A BERBERIAN TYPE EXTENSION OF FUGLEDE-PUTNAM THEOREM FOR QUASI-CLASS \boldsymbol{A} OPERATORS

IN HYOUN KIM AND IN HO JEON*

ABSTRACT. Let $\mathcal{L}(\mathcal{H})$ denote the algebra of bounded linear operators on a separable infinite dimensional complex Hilbert space \mathcal{H} . We say that $T \in \mathcal{L}(\mathcal{H})$ is a quasi-class A operator if

$$T^*|T^2|T \ge T^*|T|^2T$$
.

In this paper we prove that if A and B are quasi-class A operators, and B^* is invertible, then for a Hilbert-Schmidt operator X

$$AX = XB$$
 implies $A^*X = XB^*$.

1. Introduction

Recall ([1], [5]) that $T \in \mathcal{L}(\mathcal{H})$ is called *p-hyponormal* if for $p \in (0, 1]$ $(T^*T)^p > (TT^*)^p,$

and T is called paranormal if for all unit vector $x \in \mathcal{H}$

$$||T^2x|| \ge ||Tx||^2.$$

Following [5] and [6] we say that $T \in \mathcal{L}(\mathcal{H})$ belongs to class A if

$$|T^2| \ge |T|^2.$$

Recall ([9]) that T is called p-quasihyponormal if for $p \in (0, 1]$

$$T^*(T^*T)^pT \ge T^*(TT^*)^pT.$$

Received November 25, 2008. Revised December 2, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 47B20.

Key words and phrases: quasi-class A operator, Hilbert-Schmidt class, Fuglede-Putnam theorem.

This work was supported by the University of Incheon Research Grant in 2008 . *

^{*}Corresponding author.

For brevity, we shall denote classes of p-hyponormal operators, p-quasihyponormal operators, paranormal operators, and class A operators by $\mathcal{H}(p)$, $\mathcal{QH}(p)$, \mathcal{PN} , and \mathcal{A} , respectively. It is well known that

$$(1.1) \mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{PN} \text{ and } \mathcal{H}(p) \subset \mathcal{QH}(p) \subset \mathcal{PN}.$$

Recently, Jeon and Kim ([8]) considered an extension of class A operators and p-quasihyponormal operators.

DEFINITION 1.1. We say that $T \in \mathcal{L}(\mathcal{H})$ is quasi-class A if

$$T^*|T^2|T \ge T^*|T|^2T.$$

For brevity, we shall denote the set of quasi-class A operators by $\mathcal{Q}\mathcal{A}$. As shown in [8], the class of quasi-class A operators properly contains classes of class A operators and p-quasihyponormal operators, i.e., the following inclusion holds;

$$(1.2) \mathcal{H}(p) \subset \mathcal{QH}(p) \subset \mathcal{QA} \text{ and } \mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{QA}$$

In view of inclusions (1.1) and (1.2), it seems reasonable to expect that operators in class QA are paranormal. But there exists an example which is not paranormal but quasi-class A([8]).

A familiar Fuglede-Putnam theorem is as follows.

PROPOSITION 1.2. Let A, B, and X be in $\mathcal{L}(\mathcal{H})$. If A and B are normal, then

$$AX = XB$$
 implies $A^*X = XB^*$.

In [2] S. K. Berberian relaxes the hypotheses on A and B in the above theorem at the cost of requiring X to be of Hilbert-Schmidt class(denoted $X \in \mathcal{C}_2$, for definitions and details see [10]) as follows.

PROPOSITION 1.3. Let $A, B \in \mathcal{L}(\mathcal{H})$ and $X \in \mathcal{C}_2$. Then

$$AX = XB$$
 implies $A^*X = XB^*$

under either of the following hypotheses:

- (i) A and B^* are hyponormal,
- (ii) B is invertible and $||A|| \cdot ||B^{-1}|| \leq 1$

In [4, Theorem 2] T. Furuta relaxed the hyponormality on A and B^* to k-quasihyponormality(to be defined below).

Recall [3] that an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be k-quasihyponormal if $T^{*k}(T^*T - TT^*)T^k \geq 0$ for some non-negative integer k. It is well known that, for $k \geq 2$, the class of k-quasihyponormal operators has no inclusion relations with classes of the former mentioned operators.

In this paper, we prove an analogue result of T. Furuta as follows.

THEOREM 1.4. Let $A \in \mathcal{QA}$ and $B^* \in \mathcal{QA}$ be invertible. Then for $X \in \mathscr{C}_2$

$$AX = XB$$
 implies $A^*X = XB^*$.

The following result immediately follows.

COROLLARY 1.5. Let $A \in \mathcal{A}(\text{resp. } A \in \mathcal{QH}(p))$ and $B^* \in \mathcal{A}(\text{resp. } B^* \in \mathcal{QH}(p))$ be invertible. Then for $X \in \mathscr{C}_2$

$$AX = XB$$
 implies $A^*X = XB^*$.

2. Proofs

In this section we give a proof of Theorem1.4, modifying T. Furuta's arguments in the proof of [4, Theorem 2]. We need some lemmas. Recall from [8] that

LEMMA 2.1. Let $T \in \mathcal{QA}$ and T not have a dense range. Then T has the following matrix representation:

$$T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$$
 on $\overline{\operatorname{ran}(T)} \oplus \ker(T^*)$,

where $A \in \mathcal{A}$. Furthermore, $\sigma(T) = \sigma(A) \cup \{0\}$.

From the above lemma we immediately have

COROLLARY 2.2. If $T \in \mathcal{QA}$ is invertible, then $T \in \mathcal{A}$.

In [2] an operator \mathscr{T} on \mathscr{C}_2 is defined by, for $A, B \in \mathscr{L}(\mathscr{H})$,

$$\mathcal{T}X = AXB.$$

Then, as in [2], simple calculations show that $\mathscr{T}^*X = A^*XB^*$ and also (2.1) $A, B \geq 0$ implies $\mathscr{T} \geq 0$.

LEMMA 2.3. If $A, B^* \in \mathcal{QA}$, then the operator \mathscr{T} belongs to \mathcal{QA} .

Proof. From the hypotheses of A and B^* , and (2.1) we have

$$(\mathscr{T}^*|\mathscr{T}^2|\mathscr{T} - \mathscr{T}^*|\mathscr{T}|^2\mathscr{T})X$$
= $(A^*|A^2|A - A^*|A|^2A)XB|B^{*2}|B^* + A^*|A|^2AX(B|B^{*2}|B^* - B|B^*|^2B^*)$
 $\geq 0,$

which shows that \mathcal{T} is a quasi-class A operator on \mathscr{C}_2 .

Proof of Theorem 1.4. If $S \in \mathcal{L}(\mathcal{H})$ is invertible, let \mathscr{T} on \mathscr{C}_2 be defined by

$$\mathscr{T}Y = AYS^{-1}$$
.

Since B^* is invertible quasi-class A, B^* is just invertible class A by Corollary 2.2, and $(B^*)^{-1} = (B^{-1})^*$ is also class A by [11]. So it follows that from Lemma 2.3 that $\mathcal{T} \in \mathcal{QA}$. The hypotheses AX = XB implies $\mathcal{T}X = X$ and from the fact $\mathcal{T} \in \mathcal{QA}$ it follows (use the Hölder-McCarthy inequality[5])

$$\begin{split} ||\mathcal{T}^*X||^2 &= \langle \mathcal{T}^*X, \mathcal{T}^*X \rangle \\ &= \langle \mathcal{T}^*\mathcal{T}\mathcal{T}X, \mathcal{T}^*\mathcal{T}\mathcal{T}X \rangle \\ &\leq \langle \mathcal{T}^*|\mathcal{T}^2|\mathcal{T}X, X \rangle \\ &= \langle (\mathcal{T}^{*2}\mathcal{T}^2)^{\frac{1}{2}}X, X \rangle \\ &\leq \langle (\mathcal{T}^{*2}\mathcal{T}^2)X, X \rangle^{\frac{1}{2}} \cdot ||X|| \\ &= ||X||^2, \end{split}$$

which implies

$$||\mathcal{T}^*X-X||^2\leq ||\mathcal{T}^*X||^2-2||X||^2+||X||^2\leq 0.$$
 Hence we have $\mathcal{T}^*X=X,$ i.e., $A^*X=XB^*.$

References

- [1] A. Aluthge, On p-hyponormal operators for $0 , Integr. Equa. Oper. Th. <math>\mathbf{13}(1990)$, 307-315.
- [2] S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. **71**(1978), 113-114.
- [3] S. L. Campbell and B.C. Gupta, On k-qusihyponormal operators, Math. Japonica 23(1978), 185-189.
- [4] T. Furuta, On relaxation of normality in the Fuglede-Putnam theorem, Proc. Amer. Math. Soc. 77(1979), 324-328.
- [5] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London (2001).
- [6] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1(1998), 389-403.
- [7] I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, Jour. Korean Math. Soc. 41(2004), 617-627.
- [8] I. H. Jeon and I. H. Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Lin. Alg. Appl., **418**(2006), 854-862.
- [9] M. Y. Lee and S. H. Lee, An extension of the Fuglede-Putnam theorem to p-quasihyponormal, Bull. Korean Math. Soc. **35**(1998), 319-324.
- [10] J. R. Ringrose, Compact non-self-adjoint operators, Van Nostrand Reinhold Co., London, 1971.
- [11] A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for log-hyponormal or p-hyponormal operators, Glasgow Math. Jour. 44(2002), 397-410.

Department of Mathematics University of Incheon Incheon 402-749, Korea

E-mail: ihkim@inchon.ac.kr

Department of Mathematics Education Seoul National University of Education Seoul 137-742, Korea

E-mail: jihmath@snue.ac.kr