe in which each L_{i} is countably approximating and $a \prec_{i} b$ implies that $a<_{c i} b$ whenever $a<e$. Then L has a unique countably strong inclusion.

Proof. By Lemma 2.21, $\left(\prec_{1}, \prec_{2}\right)$ is a countably strong inclusion on L. Let $\left(\triangleleft_{1}, \triangleleft_{2}\right)$ be any countably strong inclusion on L. Then $\left(\triangleleft_{1}, \triangleleft_{2}\right) \subseteq$ $\left(\prec_{1}, \prec_{2}\right)$ by the condition 3) of countably strong inclusion. Note that for $a<e, a \prec_{i} b$ if and only if $a<_{c i} b$. Thus by Proposition 2.20, $\left(<_{c 1},<_{c 2}\right)$ is the smallest countably strong inclusion, that is, $\left(\prec_{1}, \prec_{2}\right)$ is the smallest countably strong inclusion. Hence $\left(\triangleleft_{1}, \triangleleft_{2}\right)=\left(\prec_{1}, \prec_{2}\right)$.

References

[1] B. Banaschewski, Compactification of frames, Math. Nach., 149, 1990, pp. 105116.
[2] B. Banaschewski, Frames and compactifications, Extension theory of topological structures and its applications, Deutscher Verlag der Wissenschaften, Berlin, 1969, pp. 29-33.
[3] B. Banaschewski, and G. C. L. Brümmer, Stably continuous frames, Math. Proc. Camb. Phil. Soc., 104, 1988, no. 1, pp. 7-19.
[4] B. Banaschewski, and G. C. L. Brümmer, K. A. Hardie, Biframes and bispaces, Quaestiones Math., 6, 1983, pp. 13-25.
[5] B. Banaschewski, and C. J. Mulvey, Stone-Čech compactification of locales I, Houston J. Math., 6, 1980, pp. 301-312.
[6] X. Chen, Closed homomorphism, Doctoral Dissertation, McMaster University, Hamilton, 1991.
[7] G. Gierz, K. H. Hoffman, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin, 1980.
[8] J. R. Isbell, Atomless parts of locales, Math. Scand., 31, 1972, pp. 5-32.
[9] P. T. Johnstone, Stone spaces, Cambridge Univ. Press, Cambridge, 1982.
[10] M. K. Khang, Lindelöfication of Frames, Kangweon-Kyungki Math. Jour.,15(2007), No. 2, pp. 87-100.
[11] S. O. Lee, On countably approximating lattices, J. Korean Math, Soc., 25, no. 1, 1988, pp. 11-23.

Department of Applied Mathematics, Paichai University Daejeon 302-735, Korea E-mail: mkkhang@pcu.ac.kr

