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ON HENSTOCK INTEGRAL OF FUZZY
MAPPINGS IN BANACH SPACES

Mee Na Oh and Chun-Kee Park∗

Abstract. In this paper we introduce the Henstock integral of
fuzzy mappings in Banach spaces as a generalization of the Henstock
integral of set-valued mappings and investigate some properties of
it.

1. Introduction

Several types of integrals of set-valued mappings were studied by
Aumann [1], Di Piazza and Musial [3,4], El Amri and Hess [5], Pa-
pageoriou [10] and others. In particular, Di Piazza and Musial [3]
introduced the Henstock integral of set-valued mappings whose values
are convex compact subsets in Banach spaces and obtained some prop-
erties of the integral. Several authors introduced the integrals of fuzzy
mappings in terms of the integrals of set-valued mappings. Kaleva [9]
introduced the integral of fuzzy mappings in Rn in terms of the inte-
gral of set-valued mappings in Rn. Wu and Gong [2] introduced the
Henstock integral of fuzzy mappings in R. Xue, Ha and Ma [12], Xue,
Wang and Wu [13] also introduced integrals of fuzzy mappings in Ba-
nach spaces in terms of Aumann-Pettis and Aumann-Bochner integrals
of set-valued mappings.

In this paper we introduce the Henstock integral of fuzzy mappings
in Banach spaces as a generalization of the Henstock integral of set-
valued mappings and investigate some properties of it.
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2. Preliminaries

Throughout this paper, L denotes the family of all Lebesgue mea-
surable subsets of [a, b] and X a real separable Banach space with dual
X∗. The closed unit ball of X∗ is denoted by BX∗ . CL(X) denotes
the family of all nonempty closed subsets of X, CB(X) the family of
all nonempty closed bounded subsets of X, CWK(X) the family of all
nonempty convex weakly compact subsets of X.

For A ⊆ X and x∗ ∈ X∗, let s(x∗, A) = sup{x∗(x) : x ∈ A}, the
support function of A. For A,B ∈ CB(X), let h(A,B) denote the
Hausdorff metric of A and B defined by

h(A,B) = max
(

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
)

,

where d(a,B) = inf
b∈B

‖a− b‖ and d(b, A) = inf
a∈A

‖a− b‖. Especially,

h(A,B) = sup
‖x∗‖≤1

|s(x∗, A)− s(x∗, B)|

whenever A,B are convex sets. Note that (CWK(X), h) is a com-
plete metric space. The number ‖A‖ is defined by ‖A‖ = h(A, {0}) =
sup
x∈A

‖x‖.
Let u : X → [0, 1]. We denote [u]r = {x ∈ X : u(x) ≥ r} for

r ∈ (0, 1] and [u]0 = cl{x ∈ X : u(x) > 0}. u is called a generalized
fuzzy number on X if for each r ∈ (0, 1], [u]r ∈ CWK(X). Let F(X)
denote the family of all generalized fuzzy numbers on X. The addition
and scalar multiplication in F(X) are defined according to Zadeh’s
extension principle. For u, v ∈ F(X) and λ ∈ R, [u + v]r = [u]r + [v]r

and [λu]r = λ[u]r for each r ∈ (0, 1]. Hence u + v, λu ∈ F(X). For
u, v ∈ F(X), we define u ≤ v as follows:

u ≤ v if u(x) ≤ v(x) for all x ∈ X.

For u, v ∈ F(X), u ≤ v if and only if [u]r ⊆ [v]r for each r ∈ (0, 1].
Define d : F(X)× F(X) → [0, +∞] by the equation

d(u, v) = sup
r∈(0,1]

h([u]r, [v]r).

Then d is a metric on F(X). The norm ‖u‖ of u ∈ F(X) is defined by

‖u‖ = d(u, 0̃) = sup
r∈(0,1]

h([u]r, {0}) = sup
r∈(0,1]

‖[u]r‖.
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Definition 2.1[6]. A partition of [a, b] is a finite collection P =
{([ci, di], ti) : 1 ≤ i ≤ n} such that {[ci, di] : 1 ≤ i ≤ n} is a non-
overlapping family of subintervals of [a, b] covering [a, b] and ti ∈ [ci, di]
for i = 1, 2, · · · , n. A gauge on [a, b] is a function δ : [a, b] → (0,∞).
A partition P = {([ci, di], ti) : 1 ≤ i ≤ n} is δ-fine if [ci, di] ⊆ (ti −
δ(ti), ti + δ(ti)) for i = 1, 2, · · · , n.

A function f : [a, b] → X is said to be Henstock integrable on [a, b]
if there exists w ∈ X with the following property: for each ε > 0 there
exists a gauge δ : [a, b] → (0,∞) such that

∥∥∥∥∥
n∑

i=1

f(ti)(di − ci)− w

∥∥∥∥∥ < ε

for each δ-fine partition P = {([ci, di], ti) : 1 ≤ i ≤ n} of [a, b]. We

write w = (H)
∫ b

a

f(t)dt. A function f : [a, b] → X is said to be

Henstock integrable on a set E ⊆ [a, b] if the function fχE is Henstock
integrable on [a, b], where χE denotes the characteristic function of E.

We write (H)
∫

E

f(t)dt = (H)
∫ b

a

fχE(t)dt.

In case when X is the real line, the Henstock integrable function
f : [a, b] → R is said to be Kurzweil-Henstock integrable or simply

KH-integrable on [a, b] and we write w = (KH)
∫ b

a

f(t)dt.

3. Results

A set-valued mapping F : [a, b] → CL(X) is said to be scalarly
measurable if for every x∗ ∈ X∗, the real-valued function s(x∗, F (·))
is measurable. A set-valued mapping F : [a, b] → CL(X) is said to
be measurable if F−1(A) = {t ∈ [a, b] : F (t) ∩ A 6= φ} ∈ L for every
A ∈ CL(X). Note that if F : [a, b] → CL(X) is measurable then
F : [a, b] → CL(X) is scalarly measurable.

A set-valued mapping F : [a, b] → CL(X) is said to be Kurzweil-
Henstock integrably bounded or simply KH-integrably bounded on [a, b]
if there exists a KH-integrable real-valued function h defined on [a, b]
such that for each t ∈ [a, b], ‖x‖ ≤ h(t) for all x ∈ F (t).



260 Mee Na Oh and Chun-Kee Park

f : [a, b] → X is called a selection of F : [a, b] → CL(X) if f(t) ∈
F (t) for every t ∈ [a, b]. A set-valued mapping F : [a, b] → CL(X) is
said to be scalarly integrable on [a, b] if for every x∗ ∈ X∗, s(x∗, F (·)) is
Lebesgue integrable on [a, b]. A set-valued mapping F : [a, b] → CL(X)
is said to be scalarly Kurzweil-Henstock integrable or simply scalarly
KH-integrable on [a, b] if for every x∗ ∈ X∗, s(x∗, F (·)) is KH-integrable
on [a, b].

Definition 3.1[3]. A set-valued mapping F : [a, b] → CWK(X)
is said to be Henstock integrable in CWK(X) on [a, b] if there exists
W ∈ CWK(X) with the following property: for each ε > 0 there exists
a gauge δ : [a, b] → (0,∞) such that

h

(
n∑

i=1

F (ti)(di − ci), W

)
< ε

for each δ-fine partition P = {([ci, di], ti) : 1 ≤ i ≤ n} of [a, b]. We

write W = (H)
∫ b

a

F (t)dt. If C is a subspace of CWK(X), we say that

the set-valued mapping F : [a, b] → C is Henstock integrable in C on
[a, b] if W ∈ C.

Note that if F : [a, b] → CWK(X) is Henstock integrable in CWK(X)
on [a, b], then F : [a, b] → CWK(X) is Henstock integrable in CWK(X)
on every subinterval of [a, b].

Definition 3.2[3]. A set-valued mapping F : [a, b] → CWK(X) is
said to be Kurzweil-Henstock-Pettis integrable or simply KHP-integrable
in CWK(X) on [a, b] if F is scalarly KH-integrable on [a, b] and for
each subinterval [c, d] of [a, b] there exists W[c,d] ∈ CWK(X) such that

s(x∗,W[c,d]) = (KH)
∫ d

c

s(x∗, F (t))dt

for every x∗ ∈ X∗. We write W[c,d] = (KHP )
∫ d

c

F (t)dt. If C is a

subspace of CWK(X), we say that the set-valued mapping F : [a, b] →
C is KHP-integrable in C on [a, b] if W[c,d] ∈ C for each subinterval [c, d]
of [a, b].
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Note that if F : [a, b] → CWK(X) is Henstock integrable in CWK(X)
on [a, b] then F : [a, b] → CWK(X) is KHP-integrable in CWK(X)
on [a, b] and the integrals are equal [3,4].

Lemma 3.3. If F : [a, b] → CWK(X) is Henstock integrable in
CWK(X) on [a, b], then F : [a, b] → CWK(X) is measurale.

Proof. If F : [a, b] → CWK(X) is Henstock integrable in CWK(X)
on [a, b], then there exists W ∈ CWK(X) with the following property:
for each ε > 0 there exists a gauge δ : [a, b] → (0,∞) such that

h

(
n∑

i=1

F (ti)(di − ci), W

)
< ε

for each δ-fine partition P = {([ci, di], ti) : 1 ≤ i ≤ n} of [a, b]. Since∑n
i=1 F (ti) (di − ci) and W are convex sets, we have

h

(
n∑

i=1

F (ti)(di − ci),W

)
= sup
‖x∗‖≤1

∣∣∣∣∣s
(

x∗,
n∑

i=1

F (ti)(di − ci)

)
− s(x∗,W )

∣∣∣∣∣

= sup
‖x∗‖≤1

∣∣∣∣∣
n∑

i=1

s(x∗, F (ti))(di − ci)− s(x∗, W )

∣∣∣∣∣ .

Hence for each x∗ ∈ BX∗

∣∣∣∣∣
n∑

i=1

s(x∗, F (ti))(di − ci)− s(x∗,W )

∣∣∣∣∣ < ε

for each δ-fine partition P = {([ci, di], ti) : 1 ≤ i ≤ n} of [a, b].
Thus s(x∗, F (·)) is KH-integrable on [a, b] for each x∗ ∈ BX∗ and so
s(x∗, F (·)) is measurable for each x∗ ∈ BX∗ by [7, Theorem 9.12].
Hence s(x∗, F (·)) is measurable for each x∗ ∈ X∗. Thus F : [a, b] →
CWK(X) is scalarly measurable. Hence F : [a, b] → CWK(X) is
measurable.

¤
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Lemma 3.4. If F : [a, b] → CWK(X) is Henstock integrable in
CWK(X) on [a, b], then F : [a, b] → CWK(X) is KHP-integrable in
CWK(X) on [a, b] and for each subinterval [c, d] of [a, b]

(H)
∫ d

c

F (t)dt = (KHP )
∫ d

c

F (t)dt.

Proof. Let F : [a, b] → CWK(X) be Henstock integrable in CWK(X)
on [a, b] and let [c, d] be a subinterval of [a, b]. Then F : [a, b] →
CWK(X) is Henstock integrable in CWK(X) on [c, d]. Hence there
exists W[c,d] ∈ CWK(X) with the following property: for each ε > 0
there exists a gauge δ : [a, b] → (0,∞) such that

h

(
n∑

i=1

F (ti)(di − ci),W[c,d]

)
< ε

for each δ-fine partition P = {([ci, di], ti) : 1 ≤ i ≤ n} of [c, d]. Since∑n
i=1 F (ti) (di − ci) and W[c,d] are convex sets, we have

h

(
n∑

i=1

F (ti)(di − ci),W[c,d]

)

= sup
‖x∗‖≤1

∣∣∣∣∣s
(

x∗,
n∑

i=1

F (ti)(di − ci)

)
− s(x∗,W[c,d])

∣∣∣∣∣

= sup
‖x∗‖≤1

∣∣∣∣∣
n∑

i=1

s(x∗, F (ti))(di − ci)− s(x∗,W[c,d])

∣∣∣∣∣ .

Hence for each x∗ ∈ BX∗

∣∣∣∣∣
n∑

i=1

s(x∗, F (ti))(di − ci)− s(x∗,W[c,d])

∣∣∣∣∣ < ε

for each δ-fine partition P = {([ci, di], ti) : 1 ≤ i ≤ n} of [c, d].
Thus s(x∗, F (·)) is KH-integrable on [c, d] for each x∗ ∈ BX∗ and so
s(x∗, F (·)) is KH-integrable on [c, d] and
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s(x∗,W[c,d]) = (KH)
∫ d

c

s(x∗, F (t))dt.

for each x∗ ∈ X∗. Therefore F : [a, b] → CWK(X) is KHP-integrable
in CWK(X) on [a, b] and for each subinterval [c, d] of [a, b]

(H)
∫ d

c

F (t)dt = W[c,d] = (KHP )
∫ d

c

F (t)dt.

¤

Lemma 3.5. Let F : [a, b] → CWK(X) and G : [a, b] → CWK(X)
be Henstock integrable set-valued mappings. Then

(1) if F (t) ⊆ G(t) a.e. on [a, b], then for each subinterval [c, d] of
[a, b]

(H)
∫ d

c

F (t)dt ⊆ (H)
∫ d

c

G(t)dt;

(2) if F (t) = G(t) a.e. on [a, b], then for each subinterval [c, d] of
[a, b]

(H)
∫ d

c

F (t)dt = (H)
∫ d

c

G(t)dt.

Proof. (1) Since F : [a, b] → CWK(X) and G : [a, b] → CWK(X)
are Henstock integrable in CWK(X) on [a, b], by Lemma 3.4 F :
[a, b] → CWK(X) and G : [a, b] → CWK(X) are KHP-integrable
in CWK(X) on [a, b] and for each subinterval [c, d] of [a, b]

(H)
∫ d

c

F (t)dt = (KHP )
∫ d

c

F (t)dt, (H)
∫ d

c

G(t)dt = (KHP )
∫ d

c

G(t)dt.

If F (t) ⊆ G(t) a.e. on [a, b], then for each subinterval [c, d] of [a, b] and
x∗ ∈ X∗

(KH)
∫ d

c

s(x∗, F (t))dt ≤ (KH)
∫ d

c

s(x∗, G(t))dt,
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s

(
x∗, (KHP )

∫ d

c

F (t)dt

)
≤ s

(
x∗, (KHP )

∫ d

c

G(t)dt

)
.

Since (KHP )
∫ d

c

F (t)dt, (KHP )
∫ d

c

G(t)dt ∈ CWK(X), by the sepa-

ration theorem

(KHP )
∫ d

c

F (t)dt ⊆ (KHP )
∫ d

c

G(t)dt,

(H)
∫ d

c

F (t)dt ⊆ (H)
∫ d

c

G(t)dt.

(2) The proof is similar to (1).
¤

Theorem 3.6. If F : [a, b] → CWK(X) and G : [a, b] → CWK(X)
are KH-integrably bounded and Henstock integrable in CWK(X) on
[a, b], then h(F, G) is KH-integrable on [a, b] and

h

(
(H)

∫ b

a

F (t)dt, (H)
∫ b

a

G(t)dt

)
≤ (KH)

∫ b

a

h(F (t), G(t))dt.

Proof. If F : [a, b] → CWK(X) and G : [a, b] → CWK(X) are
Henstock integrable in CWK(X) on [a, b], then by Lemma 3.4 F :
[a, b] → CWK(X) and G : [a, b] → CWK(X) are KHP-integrable in
CWK(X) on [a, b] and

(H)
∫ b

a

F (t)dt = (KHP )
∫ b

a

F (t)dt, (H)
∫ b

a

G(t)dt = (KHP )
∫ b

a

G(t)dt.
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By [11, Lemma 3.5] h(F,G) is KH-integrable on [a, b] and

h

(
(H)

∫ b

a

F (t)dt, (H)
∫ b

a

G(t)dt

)

= h

(
(KHP )

∫ b

a

F (t)dt, (KHP )
∫ b

a

G(t)dt

)

≤ (KH)
∫ b

a

h(F (t), G(t))dt.

¤

A mapping F̃ : [a, b] → F(X) is called a fuzzy mapping in a Banach
space X. In this case F̃ r : [a, b] → CWK(X) defined by F̃ r(t) =
[F̃ (t)]r is a set-valued mapping for each r ∈ (0, 1]. A fuzzy mapping
F̃ : [a, b] → F(X) is said to be measurable (resp., scalarly measurable)
if F̃ r : [a, b] → CWK(X) is measurable (resp., scalarly measurable) for
each r ∈ (0, 1]. A fuzzy mapping F̃ : [a, b] → F(X) is said to be KH-
integrably bounded on [a, b] if F̃ r : [a, b] → CWK(X) is KH-integrably
bounded on [a, b] for each r ∈ (0, 1].

Definition 3.7. A fuzzy mapping F̃ : [a, b] → F(X) is said to be
Henstock integrable on [a, b] if there exists u ∈ F(X) such that [u]r =

(H)
∫ b

a

F̃ r(t)dt for each r ∈ (0, 1]. In this case, u = (H)
∫ b

a

F̃ (t)dt is

called the Henstock integral of F̃ over [a, b].

Definition 3.8. A fuzzy mapping F̃ : [a, b] → F(X) is said to
be Kurzweil-Henstock-Pettis integrable or simply KHP-integrable on
[a, b] if for each subinterval [c, d] of [a, b] there exists u[c,d] ∈ F(X)

such that [u[c,d]]r= (KHP )
∫ d

c

F̃ r(t)dt for each r ∈ (0, 1]. In this

case, u[c,d] = (KHP )
∫ d

c

F̃ (t)dt is called the Kurzweil-Henstock-Pettis

integral of F̃ over [c, d].
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Theorem 3.9. If F̃ : [a, b] → F(X) is Henstock integrable on [a, b],
then F̃ : [a, b] → F(X) is Henstock integrable on every subinterval of
[a, b].

Proof. If F̃ : [a, b] → F(X) is Henstock integrable on [a, b], then

there exists u ∈ F(X) such that [u]r = (H)
∫ b

a

F̃ r(t)dt for each r ∈
(0, 1]. Let [c, d] be a subinterval of [a, b]. Since F̃ r : [a, b] → CWK(X)
is Henstock integrable in CWK(X) on [a, b] for each r ∈ (0, 1], F̃ r :
[a, b] → CWK(X) is Henstock integrable in CWK(X) on [c, d] for

each r ∈ (0, 1]. Thus Mr = (H)
∫ d

c

F̃ r(t)dt ∈ CWK(X) for each

r ∈ (0, 1]. For r1, r2 ∈ (0, 1] with r1 < r2, F̃ r1(t) ⊇ F̃ r2(t) for each

t ∈ [c, d]. By Lemma 3.5 Mr1 = (H)
∫ d

c

F̃ r1(t)dt ⊇ (H)
∫ d

c

F̃ r2(t)dt =

Mr2 . Let r ∈ (0, 1] and let {rn} be a sequence in (0, 1] such that
r1 ≤ r2 ≤ r3 ≤ · · · and lim

n→∞
rn = r. Then F̃ r(t) = ∩∞n=1F̃

rn(t) for

each t ∈ [a, b]. By [12, Lemma 4.2] lim
n→∞

s(x∗, F̃ rn(t)) = s(x∗, F̃ r(t))

for each t ∈ [a, b] and x∗ ∈ X∗. Since F̃ r : [a, b] → CWK(X) is
Henstock integrable in CWK(X) on [a, b] for each r ∈ (0, 1], by Lemma
3.4 F̃ r : [a, b] → CWK(X) is KHP-integrable in CWK(X) on [a, b]

and Mr = (H)
∫ d

c

F̃ r(t)dt = (KHP )
∫ d

c

F̃ r(t)dt for each r ∈ (0, 1].

Thus s(x∗,Mr) = (KH)
∫ d

c

s(x∗, F̃ r(t))dt for each r ∈ (0, 1] and x∗ ∈
X∗. Since s(x∗, F̃ r(·)) ≤ s(x∗, F̃ rn(·)) ≤ s(x∗, F̃ r1(·)) on [a, b] for each
n ∈ N and x∗ ∈ X∗, by the Dominated Convergence Theorem for the
Kurzweil-Henstock integral we have

lim
n→∞

s(x∗,Mrn) = lim
n→∞

(KH)
∫ d

c

s(x∗, F̃ rn(t))dt

= (KH)
∫ d

c

s(x∗, F̃ r(t))dt = s(x∗,Mr)

for each x∗ ∈ X∗. By [12, Lemma 4.2], Mr = ∩∞n=1Mrn . Let M0 = X.
By [12, Lemma 4.1] there exists u[c,d] ∈ F(X) such that [u[c,d]]r =
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Mr = (H)
∫ d

c

F̃ r(t)dt for each r ∈ (0, 1]. Hence F̃ : [a, b] → F(X) is

Henstock integrable on [c, d].
¤

Theorem 3.10. If F̃ : [a, b] → F(X) is Henstock integrable on

[a, b], then F̃ : [a, b] → F(X) is KHP-integrable on [a, b] and for each
subinterval [c, d] of [a, b]

(H)
∫ d

c

F̃ (t)dt = (KHP )
∫ d

c

F̃ (t)dt.

Proof. If F̃ : [a, b] → F(X) is Henstock integrable on [a, b], then
by Theorem 3.9 for each subinterval [c, d] of [a, b] F̃ : [a, b] → F(X)
is Henstock integrable on [c, d]. Hence there exists u[c,d] ∈ F(X) such

that [u[c,d]]r = (H)
∫ d

c

F̃ r(t)dt for each r ∈ (0, 1]. By Lemma 3.4

[u[c,d]]r = (H)
∫ d

c

F̃ r(t)dt = (KHP )
∫ d

c

F̃ r(t)dt for each r ∈ (0, 1].

Therefore F̃ : [a, b] → F(X) is KHP-integrable on [a, b] and for each
subinterval [c, d] of [a, b]

(H)
∫ d

c

F̃ (t)dt = (KHP )
∫ d

c

F̃ (t)dt.

¤

Theorem 3.11. Let F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) be
Henstock integrable fuzzy mappings. Then

(1) if F̃ (t) ≤ G̃(t) a.e. on [a, b], then for each subinterval [c, d] of
[a, b]

(H)
∫ d

c

F̃ (t)dt ≤ (H)
∫ d

c

G̃(t)dt;

(2) if F̃ (t) = G̃(t) a.e. on [a, b], then for each subinterval [c, d] of
[a, b]
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(H)
∫ d

c

F̃ (t)dt = (H)
∫ d

c

G̃(t)dt.

Proof. (1) Since F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) are
Henstock integrable on [a, b], by Theorem 3.9 for each subinterval [c, d]

of [a, b] there exist u[c,d], v[c,d] ∈ F(X) such that u[c,d] = (H)
∫ d

c

F̃ (t)dt,

v[c,d] = (H)
∫ d

c

G̃(t)dt. If F̃ (t) ≤ G̃(t) a.e. on [a, b], then by Lemma

3.5 [u[c,d]]r = (H)
∫ d

c

F̃ r(t)dt ⊆ (H)
∫ d

c

G̃r(t)dt = [v[c,d]]r for each

r ∈ (0, 1] and so (H)
∫ d

c

F̃ (t)dt = u[c,d] ≤ v[c,d] = (H)
∫ d

c

G̃(t)dt.

(2) The proof is similar to (1). ¤

Theorem 3.12. If F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) are KH-

integrably bounded and Henstock integrable on [a, b], then d(F̃ , G̃) is
KH-integrable on [a, b] and

d

(
(H)

∫ b

a

F̃ (t)dt, (H)
∫ b

a

G̃(t)dt

)
≤ (KH)

∫ b

a

d(F̃ (t), G̃(t))dt.

Proof. If F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) are Henstock
integrable on [a, b], then by Theorem 3.10 F̃ : [a, b] → F(X) and G̃ :
[a, b] → F(X) are KHP-integrable on [a, b] and

(H)
∫ b

a

F̃ (t)dt = (KHP )
∫ b

a

F̃ (t)dt, (H)
∫ b

a

G̃(t)dt = (KHP )
∫ b

a

G̃(t)dt.
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By [11, Theorem 3.6] d(F̃ , G̃) is KH-integrable on [a, b] and

d

(
(H)

∫ b

a

F̃ (t)dt, (H)
∫ b

a

G̃(t)dt

)

= d

(
(KHP )

∫ b

a

F̃ (t)dt, (KHP )
∫ b

a

G̃(t)dt

)

≤ (KH)
∫ b

a

d(F̃ (t), G̃(t))dt.

¤
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