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FUZZY LATTICES

Inheung Chon

Abstract. We define the operations ∨ and ∧ for fuzzy sets in a
lattice, characterize fuzzy sublattices in terms of ∨ and ∧, develop
some properties of the distributive fuzzy sublattices, and find the
fuzzy ideal generated by a fuzzy subset in a lattice and the fuzzy
dual ideal generated by a fuzzy subset in a lattice.

1. Introduction

The concept of a fuzzy set was first introduced by Zadeh ([6]) and
this concept was adapted by Yuan and Wu ([5]) to introduce the con-
cepts of fuzzy sublattices and fuzzy ideals of a lattice. Ying ([4]) de-
fined a L-fuzzy semilattice and established its properties. Ajmal and
Thomas ([1]) defined a fuzzy sublattice as a fuzzy algebra and char-
acterized fuzzy sublattices. In this note, as a continuation of these
studies, we define the operations ∨ and ∧ for fuzzy sets in a lattice and
develop some properties of fuzzy sublattices based on those operations.

In section 2, we give some definitions and develop some basic prop-
erties of fuzzy sublattices which will be used in next section. In section
3, we characterize a fuzzy sublattice in terms of the operations ∨ and
∧ for fuzzy sets in a lattice, develop some properties of the distributive
fuzzy lattices, and find the fuzzy ideal generated by a fuzzy subset in a
lattice and the fuzzy dual ideal generated by a fuzzy subset in a lattice.

2.Preliminaries

In this section, we give some definitions and develop some basic
properties of fuzzy sublattices which will be used in next section.
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Definition 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x)
is called a membership grade of x in B. A fuzzy set in X is called a
fuzzy point iff it takes the value 0 for all y ∈ X except one, say, x ∈ X.
If its value at x is α (0 < α ≤ 1), we denote this fuzzy point by xα,
where the point x is called its support. The fuzzy point xα is said to
be contained in a fuzzy set A, denoted by xα ∈ A, iff α ≤ A(x).

Remark. The crisp set L itself is a fuzzy subset of L such that L(x) =
1 for all x ∈ L (see Lemma 2.4 of [3]).

Throughout this note, we shall denote by L a lattice (L,+, ·), where
+ is the join operation and · is the meet operation. The following
definition is due to Ajmal and Thomas ([1]).

Definition 2.2. A function H from a lattice (L,+, ·) to the closed
unit interval [0, 1] in R is called a fuzzy sublattice in L iff H(x + y) ≥
min (H(x), H(y)) and H(x · y) ≥ min (H(x),H(y)).

We define operations ∨ and ∧ for fuzzy sets in a lattice which play
important roles in this note and develop some properties of these op-
erations.

Definition 2.3. Let (L,+, ·) be a lattice and let U and V be fuzzy
subsets of L. U ∨ V is defined by

(U ∨ V )(x) =

{
sup

a+b=x
min (U(a), V (b)) if a + b = x

0 if a + b 6= x.

U ∧ V is defined by

(U ∧ V )(x) =

{
sup

a·b=x
min (U(a), V (b)) if a · b = x

0 if a · b 6= x.

Proposition 2.4. Let A, B be fuzzy sets in a lattice (L,+.·) and
let xp, yq be fuzzy points in X. Then

(1) xp ∨ yq = (x + y)min (p,q) and xp ∧ yq = (x · y)min (p,q).
(2) A ∨B = ∪

xp∈A,yq∈B
xp ∨ yq, where
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(xp ∨ yq)(z) = sup
c+d=z

min (xp(c), yq(d)).

A ∧B = ∪
xp∈A,yq∈B

xp ∧ yq, where

(xp ∧ yq)(z) = sup
c·d=z

min (xp(c), yq(d)).

Proof. (1) If z 6= x+y, (xp∨yq)(z) = 0. If z = x+y, (xp∨yq)(z) =
(xp ∨ yq)(x + y) = sup

a+b=x+y
min (xp(a), yq(b)) = min (xp(x), yq(y)) =

min (p, q). Thus xp ∨ yq = (x + y)min(p,q). Similarly we may prove
xp ∧ yq = (x · y)min (p,q).
(2) Since sA(s) ∈ A and tB(t) ∈ B,

( ∪
xp∈A,yq∈B

xp ∨ yq)(z) = sup
xp∈A,yq∈B

sup
s+t=z

min (xp(s), yq(t))

≥ sup
s+t=z

min (sA(s)(s), tB(t)(t))

= sup
s+t=z

min (A(s), B(t))

= (A ∨B)(z).

For xp ∈ A and yq ∈ B, A(s) ≥ xp(s) and B(t) ≥ yq(t). Thus

(A ∨B)(z) = sup
s+t=z

min (A(s), B(t))

≥ sup
s+t=z

min(xp(s), yq(t))

for all xp ∈ A and all yq ∈ B. Let C = {c ∈ R : c ≤ sup
s+t=z

min(A(s), B(t))},
and D = { sup

s+t=z
min(xp(s), yq(t)) : xp ∈ A, yq ∈ B}. Then D ⊆ C

and sup
xp∈A,yq∈B

D ∈ D ⊆ C. Since C is closed, sup
xp∈A,yq∈B

D ∈ C. Thus

(A ∨B)(z) ≥ sup
xp∈A,yq∈B

sup
s+t=z

min (xp(s), yq(t))

= ( ∪
xp∈A,yq∈B

xp ∨ yq)(z).

Similarly we may prove A ∧B = ∪
xp∈A,yq∈B

xp ∧ yq ¤
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Proposition 2.5. Let A, B, and C be fuzzy sets in a lattice
(L,+, ·). Then (A∨B)∨C = A∨(B∨C) and (A∧B)∧C = A∧(B∧C).

Proof. Let S = {min (A(p), B(q)) : p + q = a} ⊆ R and let
sup S = α. Then α is an upper bound of S and there exists a se-
quence sn ∈ S such that sn → α. Since α is an upper bound of S,
min (s, r) ≤ min (α, r) for all s ∈ S. Since min is a continuous function
(see [2]), limn→∞min (sn, r) = min (α, r). Since min (α, r) is an up-
per bound of min (S, r) and there exists min (sn, r) ∈ min (S, r) such
that limn→∞min (sn, r) = min (α, r), sup min (S, r) = min (α, r) =
min (sup S, r). That is,

sup
p+q=a

min [min (A(p), B(q)), C(b)] = min [ sup
p+q=a

min (A(p), B(q)), C(b)].

Thus

sup
a+b=z

min[ sup
p+q=a

min(A(p), B(q)), C(b)]

= sup
a+b=z

sup
p+q=a

min[min(A(p), B(q)), C(b)]

= sup
(p+q)+b=z

min [min (A(p), B(q)), C(b)].

Similarly we may show that

sup
p+a=z

min [A(p), sup
q+b=a

min (B(q), C(b))]

= sup
p+(q+b)=z

min [A(p), min (B(q), C(b))].

Since p + (q + b) = (p + q) + b in a lattice L,

[(A ∨B) ∨ C] (z) = sup
a+b=z

min [ sup
p+q=a

min (A(p), B(q)), C(b)]

= sup
(p+q)+b=z

min [min (A(p), B(q)), C(b)]

= sup
p+(q+b)=z

min [A(p), min (B(q), C(b))]

= sup
p+a=z

min [A(p), sup
q+b=a

min (B(q), C(b))]

= sup
p+a=z

min [A(p), (B ∨ C)(a)] = [A ∨ (B ∨ C)](z).

Similarly we may show (A ∧B) ∧ C = A ∧ (B ∧ C). ¤
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Proposition 2.6. Let A be a fuzzy sublattice in a lattice L and
let xp, yq ∈ A. Then

(1) xp ∨ xp = xp and xp ∧ xp = xp.
(2) xp ∨ yq = yq ∨ xp and xp ∧ yq = yq ∧ xp.
(3) (xp∨yq)∨zr = xp∨ (yq ∨zr) and (xp∧yq)∧zr = xp∧ (yq ∧zr).
(4) (xp ∨ yq) ∧ xp = xmin(p,q) and (xp ∧ yq) ∨ xp = xmin(p,q).

Proof. (1) xp ∨ xp = (x ∨ x)min(p,p) = xp and xp ∧ xp = (x ∧
x)min(p,p) = xp.
(2) Straightforward.
(3) Straightforward.
(4) (xp∨yq)∧xp = (x∨y)min(p,q)∧xp = [(x∨y)∧x]min(p,q) = xmin(p,q).
Similarly we may prove (xp ∧ yq) ∨ xp = xmin(p,q).

¤

Definition 2.7. Let A be a fuzzy sublattice in a lattice L. Then A
is distributive iff xp∧(yq∨zr) = (xp∧yq)∨(xp∧zr) and xp∨(yq∧zr) =
(xp ∨ yq) ∧ (xp ∨ zr) for all xp, yq, zr ∈ A.

Proposition 2.8. Let A1, A2, . . . , An be fuzzy subsets in a lattice
(L,+, ·). Then

(1) L∧ (A1 ∪A2 ∪ · · · ∪An) ⊆ (L∧A1)∪ (L∧A2)∪ · · · ∪ (L∧An)
(2) (A1 ∪A2 ∪ · · · ∪An)∧L ⊆ (A1 ∧L)∪ (A2 ∧L)∪ · · · ∪ (An ∧L).

Proof. (1) Since L(a) = 1,

[L ∧ (A1 ∪A2 ∪ · · · ∪An)](x) = sup
a·b=x

min [L(a), (A1 ∪A2 ∪ · · · ∪An)(b)]

= sup
a·b=x

max[A1(b), A2(b), . . . , An(b)].

Since L(a) = 1,

[(L ∧A1) ∪ · · · ∪(L ∧An)](x)

= max[(L ∧A1)(x), (L ∧A2)(x), . . . , (L ∧An)(x)]

= max[ sup
a·b=x

A1(b), sup
a·b=x

A2(b), . . . , sup
a·b=x

An(b)].

Thus L ∧ (A1 ∪A2 ∪ · · · ∪An) ⊆ (L ∧A1) ∪ (L ∨A2) ∪ · · · ∪ (L ∧An).
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(2) Similarly, we may prove

(A1 ∪A2 ∪ · · · ∪An) ∧ L ⊆ (A1 ∧ L) ∪ (A2 ∧ L) ∪ · · · ∪ (An ∧ L).

¤

Proposition 2.9. Let A1, A2, . . . , An be fuzzy subsets in a lattice
(L,+, ·). Then

(1) L∨ (A1 ∪A2 ∪ · · · ∪An) ⊆ (L∨A1)∪ (L∨A2)∪ · · · ∪ (L∨An)
(2) (A1 ∪A2 ∪ · · · ∪An)∨L ⊆ (A1 ∨L)∪ (A2 ∨L)∪ · · · ∪ (An ∨L).

Proof. The proof is similar to that of Proposition 2.8. ¤

The following definition is due to Ajmal and Thomas ([1]).

Definition 2.10. Let A be a fuzzy sublattice in a lattice (L,+, ·).
Then A is called a fuzzy ideal if x ≤ y in L implies A(x) ≥ A(y). Let
B be a fuzzy sublattice in a lattice (L,+, ·). Then B is called a fuzzy
dual ideal if x ≤ y in L implies B(x) ≤ B(y).

3.Fuzzy lattices

In this section, we characterize a fuzzy sublattice in terms of the
operations ∨ and ∧, develop some properties of the distributive fuzzy
sublattices, and find the fuzzy ideal generated by a fuzzy subset in a
lattice and the fuzzy dual ideal generated by a fuzzy subset in a lattice.

Theorem 3.1. Let A be an non-empty fuzzy set of a lattice (L, +, ·).
Then the followings are equivalent.

(1) A is a fuzzy sublattice.
(2) For any xp, yq ∈ A, xp ∨ yq ∈ A and xp ∧ yq ∈ A.
(3) A ∨A ⊆ A and A ∧A ⊆ A .

Proof. (1) ⇒ (2). Suppose that A(x + y) ≥ min(A(x), A(y)) and
A(x · y) ≥ min(A(x), A(y)). By Proposition 2.4,

(xp ∨ yq)(z) = [(x + y)min(p,q)](z) =
{

min(p, q), if z = x + y

0, if z 6= x + y.
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Let xp, yq ∈ A. Then A(x) ≥ p and A(y) ≥ q. If z = x + y, A(z) =
A(x + y) ≥ min(A(x), A(y)) ≥ min(p, q) = (xp ∨ yq)(z), and hence
xp ∨ yq ∈ A. If z 6= x + y, A(z) ≥ (xp ∨ yq)(z) = 0, and hence
xp ∨ yq ∈ A. Similarly we may show that xp ∧ yq ∈ A.
(2) ⇒ (3). Suppose that for any xp, yq ∈ A, xp∨yq ∈ A and xp∧yq ∈ A.
By Proposition 2.4,

(A ∨A)(z) = [ ∪
xp∈A,yq∈A

xp ∨ yq](z) = sup
xp∈A,yq∈A

(xp ∨ yq)(z).

Let C = {c ∈ R : c ≤ A(z)} and D = {(xp ∨ yq)(z) : xp, yq ∈ A}. Then
D ⊆ C and sup

xp∈A,yq∈A
(xp ∨ yq)(z) ∈ D ⊆ C = C. Thus (A ∨ A)(z) =

sup
xp∈A,yq∈A

(xp∨yq)(z) ≤ A(z). Similarly we may show that A∧A ⊆ A.

(3) ⇒ (1). Suppose A ∨ A ⊆ A and A ∧ A ⊆ A. Then A(x + y) ≥
(A ∨ A)(x + y) = sup

a+b=x+y
min(A(a), A(b)) ≥ min(A(x), A(y)) and

A(x · y) ≥ (A ∧ A)(x · y) = sup
a·b=x·y

min(A(a), A(b)) ≥ min(A(x), A(y))

Thus A is a fuzzy sublattice. ¤

We now turn to the distributive law of a fuzzy sublattice.

Proposition 3.2. Let A be a fuzzy sublattice in a lattice (L,+, ·).
If min(p, q, r) = p for xp, yq, zr ∈ A, then

xp∧(yq∨zr) = (xp∧yq)∨(xp∧zr) ⇐⇒ xp∨(yq∧zr) = (xp∨yq)∧(xp∨zr).

Proof. (⇒) By Proposition 2.5 and Proposition 2.6, (xp∨yq)∧(xp∨
zr) = [(xp ∨ yq) ∧ xp] ∨ [(xp ∨ yq) ∧ zr] = xmin(p,q) ∨ [zr ∧ (xp ∨ yq)] =
xmin(p,q) ∨ [(zr ∧ xp) ∨ (zr ∧ yq)] = [xmin(p,q) ∨ (zr ∧ xp)] ∨ (zr ∧ yq) =
xmin(p,q,r) ∨ (zr ∧ yq) = xp ∨ (yq ∧ zr).
(⇐) By Proposition 2.5 and Proposition 2.6, (xp ∧ yq) ∨ (xp ∧ zr) =
[(xp∧yq)∨xp]∧ [(xp∧yq)∨zr] = xmin(p,q)∧ [zr∨(xp∧yq)] = xmin(p,q)∧
[(zr ∨ xp)∧ (zr ∨ yq)] = [xmin(p,q) ∧ (zr ∨ xp)]∧ (zr ∨ yq) = xmin(p,q,r) ∧
(zr ∨ yq) = xp ∧ (yq ∨ zr). ¤

Proposition 3.3. Let A be a fuzzy sublattice on a distributive
lattice (L, +, ·). Then A is a distributive fuzzy sublattice.
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Proof. Let xp, yq, zr ∈ A. Since L is distributive, x · (y + z) = x ·y +
x ·z. [xp∧(yq∨zr)](x ·(y+z)) = sup

a·(b+c)=x·(y+z)

min [xp(a), (yq∨zr)(b+

c)] = min [p, (yq ∨ zr)(y + z)] = min [p, sup
l+m=y+z

min (yq(l), zr(m))] =

min [p, min (q, r)] = min(p, q, r). [(xp ∧ yq) ∨ (xp ∧ zr)](x · y + x · z) =
sup

s·t+v·w=x·y+x·z
min [(xp ∧ yq)(s · t), (xp ∧ zr)(v · w)] = min [(xp ∧

yq)(x · y), (xp ∧ zr)(x · z)] = min [min(p, q), min(p, r)] = min (p, q, r).
If u 6= x · (y + z), [xp ∧ (yq ∨ zr)](u) = 0. If u 6= x · y + x · z, [(xp ∧ yq)∨
(xp ∧ zr)](u) = 0. Thus xp ∧ (yq ∨ zr) = (xp ∧ yq)∨ (xp ∧ zr). Similarly
we may prove xp ∨ (yq ∧ zr) = (xp ∨ yq) ∧ (xp ∨ zr) ¤

We now turn to the characterization of the fuzzy ideal generated
by a fuzzy subset in a lattice and the fuzzy dual ideal generated by a
fuzzy subset in a lattice. Proposition 3.4 and Proposition 3.5 are due
to Ajmal and Thomas ([1]).

Proposition 3.4. Let A be a fuzzy set in a lattice (L,+, ·). Then
the followings are equivalent.

(1) x ≤ y implies A(x) ≥ A(y).
(2) A(x · y) ≥ max (A(x), A(y)).
(3) A(x + y) ≤ min (A(x), A(y)).

Proposition 3.5. Let A be a fuzzy set in a lattice (L,+, ·). Then
the followings are equivalent.

(1) x ≤ y implies A(x) ≤ A(y).
(2) A(x + y) ≥ max (A(x), A(y)).
(3) A(x · y) ≤ min (A(x), A(y)).

Theorem 3.6. Let A be a fuzzy subset in a lattice L(+, ·). Then
the fuzzy ideal I generated by A is A ∪ (L ∧ A). That is, I(x) =
max[A(x), sup

a·b=x
A(b)].

Proof. Let {Ji : i ∈ I} be the collection of all fuzzy ideals of L
containing A. Then ∩

i∈I
Ji is a fuzzy ideal (see Theorem 3.17 of [1]).
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Since Ji(α · β) ≥ max (Ji(α), Ji(β)) by Proposition 3.4 and L(a) = 1,

(L ∧ Ji)(x) = sup
a·b=x

min (L(a), Ji(b))

≤ sup
a·b=x

min (L(a), Ji(a · b))
= Ji(x)

for each i ∈ I. Thus L ∧A ⊆ ∩
i∈I

Ji. Hence A ∪ (L ∧A) ⊆ ∩
i∈I

Ji.

By Proposition 2.8, L ∧ (A ∪ (L ∧ A)) ⊆ (L ∧ A) ∪ (L ∧ (L ∧ A)). By
Proposition 2.5, L ∧ (A ∪ (L ∧A)) ⊆ (L ∧A) ∪ ((L ∧ L) ∧A). Since L
is a crisp set, L(x) = 1 for all x ∈ L, and hence L ∧ L ⊆ L. Thus

L ∧ (A ∪ (L ∧A)) ⊆ (L ∧A) ∪ (L ∧A) ⊆ L ∧A ⊆ A ∪ (L ∧A).

Since L(x) = 1,

[A ∪ (L ∧A)](x · y) ≥ [L ∧ (A ∪ (L ∧A))](x · y)

= sup
a·b=x·y

min [L(a), (A ∪ (L ∧A))(b)]

≥ min [L(x), (A ∪ (L ∧A))(y)]

= [A ∪ (L ∧A)](y).

Since x · y = y · x, we may show [A∪ (L∧A)](x · y) ≥ [A∪ (L∧A)](x).
Thus

[A ∪ (L ∧A)](x · y) ≥ max [(A ∪ (L ∧A))(x), (A ∪ (L ∧A))(y)].

Similarly, we may show [A∪(L∧A)](x+y) ≥ max [(A∪(L∧A))(x), (A∪
(L ∧ A))(y)]. Then A ∪ (L ∧ A) is a fuzzy ideal of L containing A by
Proposition 3.4, that is, ∩Ji ⊆ A∪ (L∧A). Hence ∩Ji = A∪ (L∧A).
Also (L ∧A)(x) = sup

a·b=x
min (L(a), A(b) = sup

a·b=x
A(b). ¤

Theorem 3.7. Let A be a fuzzy subset in a lattice L(+, ·). Then
the fuzzy dual ideal D generated by A is A∪ (L∨A). That is, D(x) =
max[A(x), sup

a+b=x
A(b)].
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Proof. Let {Ji : i ∈ I} be the collection of all fuzzy dual ideals of
L containing A. Then ∩

i∈I
Ji is a fuzzy dual ideal (see Theorem 3.17 of

[1]) and Ji(α + β) ≥ max (Ji(α), Ji(β)) by Proposition 3.5. We may
show A ∪ (L ∨A) ⊆ ∩

i∈I
Ji by the same way as shown in Theorem 3.6.

By Proposition 2.9, L ∨ (A ∪ (L ∨ A)) ⊆ (L ∨ A) ∪ (L ∨ (L ∨ A)). By
Proposition 2.5, L ∨ (A ∪ (L ∨ A)) ⊆ (L ∨ A) ∪ ((L ∨ L) ∨ A). By the
same way as shown in Theorem 3.6, we may show [A∪(L∨A)](x+y) ≥
max [(A ∪ (L ∨ A))(x), (A ∪ (L ∨ A))(y)] and [A ∪ (L ∨ A)](x · y) ≥
max [(A∪(L∨A))(x), (A∪(L∨A))(y)]. Thus A∪(L∨A) is a fuzzy dual
ideal of L containing A by Proposition 3.5, that is, ∩Ji ⊆ A∪ (L∨A).
Hence ∩Ji = A∪ (L∨A). Also (L∨A)(x) = sup

a+b=x
min (L(a), A(b) =

sup
a+b=x

A(b). ¤
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