COMBINATORIAL PROOF FOR e-POSITIVITY OF THE POSET OF RANK 1

Jaejin Lee

Abstract

Let P be a poset and $G=G(P)$ be the incomparability graph of P. Stanley $[7]$ defined the chromatic symmetric function $X_{G(P)}$ which generalizes the chromatic polynomial χ_{G} of G, and showed all coefficients are nonnegative in the e-expansion of $X_{G(P)}$ for a poset P of rank 1. In this paper, we construct a sign reversing involution on the set of special rim hook P-tableaux with some conditions. It gives a combinatorial proof for (3+1)-free conjecture of a poset P of rank 1.

1. Introduction

Let G be a simple graph with d vertices. In [7], Stanley defined a homogeneous symmetric function X_{G} of degree d which generalizes the chromatic polynomial χ_{G} of G. Let P be a poset and $G(P)$ be the incomparability graph of P. Then the symmetric function $X_{G(P)}$ can be expanded in terms of various symmetric function bases. In particular, if we use the elementary symmetric function basis $\left\{e_{\mu}\right\}$, we have

$$
X_{G(P)}=\sum_{\mu} c_{\mu} e_{\mu} .
$$

Through their work on immanants of Jacobi-Trudi matrices, Stanley and Stembridge [9] were led to the following conjecture.

Received September 8, 2008. Revised September 18, 2008.
2000 Mathematics Subject Classification: 05E10.
Key words and phrases: sign-reversing involution, Kostka number, chromatic symmetric function, P-tableau.

Conjecture $1.1((\mathbf{3}+\mathbf{1})$-free conjecture). If P is a $(\mathbf{3}+\mathbf{1})$-free poset, $X_{G(P)}$ is e-positive, i.e., if

$$
X_{G(P)}=\sum_{\mu} c_{\mu} e_{\mu},
$$

then all $c_{\mu} \geq 0$.
Using the acyclic orientation of the incomparability graph $G(P)$ of P, Stanley [7] proved that $(\mathbf{3}+\mathbf{1})$-free conjecture is true for a poset P of rank 1.

On the other hand, Eğecioğlu and Remmel [2] gave a combinatorial interpretation for the entries of the inverse of Kostka matrix and Chow [1] used Eğecioğlu and Remmel's interpretation to get a combinatorial object for c_{μ} appeared in Conjecture 1.1.

Using Chow's combinatorial object for c_{μ}, we construct a sign reversing involution on the set of special rim hook P-tableaux with some conditions. It gives a combinatorial proof for ($\mathbf{3}+\mathbf{1}$)-free conjecture of a poset P of rank 1. In Section 2 we describe basic definitions from the theory of Young tableaux. A sign reversing involution to prove the main result with an example is given in Section 3.

2. Definitions and combinatorial interpretation for $K_{\mu, \lambda}^{-1}$

In this section we describe some definitions necessary for later. See [3], [6] or [8] for definitions and notations not described here.

Definition 2.1. A partition λ of a positive integer n is a sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ such that
(i) $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$,
(ii) $\sum_{i=1}^{\ell} \lambda_{i}=n$.

We write $\lambda \vdash n$, or $|\lambda|=n$. We say each term λ_{i} is a part of λ and the number of nonzero parts is called the length of λ and is written $\ell=\ell(\lambda)$. In addition, we will use the notation $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots, n^{m_{n}}\right)$ which means that the integer j appears m_{j} times in λ.

Definition 2.2. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition. The Ferrers diagram D_{λ} of λ is the array of cells or boxes arranged in rows and
columns, λ_{1} in the first row, λ_{2} in the second row, etc., with each row left-justified. That is,

$$
D_{\lambda}=\left\{(i, j) \in \mathbf{Z}^{2} \mid 1 \leq i \leq \ell(\lambda), 1 \leq j \leq \lambda_{i}\right\}
$$

where we regard the elements of D_{λ} as a collection of boxes in the plane with matrix-style coordinates.

Definition 2.3. If λ, μ are partitions with $D_{\lambda} \supseteq D_{\mu}$, the skew shape $D_{\lambda / \mu}$ or just λ / μ is defined as the set-theoretic difference $D_{\lambda} \backslash D_{\mu}$. Thus

$$
D_{\lambda / \mu}=\left\{(i, j) \in \mathbf{Z}^{2} \mid 1 \leq i \leq \ell(\lambda), \mu_{i}<j \leq \lambda_{i}\right\} .
$$

Figure 2.1 shows the Ferrers diagram D_{λ} and skew shape $D_{\lambda / \mu}$, respectively, when $\lambda=(5,4,2,1) \vdash 12$ and $\mu=(2,2,1) \vdash 5$.

Figure 2.1

Definition 2.4. Let λ be a partition. A tableau T of shape λ is an assignment $T: D_{\lambda} \rightarrow \mathbf{P}$ of positive integers to the cells of λ. The content of the tableau T, denoted by content (T), is the finite nonnegative vector whose i th component is the number of entries i in T.

A tableau T of shape λ is said to be column strict if it satisfies the following two conditions:
(i) $T(i, j) \leq T(i, j+1)$, i.e., the entries increase weakly along the rows of λ from left to right.
(ii) $T(i, j)<T(i+1, j)$, i.e., the entries increase strictly along the columns of λ from top to bottom.

In Figure 2.2, T is a tableau of shape $(5,4,2,1)$ and S is a column strict tableau of shape ($5,4,2,1$) and of content ($3,3,1,2,2,1$).

Figure 2.2

Definition 2.5. For partitions λ and μ such that $|\lambda|=|\mu|$, the Kostka number $K_{\lambda, \mu}$ is the number of column strict tableaux of shape λ and content μ.

If we use the reverse lexicographic order on the set of partitions of a fixed positive integer n, the Kostka matrix $K=\left(K_{\lambda, \mu}\right)$ becomes upper unitriangular so that K is non-singular.

Definition 2.6. A rim hook H is a skew shape which is connected and contains no 2×2 square of cells. The size of H is the number of cells it contains. The leg length of rim hook $H, \ell(H)$, is the number of vertical edges in H when viewed as in Figure 2.3. We define the sign of a rim hook H to be $\epsilon(H)=(-1)^{\ell(H)}$.

Figure 2.3 shows the rim hook H of size 6 with $\ell(H)=2$ and $\epsilon(H)=$ $(-1)^{2}=1$.

Figure 2.3
Definition 2.7. A rim hook tableau T of shape λ is a partition of the diagram of λ into rim hooks. The type of T is type $(T)=$ $\left(1^{m_{1}}, 2^{m_{2}}, \ldots, n^{m_{n}}\right)$ where m_{k} is the number of rim hooks in T of size k. We now define the sign of a rim hook tableau T as

$$
\epsilon(T)=\prod_{H \in T} \epsilon(H) .
$$

A rim hook tableau S is called special if each of the rim hooks contains a cell from the first column of λ. We use nodes for the Ferrers diagram
and connect them if they are adjacent in the same rim hook as S in Figure 2.4.

Figure 2.4

In Figure 2.4, T is a rim hook tableau of shape (5, 4, 2, 1), type $(T)=$ $\left(1^{2}, 2,4^{2}\right)$ and $\epsilon(T)=(-1)^{1} \cdot(-1)^{1} \cdot(-1)^{0} \cdot(-1)^{0} \cdot(-1)^{0}=1$, while S is a special rim hook tableau with shape $(5,3,2,1,1)$, type $(S)=(2,4,6)$ and $\epsilon(S)=(-1)^{0} \cdot(-1)^{1} \cdot(-1)^{2}=-1$.

We can now state Eğecioğlu and Remmel's interpretation for the entries of the inverse of Kostka matrix.

Theorem 2.8 (Eğecioğlu and Remmel[2]). The entries of the inverse Kostka matrix are given by

$$
K_{\mu, \lambda}^{-1}=\sum_{S} \epsilon(S)
$$

where the sum is over all special rim hook tableaux S with shape λ and type μ.

3. A sign reversing involution

We begin with Stanley's chromatic symmetric functions in this section.

Definition 3.1. Let $G=G(V, E)$ be a graph with a finite set of vertices V and edges E. A proper coloring of G is a function $\kappa: V \rightarrow \mathbb{P}$ such that $u v \in E$ implies $\kappa(u) \neq \kappa(v)$. Now consider a countably infinite
set of variables $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots\right\}$. The chromatic symmetric function X_{G} associated with a graph G is a formal power series

$$
X_{G}=X_{G}(\mathbf{x})=\sum_{\kappa: V \rightarrow \mathbb{P}} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)}
$$

where κ is a proper coloring.
Note that if one sets $x_{1}=x_{2}=\ldots=x_{n}=1$ and $x_{i}=0$ for $i>n$, denoted $\mathbf{x}=1^{n}$, then X_{G} reduces to the number of proper colorings of G from a set with n elements. So under this substitution, $X_{G}\left(1^{n}\right)=\chi_{G}(n)$ where $\chi_{G}(n)$ is the chromatic polynomial of Whitney [10]. Also, because permuting the colors of a proper coloring keeps the coloring proper, $X_{G}(\mathbf{x})$ is a symmetric function in \mathbf{x} over the rationals. In [7], Stanley derived many interesting properties of the chromatic symmetric function $X_{G}(\mathbf{x})$ some of which generalize those of the chromatic polynomial.

Definition 3.2. Let (P, \leq) be a finite partially ordered set(poset). We say that P is $(\mathbf{a}+\mathbf{b})$-free if it contains no induced subposet isomorphic to a disjoint union of an a-element chain and a b-element chain. Also, given any poset P, incomparability graph $G(P)$ of P is a graph having vertices $V=P$ and an edge between u and v in $G(P)$ if and only if u and v are incomparable in P.

Figure 3.1 shows a poset P and its incomparability graph $G(P)$.

Figure 3.1
Although ($\mathbf{3}+\mathbf{1}$)-free conjecture introduced in Section 1 still remains open, a weak result proved by Gasharov [4]. He gave a combinatorial interpretation to the coefficients in the s-expansion of $X_{G(P)}$ and proved that if P is $(\mathbf{3}+\mathbf{1})$-free then $X_{G(P)}$ is s-positive, where s_{λ} is the Schur function corresponding to λ.

Definition 3.3. Let P be a poset. A P-tableau T of shape λ is a bijection $D_{\lambda} \rightarrow P$ such that for all $(i, j) \in \lambda$:
(i) $T_{i, j}<T_{i+1, j}$, and
(ii) $T_{i, j} \ngtr T_{i, j+1}$,
where a condition is considered vacuously true if subscripts refer to a cell outside of λ. We denote the number of P-tableaux of shape λ by f_{P}^{λ}.

Note that when P is a chain, then a P-tableau is just a standard Young tableau and $f_{P}^{\lambda}=f^{\lambda}$. Figure 3.2 shows all P-tableaux of shape $\lambda=(3,1)$ when P is a poset given in Figure 3.1.

	$a \quad b \quad d$	$b a d$	$b \quad d \quad a$	b
	c	c	c	

Figure 3.2
Using P-tableaux, Gasharov proved the following result which immediately implies s-positivity of $X_{G(P)}$, where P is a $(\mathbf{3}+\mathbf{1})$-free poset.

Theorem 3.4 (Gasharov [4]). If P is (3+1)-free then

$$
\begin{equation*}
X_{G(P)}=\sum_{\lambda} f_{P}^{\lambda} s_{\lambda^{\prime}} \tag{1}
\end{equation*}
$$

where λ^{\prime} is the conjugate of λ.
Chow [1] pointed out that (1) could be combined with Eğecioğlu and Remmel's result to obtain a combinatorial interpretation of the coefficients c_{μ} in Conjecture 1.1. First note that the change of basis matrix between the Schur and elementary symmetric functions is

$$
s_{\lambda^{\prime}}=\sum_{\mu} K_{\mu, \lambda}^{-1} e_{\mu}
$$

Combining this with (1) we get

$$
X_{G(P)}=\sum_{\lambda, \mu} K_{\mu, \lambda}^{-1} f_{P}^{\lambda} e_{\mu} .
$$

Since the e_{μ} are a basis, we have

$$
c_{\mu}=\sum_{\lambda} K_{\mu, \lambda}^{-1} f_{P}^{\lambda}
$$

Finally we apply Theorem 2.8 to get the desired interpretation.

Corollary 3.5 (Chow [1]). Let P be a finite poset and let

$$
X_{G(P)}=\sum_{\mu} c_{\mu} e_{\mu} .
$$

Then, the coefficients c_{μ} satisfy

$$
c_{\mu}=\sum_{(S, T)} \epsilon(S)
$$

where the sum is over all pairs of a special rim hook tableau S of type μ and a P-tableau T with the same shape as S.

Note that a column of a P-tableau T must be a chain in P and the number of rim hooks in S is at most the length of its first column because they are special. So the previous corollary implies that $c_{\mu}=0$ whenever μ has more parts than the height of $P, h(P)$ (which is defined as the number of elements in the longest chain of P).

To present pairs (S, T) described in Corollary 3.5 economically, we will combine each pair (S, T) into a single tableau S_{T}, called special rim hook P-tableau, with elements in the same places as in T and edges between pairs of elements which are adjacent in a hook of S. See Figure 3.3 for an example of special rim hook P-tableau.

Figure 3.3
Using special rim hook P-tableaux Corollary 3.5 can be rewritten as follows.

Corollary 3.6. Let P be a finite poset. Then the coefficients c_{μ} in the e-expansion of $X_{G}(P)$ are

$$
c_{\mu}=\sum_{S} \epsilon(S)
$$

where the sum is over all special rim hook P-tableaux S of type μ.
We can now state the main result and give a sign reversing involution to prove it.

Theorem 3.7. Let P be a poset with n elements of rank 1 . Then

$$
\sum_{S} \epsilon(S)
$$

is non-negative, where the sum is over all special rim hook P-tableaux S of type $\mu \vdash n$.

Proof. Let μ be a fixed partition of n and Γ_{μ} be the set of all special rim hook P-tableaux of type μ. We divide the set Γ_{μ} into two disjoint subsets Γ_{μ}^{+}and Γ_{μ}^{-}as follows.

$$
\begin{aligned}
\Gamma_{\mu}^{+} & =\left\{S \in \Gamma_{\mu} \mid \epsilon(S)=1\right\} \\
\Gamma_{\mu}^{-} & =\left\{S \in \Gamma_{\mu} \mid \epsilon(S)=-1\right\}
\end{aligned}
$$

Note that P cannot have a chain of three elements and a column of a P-tableau T in Γ_{μ} must be a chain in P. This fact implies that the shape of T has at most two rows, and the number of rim hooks in T is at most two because it is special. This means that either $\mu=\left(n^{1}\right)$ or $\mu=\left(r^{1}, s^{1}\right)$ with $r \geq s$.

Suppose first $\mu=\left(n^{1}\right)$. Since T contains only one rim hook, T is a special rim hook P-tableaux of form

$$
a_{1}-a_{2}-\cdots-a_{n-1}-a_{n} \quad \text { or } \quad \begin{gathered}
\text { । } \\
b_{n}
\end{gathered}
$$

Define
$I\left(a_{1}-a_{2}-\cdots-a_{n-1}-a_{n}\right)= \begin{cases}a_{1}-a_{2}-\cdots-a_{n-1}-a_{n} & \text { if } a_{1} \nless a_{n} \\ a_{1}-a_{2}-\cdots-a_{n-1} & \\ \text { । } & \text { otherwise } \\ a_{n} & \end{cases}$
and

$$
I\left(\begin{array}{l}
b_{1}-b_{2}-\cdots-b_{n-1} \\
। \\
b_{n}
\end{array}\right)=b_{1}-b_{2}-\cdots-b_{n-1}-b_{n}
$$

If $b_{n-1}>b_{n}$ in the above, $\left\{b_{1}, b_{n}, b_{n-1}\right\}$ forms a chain of three elements in P. Hence we have $b_{n-1} \ngtr b_{n}$ and I is well-defined on Γ_{μ}.

Suppose now $\mu=\left(r^{1}, s^{1}\right)$ with $r \geq s$. Since there are two rim hooks in each P-tableau in Γ_{μ}, such tableau is of form

$$
T_{1}=\begin{aligned}
& a_{1}-a_{2}-\cdots-a_{s-1}-a_{s}-a_{s+1}-\cdots-a_{r} \\
& b_{1}-b_{2}-\cdots-b_{s-1}-b_{s}
\end{aligned}
$$

or

$$
T_{2}=\begin{aligned}
& c_{1}-c_{2}-\cdots-c_{s-1}-c_{s} \quad d_{s+2}-\cdots-d_{r} \\
& d_{1}-d_{2}-\cdots-d_{s-1}-d_{s}-d_{s+1}
\end{aligned}
$$

Define

$$
I\left(T_{1}\right)= \begin{cases}T_{1} & \text { if } a_{s+1} \nless a_{r} \\ T_{3} & \text { otherwise }\end{cases}
$$

and

$$
I\left(T_{2}\right)=T_{4}
$$

where

$$
T_{3}=\begin{aligned}
& a_{1}-a_{2}-\cdots-a_{s-1}-a_{s} a_{s+1}-\cdots-a_{r-1} \\
& b_{1}-b_{2}-\cdots-b_{s-1}-b_{s}-a_{r}
\end{aligned}
$$

and

$$
T_{4}=\begin{aligned}
& c_{1}-c_{2}-\cdots-c_{s}-d_{s+2}-\cdots-d_{r}-d_{s+1} \\
& d_{1}-d_{2}-\cdots-d_{s}
\end{aligned}
$$

If $d_{r}>d_{s+1}$ or $b_{s}>a_{r}>a_{s+1}$ in the above, P contains a chain of three elements $\left\{d_{s+2}, d_{s+1}, d_{r}\right\}$ or $\left\{a_{s+1}, a_{r}, b_{s}\right\}$. Thus we have $d_{r} \ngtr d_{s+1}$, $b_{s} \ngtr a_{r}$ and I is well-defined.

In either case, we can check easily that I is a sign reversing involution on Γ_{μ}, i.e., $I \circ I=1_{\Gamma_{\mu}}$ and

$$
\epsilon(I(S))= \begin{cases}1 & \text { if } S \in \Gamma_{\mu}^{-} \\ -1 & \text { if } S \in \Gamma_{\mu}^{+} \text {and } I(S) \neq S \\ 1 & \text { if } S \in \Gamma_{\mu}^{+} \text {and } I(S)=S\end{cases}
$$

Class	shape	type	sign	\# of special rim hook P-tableaux
I	(5)	(5)	1	42
II	$(4,1)$	(5)	-1	12
III	$(4,1)$	$(4,1)$	1	12
IV	$(3,2)$	$(3,2)$	1	6
V	$(3,2)$	$(4,1)$	-1	6

Table 1

Using the above involution I, we finally have

$$
\sum_{S} \epsilon(S)=\sum_{S \in \Gamma_{\mu}} \epsilon(S)=\sum_{S \in \Gamma_{\mu}^{+}, I(S)=S} \epsilon(S) \geq 0
$$

which immediately implies our theorem.
Combining Corollary 3.6 and Theorem 3.7, we get the following facts.
Corollary 3.8 (Stanley[7]). Let P be a finite poset of rank 1. For any partition μ, the coefficient c_{μ} of e_{μ} in the e-expansion of $X_{G(P)}$ is non-negative.

Example 3.9. Consider the poset P as in Figure 3.4.

Figure 3.4
Then there are 78 special rim hook P-tableaux. Table 1 shows all possible shapes and types of special rim hook P-tableaux, and the number of special rim hook P-tableaux with given shape and type. Examples of a special rim hook P-tableaux contained in each class of Table 1 are given in Figure 3.5.

Class I: $\quad a-b-c-d-e$

Class II: $\quad a-b-c-e$

Class IV: $\quad \mathrm{a}-\mathrm{b}-\mathrm{c}$
d-e
Class V: a b-c

Class III: $\quad \mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{e}$
d

Figure 3.5
Each special rim hook P-tableaux in Class II is matched to just one of tableaux in Class I, and each special rim hook P-tableaux in Class V is matched to one in Class III as follows;

\Longleftrightarrow $a-b-c-e-d$

\Longleftrightarrow
$a-b-c-e$
d

Figure 3.6
30 unmatched tableaux in Class I, 6 unmatched tableaux in Class III and 6 unmatched tableaux in Class IV are fixed by the involution I described in Theorem 3.7. Hence, we have

$$
X_{G(P)}=30 e_{(5)}+6 e_{(4,1)}+6 e_{(3,2)}
$$

References

[1] T. Chow, A note on a combinatorial interpretation of the e-coefficients of the chromatic symmetric function, preprint (1997), 9 pp , arXiv math.CO/9712230.
[2] Ö. Eğecioğlu and J. Remmel, A combinatorial interpretation of the inverse Kostka matrix, Linear and Multilinear Algebra 26 (1990), 59-84.
[3] W. Fulton, "Young Tableaux," London Mathematical Society Student Texts 35, Cambridge University Press, Cambridge, 1999.
[4] V. Gasharov, Incomparability graphs of (3+1)-free posets are s-positive, Discrete Math. 157 (1996), 193-197.
[5] I. G. Macdonald, "Symmetric functions and Hall polynomials," 2nd edition, Oxford University Press, Oxford, 1995.
[6] B. Sagan, "The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions," 2nd edition, Springer-Verlag, New York, 2001.
[7] R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111 (1995), 166-194.
[8] R. P. Stanley, "Enumerative Combinatorics, Volume 2," Cambridge University Press, Cambridge, 1999.
[9] R. P. Stanley and J. Stembridge, On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A 62 (1993), 261-279.
[10] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932), 572-579.

Department of Mathematics
Hallym University
Chunchon, Korea 200-702
E-mail: jjlee@hallym.ac.kr

