A BERBERIAN TYPE EXTENSION OF FUGLEDE-PUTNAM THEOREM FOR QUASI-CLASS A OPERATORS

IN HYOUN KIM AND IN HO JEON*

Abstract. Let $\mathcal{L}(\mathcal{H})$ denote the algebra of bounded linear operators on a separable infinite dimensional complex Hilbert space \mathcal{H}. We say that $T \in \mathcal{L}(\mathcal{H})$ is a quasi-class A operator if

$$T^*|T|^2T \geq T^*|T|^2T.$$

In this paper we prove that if A and B are quasi-class A operators, and B^* is invertible, then for a Hilbert-Schmidt operator X

$$AX = XB \implies A^*X = XB^*.$$

1. Introduction

Recall ([1], [5]) that $T \in \mathcal{L}(\mathcal{H})$ is called p-hyponormal if for $p \in (0, 1]$

$$(T^*T)^p \geq (TT^*)^p,$$

and T is called paranormal if for all unit vector $x \in \mathcal{H}$

$$||T^2x|| \geq ||Tx||^2.$$

Following [5] and [6] we say that $T \in \mathcal{L}(\mathcal{H})$ belongs to class A if

$$|T^2| \geq |T|^2.$$

Recall ([9]) that T is called p-quasihyponormal if for $p \in (0, 1]$

$$T^*(T^*T)^pT \geq T^*(TT^*)^pT.$$

Received November 25, 2008. Revised December 2, 2008.
2000 Mathematics Subject Classification: 47B20.
Key words and phrases: quasi-class A operator, Hilbert-Schmidt class, Fuglede-Putnam theorem.
This work was supported by the University of Incheon Research Grant in 2008.

*Corresponding author.
For brevity, we shall denote classes of p-hyponormal operators, p-quasihyponormal operators, paranormal operators, and class A operators by $\mathcal{H}(p)$, $\mathcal{QH}(p)$, \mathcal{PN}, and A, respectively. It is well known that

\begin{equation}
\mathcal{H}(p) \subset A \subset \mathcal{PN} \text{ and } \mathcal{H}(p) \subset \mathcal{QH}(p) \subset \mathcal{PN}.
\end{equation}

Recently, Jeon and Kim ([8]) considered an extension of class A operators and p-quasihyponormal operators.

Definition 1.1. We say that $T \in \mathcal{L}(\mathcal{H})$ is quasi-class A if

\[T^*|T|^2 T \geq T^*|T|^2 T. \]

For brevity, we shall denote the set of quasi-class A operators by \mathcal{QA}. As shown in [8], the class of quasi-class A operators properly contains classes of class A operators and p-quasihyponormal operators, i.e., the following inclusion holds;

\begin{equation}
\mathcal{H}(p) \subset \mathcal{QH}(p) \subset \mathcal{QA} \text{ and } \mathcal{H}(p) \subset A \subset \mathcal{QA}
\end{equation}

In view of inclusions (1.1) and (1.2), it seems reasonable to expect that operators in class \mathcal{QA} are paranormal. But there exists an example which is not paranormal but quasi-class $A([8])$.

A familiar Fuglede-Putnam theorem is as follows.

Proposition 1.2. Let A, B, and X be in $\mathcal{L}(\mathcal{H})$. If A and B are normal, then

\[AX = XB \text{ implies } A^*X = XB^*. \]

In [2] S. K. Berberian relaxes the hypotheses on A and B in the above theorem at the cost of requiring X to be of Hilbert-Schmidt class (denoted $X \in \mathcal{C}_2$, for definitions and details see [10]) as follows.

Proposition 1.3. Let A, $B \in \mathcal{L}(\mathcal{H})$ and $X \in \mathcal{C}_2$. Then

\[AX = XB \text{ implies } A^*X = XB^* \]

under either of the following hypotheses:

(i) A and B^* are hyponormal,

(ii) B is invertible and $|A| \cdot ||B^{-1}|| \leq 1$
In [4, Theorem 2] T. Furuta relaxed the hyponormality on A and B^* to k-quasihyponormality (to be defined below).

Recall [3] that an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be k-quasihyponormal if $T^{*k}(T^*T - TT^*)T^k \geq 0$ for some non-negative integer k. It is well known that, for $k \geq 2$, the class of k-quasihyponormal operators has no inclusion relations with classes of the former mentioned operators.

In this paper, we prove an analogue result of T. Furuta as follows.

Theorem 1.4. Let $A \in \mathcal{QA}$ and $B^* \in \mathcal{QA}$ be invertible. Then for $X \in \mathcal{C}_2$

$$AX = XB \text{ implies } A^*X = XB^*.$$

The following result immediately follows.

Corollary 1.5. Let $A \in \mathcal{A}$ (resp. $A \in \mathcal{QH}(p)$) and $B^* \in \mathcal{A}$ (resp. $B^* \in \mathcal{QH}(p)$) be invertible. Then for $X \in \mathcal{C}_2$

$$AX = XB \text{ implies } A^*X = XB^*.$$

2. Proofs

In this section we give a proof of Theorem 1.4, modifying T. Furuta’s arguments in the proof of [4, Theorem 2]. We need some lemmas. Recall from [8] that

Lemma 2.1. Let $T \in \mathcal{QA}$ and T not have a dense range. Then T has the following matrix representation:

$$T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \text{ on } \overline{\text{ran}(T)} \oplus \ker(T^*),$$

where $A \in \mathcal{A}$. Furthermore, $\sigma(T) = \sigma(A) \cup \{0\}$.

From the above lemma we immediately have

Corollary 2.2. If $T \in \mathcal{QA}$ is invertible, then $T \in \mathcal{A}$.

In [2] an operator T on C_2 is defined by, for $A, B \in L(H)$,
$$TX = AXB.$$
Then, as in [2], simple calculations show that $T^*X = A^*XB^*$ and also

\[(2.1) \quad A, B \geq 0 \text{ implies } T \geq 0.\]

Lemma 2.3. If $A, B^* \in QA$, then the operator T belongs to QA.

Proof. From the hypotheses of A and B^*, and (2.1) we have
\[
(T^*|T^2|T - T^*|T^2)X = (A^*|A^2|A - A^*|A^2A)XB|B^*|B^* + A^*|A^2A)(B|B^*|B^* - B|B^*|B^*) \geq 0,
\]
which shows that T is a quasi-class A operator on C_2. \qed

Proof of Theorem 1.4. If $S \in L(H)$ is invertible, let T on C_2 be defined by
$$TY = AYS^{-1}.$$
Since B^* is invertible quasi-class A, B^* is just invertible class A by Corollary 2.2, and $(B^*)^{-1} = (B^{-1})^*$ is also class A by [11]. So it follows that from Lemma 2.3 that $T \in QA$. The hypotheses $AX = XB$ implies $TX = X$ and from the fact $T \in QA$ it follows (use the Hölder-McCarthy inequality[5])
\[
||T^*X||^2 = \langle T^*X, T^*X \rangle \\
= \langle T^*T^2T^*X, T^*T^2T^*X \rangle \\
\leq \langle T^*T^2T^*X, T^*T^2T^*X \rangle \\
= \langle (T^*T^2T^*)^{\frac{1}{2}}X, X \rangle \\
\leq \langle (T^*T^2T^*)X, X \rangle^{\frac{1}{2}} \cdot ||X|| \\
= ||X||^2,
\]
which implies
\[
||T^*X| - X||^2 \leq ||T^*X||^2 - 2||X||^2 + ||X||^2 \leq 0.
\]
Hence we have $T^*X = X$, i.e., $A^*X = XB^*$. \qed
A Berberian type extension of Fuglede-Putnam theorem

References

Department of Mathematics
University of Incheon
Incheon 402-749, Korea
E-mail: ihkim@inchon.ac.kr

Department of Mathematics Education
Seoul National University of Education
Seoul 137-742, Korea
E-mail: jihmath@snue.ac.kr