Korean J. Math. 17 (2009), No. 3, pp. 245-248

A NOTE ON REAL QUATERNION

Chul Ju Hwang

ABSTRACT. We consider pm-ring with the property such that every prime ideal is contained in only one maximal ideal. Orsatti[4] characterized pm-rings by means of the retraction. Contessa[1] found algebraic condition, by using that direct product of pm-rings is a pm-ring. We show that C(X, H) and $C(X, \mathbb{C})$ are pm-rings and we extend a quasi pm-domain.

1. Introduction

We consider the ring with the property such that every arbitrary prime ideal is contained in only one maximal ideal. Orsatti[4] characterized pm-rings by means of the retraction. We define a quasi pm-ring as the ring whose every nonzero prime ideal is contained in only one maximal ideal[2]. Thus a quasi pm-domain is a quasi pm-ring which is a domain. An interesting example of a pm domain is the entire functions ring. We show that C(X, H), which is the ring of continuous functions from a topological space X to the ring H of real quaternion which is \mathbb{R}^4 as a metric space, is a pm-ring. We denote by $Spec(\mathbb{R})$ the set of all the prime ideals of \mathbb{R} with the Zarisky topology and $Max\mathbb{R}$ is the subspace of $Spec\mathbb{R}[1]$. In this paper all rings are commutative rings with identity, unless stated.

2. Results

Let \mathbb{R} be an integral domain with quotient field K. H is real quaternion. Recall that a proper ideal P of a ring \mathbb{R} is called prime if $a\mathbb{R}b \subset P$ implies that either $a \in P$ or $b \in P$; and P is called completely prime if $ab \in P$ implies that either $a \in P$ or $b \in P$. The two notions coincide for

Received May 12, 2009. Revised August 6, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 13A15, 13F05.

Key words and phrases: bijection.

Chul Ju Hwang

commutative rings. F is an inclusion, that is, $F : C(X, \mathbb{R}) \Rightarrow C(X, H)$. $F^*(Q) = F^{-1}(Q) = P$. $P = Q \cap C(X, \mathbb{R})$ [5.p13.ex, 21].

FACT 1. Whenever the maximal ideal space $Max(\mathbb{R})$ is a retract of the prime spectrum $Spec(\mathbb{R})$, \mathbb{R} is a pm-ring[3, p182. Prop. 1.5].

THEOREM 2.1. Let \mathbb{R} be an integral domain with the quotient field K such that $\mathbb{R} \neq K$. Then \mathbb{R} is a quasi pm-domain if and only if for any $M \neq M' \in Max(\mathbb{R})$ and for the set $S = (\mathbb{R} - M)(\mathbb{R} - M')$, we have $S^{-1}\mathbb{R} \cong K$.

Proof. Let \mathbb{R} be a quasi pm-domain. Since \mathbb{R} is a domain, $0 \notin S$. Suppose that there exists nonzero prime ideal P of \mathbb{R} such that $S \cap P = \phi$. Thus $P \subset \mathbb{R} - S$. Since $\mathbb{R} - M$ and $\mathbb{R} - M'$ contain 1, $\mathbb{R} - S \subset M \cap M'$ and hence $P \subset M \cap M'$. It contradicts the fact that \mathbb{R} is a quasi pm domain. So $S^{-1}\mathbb{R}$ has no nonzero prime ideal and hence $S^{-1}\mathbb{R}$ is a field containing \mathbb{R} . Thus it is isomorphic to K.

For the converse, suppose that $S^{-1}\mathbb{R}$ is isomorphic to K. If \mathbb{R} has a nonzero prime ideal P, which is contained in two distinct maximal ideals M, M' of \mathbb{R} . Since $S^{-1}R$ is a field, $S \cap P \neq \phi$. Thus there exist $a \in \mathbb{R} - M$ and $a' \in \mathbb{R} - M'$ such that $aa' \in P$. Hence we have that $a \in P$ or $a' \in P$. Then $a \in M$ or $a' \in M'$. It is a contradiction. Thus \mathbb{R} is a quasi pm-domain.

We will prove that $F^* : Spec(C(X, H)) \Rightarrow Spec(C(X, \mathbb{R}))$ is a bijection.

 $f: A \Rightarrow B.$ (A a commutative ring B a noncommutative ring.) $f^*: Spec(B) \Rightarrow Spec(A)$ is not into, that is, $f^{-1}(Q) \notin Spec(A)$ ($Q \in Spec(B)$). When $f(A) \neq B$, $ab \in P \Rightarrow a \in P \ b \in P$, $f(a)f(b) \in Q \Rightarrow f(a) \in Q$, $f(b) \in Q$. And $ab \in P \Rightarrow arb \in P$ and $\{f(a)f(r)f(b)\} \neq B$ that is, $f(A) \neq B$. But if P + Pi + Pj + Pk is a prime, P is a prime.

THEOREM 2.2. Let $f : C(X, \mathbb{R}) \to C(X, H)$ be an inclusion. Then $f^*: Spec(C(X, H)) \Rightarrow Spec(C(X, \mathbb{R}))$ is a homeomorphism and thus C(X, H) is a pm-ring.

Proof. For each $Q \in Spec(C(X, H))$, since $C(X, \mathbb{R})$ is contained in the center of C(X, H), $f^*(Q) = f^{-1}(Q) \in Spec(C(X, \mathbb{R}))$. For each ideal I of $C(X, \mathbb{R})$, $I = f^{-1}(I + Ii + Ij + Ik)$ and I + Ii + Ij + Ik is an ideal of C(X, H). For each $P \in Spec(C(X, \mathbb{R}))$, $P^e = P + Pi + Pj + Pk$ is a completely prime ideal of a non commutative ring C(X, H). Let us prove this. Let $fg \in P^e$, $f = f_1 + f_2i + f_3j + f_4k$,

246

A note on real quaternion

 $g = g_1 + g_2 i + g_3 j + g_4 k$. Then $|f|^2 |g|^2 \in P^e \cap C(X, \mathbb{R}) = P$. $|f|^2 \in P$ or $|g|^2 \in P$. We define F_i such that $f_i^3 = F_i |f|^2$ and $f_i^3 = |f|^2 \frac{f_i^3}{|f|^2} = |f|^2$ F_i . $F_i = \frac{f_i(x)^3}{|f(x)|^2}$, $f_i(x) \neq 0$. $F_i = 0$, $f_i(x) = 0$. Then $|F_i| \leq |f_i|$, and hence $F_i \in C(X, \mathbb{R})$. Therefore $\{f_i^3 | i = 1, 2, 3, 4\} \subset P$ or $\{g_i^3 | i = 1, 2, 3, 4\} \subset P$. Hence $\{f_i | i = 1, 2, 3, 4\} \subset P$ or $\{g_i | i = 1, 2, 3, 4\} \subset P$. Then $f \in P^e$ or $g \in P^e$. Since a completely prime ideal is a prime ideal and $f^*(P^e) = P$, f^* is a surjection.

For an ideal J of C(X, H), there exist ideals $I_i(i = 1, 2, 3, 4)$ of $C(X, \mathbb{R})$ such that $J = I_1 + I_2i + I_3j + I_4k$. Let us prove this. Let J be an arbitrary ideal of C(X, H). Let $f \in J$. Then there exist $f_i \in C(X, \mathbb{R})$ such that $f = f_1 + f_2i + f_3j + f_4k$. Then $if = if_1 - f_2i + f_3k - f_4j \in J$. $f_i = if_1 - f_2 - f_3k + f_4j \in J$. Therefore $\frac{f_i + if}{2} = if_1 - f_2 \in J$. Thus $f_1 + f_2i \in J$ and $(f_1 + f_2i)j = f_1j + f_2k \in J$. $j(f_1 + f_2i) = f_1j - f_2k \in J$. \therefore $f_1j \in J$. Thus $f_1 \in J$. Similarly $f_i \in J$. Thus $J = I_1 + I_2i + I_3j + I_4k$ ($I_i = \{f_i \mid f_1 + f_2i + f_3j + f_4k \in J\}$). And we know $I_i = I_j$ (i, j = 1, 2, 3, 4). Thus $J = I + Ii + Ij + Ik = I^e$. That is, every ideal of C(X, H) is an extended ideal. Thus we conclude that f^* is an injection.

Since $A \subset B$ implies $f^*(A) \subset f^*(B)$, $Max(C(X, \mathbb{R})) = f^*(Max(C(X, H)))$. Retraction $\gamma_1 : Spec(C(X, \mathbb{R})) \to Max(C(X, \mathbb{R}))$ exists, because $C(X, \mathbb{R})$ is a pm-ring[2.14, 4]. Thus we can define retraction $\gamma_2 : Spec(C(X, H)) \to Max(C(X, H))$ such that $\gamma_2 = f^{*-1} \circ \gamma_1 \circ f^*$. That is, C(X, H) is a pm-ring by fact 1 (or [Proposition 1.5, 3]).

THEOREM 2.3. Let $g: C(X, \mathbb{R}) \to C(X, \mathbb{C})$ be an inclusion. Then g^* : $Spec(C(X, \mathbb{C})) \Rightarrow Spec(C(X, \mathbb{R}))$ is a homeomorphism and thus $C(X, \mathbb{C})$ is a pm-ring.

Proof. The above theorem says that $Spec(C(X, H)) = \{P^e | P \in Spec(C(X, \mathbb{R}))\}$. Let $Q \in Spec(C(X, \mathbb{C}))$. And let us denote by $P^{e'}$ an extended ideal of P from $C(X, \mathbb{R})$ to $C(X, \mathbb{C})$. Let $P = Q^c$ and $P^{e'} = P + Pi \subset Q$. We want to prove that $Q = P + Pi = P^{e'}$. Assume $Q - (P + Pi) \neq \emptyset$. Then there exists $f \in Q - (P + Pi)$. Let $f = f_1 + f_2i$. $\Rightarrow (f - f_1)^2 = (f_2i)^2 = -f_2^2$. Then there exist $\alpha, \beta \in C(X, R)$ such that $f^2 + \alpha f + \beta = 0$. Since $\beta = -f^2 - \alpha f \in Q \cap C(X, \mathbb{R}) = P \subset P + Pi$. Hence $P^{e'} \supset Q \cap C(X, \mathbb{R}) \ni \beta$. Thus $f^2 + \alpha f = f(f + \alpha) \in P^{e'}$. Then $f + \alpha \in P^{e'} \subset Q$ since $f \notin P^{e'}$ and $P^{e'} = P + Pi$ prime ideal, because $P^{e'} = P^{ec}$ from $C(X, \mathbb{R})$ to C(X, H). Thus $\alpha \in Q$ since $f \in Q$. Hence $\alpha \in Q \cap C(X, \mathbb{R}) = P$. Then $\alpha \in P \subset P^{e'}$. Chul Ju Hwang

. It contradicts the fact $f \in Q - (P + Pi)$. Thus we proved Q = P + Pi, and thus $Spec(C(X, \mathbb{C})) = \{P^{e'} | P \in Spec(C(X, \mathbb{R}))\}$. That is, g^* is bijective, when g is an inclusion map from $C(X, \mathbb{R})$ to $C(X, \mathbb{C})$. The domain of g^* , $Spec(C(X, \mathbb{C}))$ is a compact space and $Spec(C(X, \mathbb{R}))$ is a Hausdorff space. Hence continuous bijective map g^* is a homeomorphism. Thus $Spec(C(X, \mathbb{C})) \cong Spec(C(X, \mathbb{R}))$. And we conclude that $C(X, \mathbb{C})$ is a pm-ring.

References

- [1] Maria Contessa, On pm-rings, Comm. Algebra, **10(1)**, 1982, 93-108.
- [2] Myung-sook Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, Rocky mountain J. Math. 36(3)(2006), 783-798.
- [3] Hu-Hao Sun, Noncommutative rings in which every prime ideal is contained in a unique maximal ideal, Journal of Pure and Appl. Algebra 76(1991), 179-192. North-Holland.
- [4] Giuseppe de Marco and Adaiberto Orsatti, Commutative Rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc., 30(1971) 459-466.
- [5] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addition Wesly, 1968.

Department of Mathematics Silla University Pusan 617-736, Korea *E-mail*: cjhwang@silla.ac.kr

248