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LERAY-SCHAUDER DEGREE THEORY APPLIED TO

THE PERTURBED PARABOLIC PROBLEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We show the existence of at least four solutions for the
perturbed parabolic equation with Dirichlet boundary condition and
periodic condition when the nonlinear part cross two eigenvalues
of the eigenvalue problem of the Laplace operator with boundary
condition. We obtain this result by using the Leray-Schauder degree
theory, the finite dimensional reduction method and the geometry
of the mapping. The main point is that we restrict ourselves to the
real Hilbert space instead of the complex space.

1. Introduction

Let Ω be a bounded, connected open subset of Rn with smooth bound-
ary ∂Ω and let ∆ be the Laplace operator. In this paper we investigate
the multiple solutions for the following perturbed parabolic equation
with Dirichlet boundary condition and the periodic condition

Dtu = ∆u + bu+ − au− + f0(u)− sφ1 − h(x, t) in Ω×R, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ R,

u(x, t) = u(x, t + 2π), in Ω×R,

where lim|ζ|→∞
f0(ζ

ζ
= 0 and h(x, t) is a bounded function with the

boundary condition and the periodic condition in (1.1). The physical
model for this kind of the jumping nonlinearity problem can be furnished
by travelling waves in suspension bridges. Jung and Choi [3] showed that
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the problem (1.1) with f(x, t) = 0 and h(x, t) = 0 has at least four so-
lutions by the finite dimensional reduction method and the geometry
of the mapping from the finite dimensional subspace to the finite di-
mensional method. The nonlinear equations with jumping nonlinearity
have been extensively studied by McKenna and Walter [8], Tarantello
[14], Micheletti and Pistoia [10,11] and many the other authors. Taran-
tello, Micheletti and Pistoia dealt with the biharmonic equations with
jumping nonlinearity and proved the existence of nontrivial solutions by
degree theory and critical points theory. Lazer and McKenna [7] dealt
with the one dimensional elliptic equation with jumping nonlinearity for
the existence of nontrivial solutions by the global bifurcation method.
For the multiplicity results of the solutions of the nonlinear parabolic
problem we refer to [6, 9].

The steady-state case of (1.1) is the elliptic problem

∆w + bw+ − aw− + f0(w)− sφ1 − h(x) = 0 in Ω, (1.2)

w = 0 on ∂Ω.

For the multiplicity results for the solutions of (1.2) we refer to [9].

We observe that 0 < λ1 < λ2 ≤ · · · ≤ λk → ∞ are the eigenvalues
of the eigenvalue problem −∆u = λu in Ω, u|∂Ω = 0 and φk is the
eigenfunction corresponding to the eigenvalue λk for each k. We note
that the first eigenfunction φ1(x) > 0.

The purpose of this paper is to find the number of weak solutions of
(1.1)

The main results are the following:

Theorem 1.1. Assume that a < λ1 < λ2 < b < λ3 and s > 0. Then
there exists s0 > 0 such that if s ≥ s0, (1.1) has at least four periodic
solutions.

Generally we have the following result:

Theorem 1.2. Assume that λn < a < λn+1 < λn+2 < b < λn+3,
n ≥ 1, and s > 0. Then there exists s0 > 0 such that if s ≥ s0, (1.1) has
at least four periodic solutions.

For the proof of Theorem 1.1 and Theorem 1.2 we use the Leray-
Schauder degree theory, the finite dimensional reduction method and
the geometry of the mapping from the finite dimensional subspace to
the finite dimensional subspace. The organization of this paper is the
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following: In section 2 we introduce the Hilbert space H whose elements
are expressed by the square integrable Fourier series expansions on Ω×
(0, 2π), consider the parabolic problem (1.2) on H and obtain some
results on the operator Dt−∆. In section 3 we deal with the multiplicity
of the solutions of the piecewise linear case of (1.1) by the degree theory
and finite dimensional reduction method. In section 4 we obtain the
multiplicity result of the nonlinear perturbed case of (1.1) from that of
the piecewise linear case so that we prove Theorem 1.1 and Theorem
1.2.

2. Some results for the operator Dt−∆ on the Hilbert space
H

Let Q be the space Ω× (0, 2π). The space L2(Ω× (0, 2π)) is a Hilbert
space equipped with the usual inner product

< v,w >=

∫ 2π

0

∫

Ω

v(x, t)w̄(x, t)dxdt

and a norm
‖v‖L2(Q) =

√
< v, v >.

We shall work first in the complex space L2(Ω× (0, 2π)) but shall later
switch to the real space. The functions

Φjk(x, t) = φk
eijt

√
2π

, j = 0,±1,±2, . . . , k = 1, 2, 3, . . .

form a complete orthonormal basis in L2(Ω × (0, 2π)). Every elements
v ∈ L2(Ω× (0, 2π)) has a Fourier expansion

v =
∑

jk

vjkΦjk

with
∑ |vjk|2 < ∞ and vjk =< v, Φjk >. Let us define a subspace H of

L2(Ω× (0, 2π)) as

H = {u ∈ L2(Ω× (0, 2π))|
∑

jk

(j2 + λ2
k)

1
2 u2

jk < ∞}. (2.1)

Then this is a complete normed space with a norm

‖u‖ = [
∑

jk

(j2 + λ2
k)

1
2 u2

jk]
1
2 .



222 Tacksun Jung and Q-Heung Choi

A weak solution of problem (1.1) is of the form u =
∑

ujkΦjk satisfying∑ |ujk|2(j2 + λ2
k)

1
2 < ∞, which implies u ∈ H. Thus we have that if u

is a weak solution of (1.1), then ut = Dtu =
∑

j k ijujkΦjk belong to H

and −∆u =
∑

λkujkΦjk belong to H.
We have some properties on ‖ · ‖ and Dt −∆. Since |ij + λk| ≥ 1 for

all j, k, we have that:

Lemma 2.1. (i) ‖u‖ ≥ ‖u(x, 0)‖ ≥ ‖u(x, 0)‖L2(Ω).
(ii) ‖u‖L2(Q) = 0 if and only if ‖u‖ = 0.
(iii) ut −∆u ∈ H implies u ∈ H.

Proof. (i) Let u =
∑

j k ujkΦjk. Then

‖u‖2 =
∑

(j2 + λ2
k)

1
2 u2

jk ≥
∑

λ2
ku

2
jk(x.0) = ‖u(x.0)‖2

≥
∑

u2
jk(x, 0) = ‖u(x, 0)‖2

L2(Ω).

(ii) Let u =
∑

j k ujkΦjk.

‖u‖ = 0 ⇔
∑

j k

(j2 + λ2
k)

1
2 u2

jk = 0 ⇔
∑

j k

u2
jk = 0 ⇔ ‖u‖L2(Q) = 0.

(iii) Let ut −∆u = f ∈ H. Then f can be expressed by

f =
∑

fjkΦjk,
∑

j k

(j2 + λ2
k)

1
2 f 2

jk < ∞.

Then we have

‖(Dt −∆)−1f‖2 =
∑

j k

(j2 + λ2
k)

1
2

j2 + λ2
k

f 2
jk < C

∑

j k

f 2
jk < ∞

for some C > 0.

Lemma 2.2. For any real α 6= λk, the operator (Dt − ∆ − α)−1 is
linear, self-adjoint, and a compact operator from L2(Ω × (0, 2π)) to H
with the operator norm 1

|α−λk| , where λk is an eigenvalue of −∆ closest
to α.

Proof. Suppose that α 6= λk. Since λk → +∞, the number of elements
in the set {λk| λk < α} is finite, where λk is an eigenvalue of −∆. Let

h =
∑

j k hjkΦjk, where Φjk = φk
eijt√
2π

. Then

(Dt −∆− α)−1h =
∑

j k

1

im + λn − α
hjkΦjk.
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Hence

‖(Dt−∆−α)−1h‖2 =
∑

j k

1

j2 + (λk − α)2
(j2+(λk−α)2)

1
2 h2

jk ≤
∑

j k

Ch2
jk < ∞

for some C > 0. Thus (Dt − ∆ − α)−1 is a bounded operator from
L2(Ω× (0, 2π)) to H and also send bounded subset of L2(Ω× (0, 2π)) to
a compact subset of H, hence (Dt−∆−α)−1 is a compact operator.

From Lemma 2.2 we obtain the following lemma:

Lemma 2.3. Let F (x, t, u) ∈ L2(Ω × (0, 2π)). Then all the solutions
of

ut −∆u = F (x, t, u) in L2(Ω× (0, 2π))

belong to H.

With the aid of Lemma 2.3 it is enough to investigate the existence
of solutions of (1.1) in the subspace H of L2(Ω× (0, 2π)), namely

Dtu = ∆u + bu+ − au− + f0(u)− sφ1 − h(x, t) in H. (2.2)

From now on we restrict ourselves to the real L2-space and observe
that this is an invariant space for R. So L2(Ω × (0, 2π)) denotes the
real square-integrable functions on Ω × (0, 2π) and H the subspace of
L2(Ω× (0, 2π)) satisfying (2.1).

3. The piecewise linear case

Assume that a < λ1 < λ2 < b < λ3 and s > 0. In this section we first
investigate the multiplicity of the solutions of the piecewise linear case
of (1.1)

Dtu = ∆u + bu+ − au− − sφ1 in H. (3.1)

We shall use the contraction mapping theorem to reduce the problem
from an infinite dimensional one in L2(Q) to a finite dimensional one.

Let V be the two dimensional subspace of H spanned by Φ01(x) and
Φ02(x) and W the subspace spanned by Φ0n, n ≥ 3 and Φc

mn, Φs
mn,

m ≥ 1. Then W is the orthogonal complement of V in H.
From now on we restrict ourselves to the real L2-space and observe

that this is an invariant space for R. So L2(Ω × (0, 2π)) denotes the
real square-integrable functions on Ω × (0, 2π) and H the subspace of
L2(Ω× (0, 2π)) satisfying (2.1). Let P be an orthogonal projection from
H onto V . Then for all u ∈ H, u = v +w, where v = Pu, w = (I−P )u.
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Therefore (3.1) is equivalent to

(a) w = (Dt −∆)−1(I − P )(b(v + w)+ − a(v + w)−1),

(b) Dtv = ∆v + P (b(v + w)+ − a(v + w)− − sφ1), (3.2)

where Dt = ∂
∂t

.
Let us show that for fixed v, (3.2.a) has a unique solution w = θ(v) and

that θ(v) is Lipschitz continuous in terms of v. Let σ be the spectrum
of Dt − ∆. Then σ = {λn ± im| n ≥ 1, m ≥ 0}. Let α = 1

2
(λ1 + λ2).

(3.2.a) can be rewritten as

(Dt −∆− α)w = (I − P )(b(v + w)+ − a(v + w)−1 − α(v + w))

or
w = (Dt −∆− α)−1(I − P )gv(w) (3.3)

where
gv(w) = b(v + w)+ − a(v + w)−1 − α(v + w).

Since
|gv(w1)− gv(w2)| ≤ max{|b− α|, |a− α|}|w2 − w1|,

‖gv(w1)− gv(w2)‖ ≤ max{|b− α|, |a− α|}‖|w2 − w1‖|,
where ‖ · ‖ is the norm in H. Since the operator (Dt − α)−1(I − P ) is
a self-adjoint, compact linear map from (I − P )H onto itself, it follows
that

‖(Dt−∆− αI)−1(I − P )‖ = dist(α, {(λn± im− α)−1| m ≥ 0, n ≥ 2}).
Therefore for fixed v ∈ V , the right hand side of (3.3) defines a Lipschitz
mapping (I − P )H into itself with Lipschitz constant γ < 1. Therefore
by the contraction mapping principle, for given v ∈ V , there exists a
unique w = θ(v) ∈ W which satisfies (3.3). it follows that, by the
standard argument principle, θ(v) is Lipschitz continuous in terms of v.

Thus we have a reduced equation (3.1) to the equivalent equation

Dtv = ∆v + P (b(v + θ(v))+ − a(v + θ(v))− − sφ1) (3.4)

defined on the two dimensional subspace PH spanned by {Φ01(x), Φ02(x)}.
We note that if v ≥ 0 or v ≤ 0, then θ(v) = 0. If we put v ≥ 0 (v ≤ 0)

and θ(v) = 0 in (3.2.a), equation (3.2.a) is satisfied, respectively. Since
v = c1Φ01 + c2Φ02, there exists a cone C1 defined by c1 ≥ 0, |c2| ≤ ε0c1

so that v ≥ 0 for all v ∈ C1 and a cone C3, c ≤ 0, |c2| ≤ ε0|c1| so that
v ≤ 0 for all v ∈ C2. We know that w = θ(v) = 0 for v ∈ C1 ∪ C3, but
we do not know θ(v) for all v ∈ PH. Let C2 be a cone defined by c2 < 0,
|c1| ≤ ε0c2 and a cone C4 defined by c2 ≤ 0, |c1| ≤ ε0|c2|.
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We consider the map T from V to V by

v 7→ T (v) = −Dtv + ∆v + P (b(v + θ(v))+ − a(v + θ(v))−).

First we consider the image of the cone C1. If v = c1Φ01 + c2Φ02, we
have that

T (v) = −λ1c1Φ01 − λ2C2Φ02 + b(c1Φ01 + c2Φ02)

= (λ1 − b)c1Φ01 + (λ2 − b)c2Φ02.

Then there exists d > 0 such that

(T (c1Φ01 + c2Φ02), Φ01) ≥ d|c2|
(see [3]). Hence the map T : V → V takes the value Φ01, once in each of
four different regions Ci i ≤ i ≤ 4 of the plane which was proved in the
paper written by Jung and Choi [3]. Let us define a map F : R2 → R2

F (t1, t2) = (s1, s2) if v = t1Φ01 + t2Φ02 and

T (v) = s1Φ01 + s2Φ02.

Let us set

A1 = {(t1, t2)| 0 < t1 < k, |t2| < t1},
A2 = {(t1, t2)| |t1| ≤ k, |t1| < t2 < k},
A3 = {(t1, t2)| − k < s1 < 0, |s2| < |s1|},
A4 = {(t1, t2)| |s1| ≤ k, − k < s2 < −|s1|}.

Now we calculate the degree of T in the regions Ai (1 ≤ i ≤ 4).

Lemma 3.1. Let p = (0, 1). Let k be so large that k > 1, k(b−λ1) > 1
and kd > 1. If deg(F, Ai, p) denotes the Brouwer degree of F with respect
to Ai and p for 1 ≤ i ≤ 4, then deg(F, Ai, p) is defined for 1 ≤ i ≤ 4 and

deg(F, Ai, p) = (−1)i+1.

Proof. First we calculate the Brouwer degree of F with respect to A1.
If (t1, t2) ∈ Ā1 and v = t1Φ01 + t2Φ02, then θ(v) = 0. Since v ≥ 0 in A1,
we have

T (v) = −Dtv + ∆v + P (b(v + θ(v))+ − a(v + θ(v))−)

= −(t1Φ01 + t2Φ20)t + ∆(t1Φ01 + t2Φ02) + P (b(t1Φ01 + t2Φ02))

= −λ1t1Φ01 − λ2t2Φ02 + b(t1Φ01 + t2Φ02)

= (b− λ1)t1Φ01 + (b− λ2)t2Φ02.
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Thus we have that for (t1, t2) ∈ Ā1,

F (t1, t2) = ((b− λ1)s1, (b− λ2)s2).

Since k(b − λ1) > 1, the equation F (t1, t2) = p has a unique solution
(t1, t2) = ( 1

b−λ1
, 0). Since the determinant of the diagonal map is positive,

deg(F,A1, p) = 1.

Similarly in the case of (t1, t2) ∈ Ā3, we have

T (v) = (a− λ1)t1Φ01 + (a− λ2)t2Φ02.

Thus we have
F (t1, t2) = ((a− λ1)s1, (a− λ2)s2).

Since the determinant of the diagonal map is positive,

deg(F,A3, p) = 1.

Now we calculate the Brouwer degree of F with respect to A2. We claim
that deg(F,A2, p) = −1. We note that the boundary of A2 consists of
three line segments:
(i) a ray I in the first quadrant A1, t1 > 0 and t2 = t1,
(ii) a ray II in the third quadrant A3, t1 < 0 and t2 = −t1,
(iii) a line segment L of t2 = k, paralleled to the t1 axis.
The image of I under F is a straight line segment in the first quadrant,
the image of II under F is a straight line segment in the fourth quadrant
and the image of L is to the right of the line t1 = 1 by the condition
kd > 1. We consider the map u 7→ Gu, where G is defined by

G =

[
1 0
0 −1

] [
0 1
−1 0

]

The image of I under F will be a straight line in the first quadrant. So
if 0 ≤ τ ≤ 1, we have

τGt + (1− τ)F (t) 6= p, t = (t1, t2) ∈ I.

The image of II under G is in the fourth quadrant and we have, 0 ≤
τ ≤ 1,

τGt + (1− τ)F (t) 6= p, t = (t1, t2) ∈ II.

If t ∈ L, then t2 = k > 1 and Gt ∈ {(t1, t2)| t1 > 1}. Thus we have

τGt + (1− τ)F (t) 6= p for t ∈ L.

By the homotopy argument we have

deg(F,A2, p) = deg(G,A2, p).
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We note that Gt − p has exactly one zero in A2 and the sign of the
determinant of G is -1. Thus we have

deg(F,A2, p) = −1.

Similarly we have

deg(F,A4, p) = −1.

Thus we prove the lemma.

From Lemma 3.1 we obtain the degree of a mapping on the finite
dimensional subspace V .
Let us set

Ei = {v ∈ V | v = t1Φ01 + t2Φ02, (t1, t2) ∈ Ai for 1 ≤ i ≤ 4.}
Let us define a map Γ : V → V by

Γv = PL−1(b(v + θ(v))+ − a(v + θ(v))−),

where Lu = −ut + ∆u.
From Lemma 3.1 we obtain the following lemma.

Lemma 3.2. For 1 ≤ i ≤ 4,

deg(I + Γ, Ei,
Φ01

λ1

) = (−1)i+1.

From now on we restrict ourselves to the real L2-space and L2(Ω ×
(0, 2π)) denotes the real square-integrable functions on Ω × (0, 2π) and
H the subspace of L2(Ω× (0, 2π)) satisfying (2.1). Now we shall obtain
a result on the degree of a mapping on the infinite dimensional space H
from the degree of the mapping on the two dimensional subspace V . Let
us define the mapping N : H → H by

Nu = L−1(bu+ − au−).

We note that N is a compact operator from H to H. Let us set

Xi = {u ∈ H)| Pu ∈ Ei, ‖(I−P )u‖ < M1} for large number M1 > 0.

Then the Leray-Schauder degree deg(I + N, Xi,
Φ01

λ1
) is well defined.

Lemma 3.3. Let M1 > 0 be a large number. Then we have

d(I + N,Xi,
Φ01

λ1

) = d(I + Γ, Ei,
Φ01

λ1

) = (−1)i+1.
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Proof. Let v ∈ Ēi and w = (1− t)(I − P )N(v + w), 1 ≤ i ≤ 4. Since
w 7→ (1− t)(I − P )N(v + w), 0 ≤ t ≤ 1 is a contraction mapping, there
exists M1 > 0 such that ‖w‖ ≤ M1. Let us choose M2 > M1 and define
Ψ1 : Xi × [0, 1] → L2 by

Ψ1(u, t) = (I − P )N(v + w) + PN(v + w + t(θ(v)− w)),

where v = Pu and w = (I − P )u. Then we have

u + Ψ1(u, t) 6= Φ01

λ1

for (u, t) ∈ ∂Xi × [0, 1].

By the homotopy invariance property of degree

d(I + N, Xi,
Φ01

λ1

) = d(I + Ψ1(·, 1), Xi,
Φ01

λ1

).

Let Ψ2|Xi × [0, 1] → L2(Q) be defined by

Ψ2(u, t) = (1− t)(I − P )N(u) + PN(v + θ(v)), v = Pu.

We claim that

u + Ψ2(u, t) 6= Φ01

λ1

for (u, t) ∈ ∂Xi × [0, 1].

In fact, if v ∈ ∂Ei, w = (I − P )H, ‖w‖ = M2, 0 ≤ t ≤ 1, u = v + w and
u + Ψ2(u, t) = Φ01

λ1
, then

0 = (I − P )(u + Ψ2(u, t)) = w + (1− t)(I − P )N(v + w),

which implies that ‖w‖ ≤ M2 which is a contradiction. We note that
Ψ1(u, 1) = Ψ2(u, 0). By the homotopy invariance property of degree we
have

d(I + N, Xi,
Φ01

λ1

) = d(I + Ψ2(·, 1), Xi,
Φ01

λ1

).

Let B be the open ball of radius M2 in (I − P )H. If u ∈ X̄i, v = Pu,
w = (I − P )u, then

u + Ψ2(u, 1) = v + PN(v + θ(v)) + w.

The map w 7→ w + Ψ2(u, 1) is uncoupled an PH ⊕ (I − P )H and is the
identity on (I − P )H. Therefore by the product property of degree we
have

d(I + N,Xi,
Φ01

λ1

) = d(I + Γ, Xi,
Φ01

λ1

).

Thus we prove the lemma.
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4. The proof of Theorem 1.1 and Theorem 1.2

Now we consider the multiplicity of the solutions of the nonlinear
perturbed problem

Dtu = ∆u + bu+ − au− + f0(u)− sφ1 − h(x, t) in H. (4.1)

We shall obtain the multiplicity result for the nonlinear perturbed prob-
lem from the piecewise linear one. Let

f1(u) = bu+ − au−.

Then (4.1) can be rewritten as

−Dtz + ∆z + f1(z) +
f0(sz)

s
= Φ01 +

h(x, t)

s
, (4.2)

where z = u
s
. Let

Ns(z) = L−1(f1(z) +
f0(sz)

s
− h(x, t)

s
).

We note that

lim
s→∞

‖N(z)−Ns(z)‖ = 0

uniformly for z in bounded subsets of L2(Q).
In section 3 we show that

z + N(z) 6= Φ01

λ1

for all z ∈ ∂Xi, 1 ≤ i ≤ 4.

Since ∂Xi is closed and bounded and N is continuous and compact, there
exists η > 0 such that

‖z + N(z)− Φ01

λ1

‖ ≥ η z ∈ ∂Xi.

Now we choose s0 so that

‖Ns(z)−N(z)‖ <
η

2
for all z ∈ ∂Xi, 1 ≤ i ≤ 4.

Then

‖z + N(z) + (1− τ)(Ns(z)−N(z)− Φ01

λ1

)‖ ≥ η

2

for 0 ≤ τ ≤ 1. Thus we have

d(I + Ns, Xi,
Φ01

λ1

) = d(I + N, Xi,
Φ01

λ1

) = (−1)i+1, 1 ≤ i ≤ 4.
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Thus we prove Theorem 1.1. For the proof we set V the two dimensional
subspace spanned by Φ0 n+1(x) and Φ0 n+2(x) and W the complement
of V in H. The other parts of the proof of Theorem 1.2 are similar to
that of Theorem 1.1.
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