PROJECTIVE AND INJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER $Q = \bullet \rightarrow \bullet \rightarrow \bullet$

Sangwon Park and Juncheol Han*

Abstract. We define injective and projective representations of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$. Then we show that a representation $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3$ of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$ is projective if and only if each M_1, M_2, M_3 is projective left R-module and $f_1(M_1)$ is a summand of M_2 and $f_2(M_2)$ is a summand of M_3. And we show that a representation $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3$ of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$ is injective if and only if each M_1, M_2, M_3 is injective left R-module and $\ker(f_1)$ is a summand of M_1 and $\ker(f_2)$ is a summand of M_2.

1. Introduction

A quiver is just a directed graph with vertices and edges (arrows) ([1]). We may consider many different types of quivers. We allow multiple edges and multiple arrows, and edges going from a vertex back to the same vertex. Originally a representation of quiver assigned a vector space to each vertex - and a linear map to each edge (or arrow) - with the linear map going from the vector space assigned to the initial vertex to the one assigned to the terminal vertex. For example, a representation of the quiver $Q = \bullet \rightarrow \bullet$ is $V_1 \xrightarrow{f} V_2$, V_1 and V_2 are vector spaces and f is a linear map (morphism). Then we can define a morphism of two representations of the same quiver i.e., given a quiver $Q = \bullet \rightarrow \bullet$, we can define two representations $V_1 \xrightarrow{f} V_2$ and $W_1 \xrightarrow{g} W_2$.

Received July 28, 2009. Revised August 23, 2009.
2000 Mathematics Subject Classification: 16E30, 13C11, 16D80.
Key words and phrases: quiver, projective module, injective module, projective representation, injective representation.
This study was supported by research funds from Dong-A University.
*Corresponding author.
Now we can define a morphism between these two representations. A morphism of \(V_1 \xrightarrow{f} V_2 \) to \(W_1 \xrightarrow{g} W_2 \) is given by a commutative diagram

\[
\begin{align*}
V_1 & \xrightarrow{f} V_2 \\
\downarrow{s_1} & \downarrow{s_2} \\
W_1 & \xrightarrow{g} W_2
\end{align*}
\]

with \(s_1, s_2 \) linear maps.

In ([3]) a homotopy of quiver was developed and in ([2]) cyclic quiver ring was studied. The theory of projective representations was developed in ([4]) and the theory of injective representation was studied in ([5]). Recently, in ([7]) injective covers and envelopes of representations of linear quivers was studied, and in ([6]) properties of multiple edges of quivers was studied.

2. Projective representation of a quiver \(Q = \bullet \to \bullet \to \bullet \)

Definition 2.1. A representation \(P_1 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3 \) of a quiver \(Q = \bullet \to \bullet \to \bullet \) is called a projective representation if every diagram of representations

\[
\begin{align*}
(P_1 & \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3) \\
\downarrow{\alpha} & \downarrow{\beta} \downarrow{\gamma} \\
(M_1 & \xrightarrow{g_1} M_2 \xrightarrow{g_2} M_3) \to (N_1 \xrightarrow{h_1} N_2 \xrightarrow{h_2} N_3) \to (0 \to 0 \to 0)
\end{align*}
\]

can be completed to a commutative diagram as follows:

\[
\begin{align*}
(P_1 & \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3) \\
\downarrow{\alpha} & \downarrow{\beta} \downarrow{\gamma} \\
(M_1 & \xrightarrow{g_1} M_2 \xrightarrow{g_2} M_3) \to (N_1 \xrightarrow{h_1} N_2 \xrightarrow{h_2} N_3) \to (0 \to 0 \to 0)
\end{align*}
\]
Theorem 2.2. If \(P_1 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3 \) is a projective representation of a quiver \(Q = \bullet \rightarrow \bullet \rightarrow \bullet \), then \(P_1, P_2, \) and \(P_3 \) are projective left \(R \)-modules.

Proof. Let \(M, N \) be left \(R \)-modules and \(\alpha : P_1 \to N \) be an \(R \)-linear map and \(k : M \to N \) be an onto \(R \)-linear map. Then since \(P_1 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3 \) is a projective representation we can complete the following diagram

\[
\begin{array}{c}
(P_1 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3) \\
\downarrow{\alpha} \quad \downarrow{0} \quad \downarrow{0}
\end{array}
\]

\[
(M \xrightarrow{\text{id}} M \xrightarrow{0} 0) \quad (N \xrightarrow{\text{id}} N \xrightarrow{0} 0) \quad (0 \xrightarrow{0} 0 \xrightarrow{0})
\]

as a commutative diagram. Thus \(P_1 \) is a projective left \(R \)-module.

Let \(\beta : P_2 \to N \) be a \(R \)-linear map and \(k : M \to N \) be a onto \(R \)-linear map. Then since \(P_1 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3 \) is a projective representation we can complete the following diagram

\[
\begin{array}{c}
(P_1 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3) \\
\downarrow{\beta f_1} \quad \downarrow{\beta} \quad \downarrow{0}
\end{array}
\]

\[
(M \xrightarrow{id} M \xrightarrow{\text{id}} M \xrightarrow{0} 0) \quad (N \xrightarrow{id} N \xrightarrow{\text{id}} N) \quad (0 \xrightarrow{0} 0 \xrightarrow{0})
\]

as a commutative diagram. Thus \(P_2 \) is a projective left \(R \)-module.

Let \(\gamma : P_3 \to N \) be an \(R \)-linear map and \(k : M \to N \) be an onto \(R \)-linear map. Then since \(P_1 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3 \) is a projective representation we can complete the following diagram

\[
\begin{array}{c}
(P_1 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_3) \\
\downarrow{\gamma f_2 f_1} \quad \downarrow{\gamma f_2} \quad \downarrow{\gamma}
\end{array}
\]

\[
(M \xrightarrow{id} M \rightarrow M) \quad (N \xrightarrow{id} N \rightarrow N) \quad (0 \xrightarrow{0} 0 \xrightarrow{0})
\]

as a commutative diagram. Thus \(P_3 \) is a projective left \(R \)-module. \(\Box \)
Lemma 2.3. If \(P \) is a projective left \(R \)-module, then a representation \(0 \to 0 \to P \) of a quiver \(Q = \bullet \to \bullet \to \bullet \) is a projective representation.

Proof. The lemma follows by completing the diagram

\[
\begin{array}{c}
0 \to 0 \to P \\
\downarrow \downarrow \downarrow \\
(M_1 \overset{g_1}{\to} M_2 \overset{g_2}{\to} M_3) \to (N_1 \overset{h_1}{\to} N_2 \overset{h_2}{\to} N_3) \to (0 \to 0 \to 0)
\end{array}
\]

as a commutative diagram.

\[
\text{Lemma 2.4. If } P \text{ is a projective left } R \text{-module, then a representation } 0 \to P \xrightarrow{id} P \text{ of a quiver } Q = \bullet \to \bullet \to \bullet \text{ is a projective representation.}
\]

Proof. Let \(\beta : P \to N_2 \) be an \(R \)-linear map and \(k_2 : M_2 \to N_2 \) be an onto \(R \)-linear map and choose \(\beta h_2 : P \to N_3 \) as an \(R \)-linear map. Then since \(P \) is a projective left \(R \)-module, there exist \(t : P \to M_2 \) such that \(k_2 t = \beta \). Now choose \(g_2 t : P \to M_3 \) as an \(R \)-linear map. Then \(t \) and \(g_2 \alpha \) complete the following diagram

\[
\begin{array}{c}
0 \to P \xrightarrow{id} P \\
\downarrow \downarrow \downarrow \\
(M_1 \overset{g_1}{\to} M_2 \overset{g_2}{\to} M_3) \to (N_1 \overset{h_1}{\to} N_2 \overset{h_2}{\to} N_3) \to (0 \to 0 \to 0)
\end{array}
\]

as a commutative diagram. Therefore, \(0 \to P \xrightarrow{id} P \) is a projective representation.

\[
\text{Lemma 2.5. If } P \text{ is a projective left } R \text{-module, then a representation } P \xrightarrow{id} P \xrightarrow{id} P \text{ of a quiver } Q = \bullet \to \bullet \to \bullet \text{ is a projective representation.}
\]

Proof. Let \(\alpha : P \to N_1 \) be an \(R \)-linear map and \(k_1 : M_1 \to N_1 \) be an onto \(R \)-linear map and choose \(h_1 \alpha : P \to N_2 \) as an \(R \)-linear map, and choose \(h_2 h_1 \alpha : P \to N_3 \) as an \(R \)-linear map. Then since \(P \) is a projective left \(R \)-module, there exist \(S : P \to M_1 \) such that \(k_1 S = \alpha \).
Now choose $g_1 \alpha : P \rightarrow M_2$ and $g_2 g_1 \alpha : P \rightarrow M_3$ as an R-linear map. Then $g_1 \alpha$ and $g_2 g_1 \alpha$ complete the following diagram

\[
\begin{array}{ccc}
(P \xrightarrow{id} P \xrightarrow{id} P) \\
\downarrow \alpha & \downarrow h_1 \alpha & \downarrow h_2 h_1 \alpha \\
(M_1 \xrightarrow{g_1} M_2 \xrightarrow{g_2} M_3) \rightarrow (N_1 \xrightarrow{h_1} N_2 \xrightarrow{h_2} N_3) \rightarrow (0 \rightarrow 0 \rightarrow 0)
\end{array}
\]
as a commutative diagram. Therefore, $P \xrightarrow{id} P \xrightarrow{id} P$ is a projective representation.

Remark 1. A representation $P \rightarrow 0 \rightarrow 0$ of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$ is not a projective representation if $P \neq 0$. Because we can not complete the following diagram

\[
\begin{array}{ccc}
(P \xrightarrow{id} 0 \xrightarrow{id} 0) \\
\downarrow {\text{id}} & \downarrow 0 & \downarrow 0 \\
(P \xrightarrow{id} P \xrightarrow{id} 0) \rightarrow (P \xrightarrow{id} 0 \xrightarrow{id} 0) \rightarrow (0 \rightarrow 0 \rightarrow 0)
\end{array}
\]
as a commutative diagram.

Remark 2. A representation $P \xrightarrow{id} P \xrightarrow{id} 0$ of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$ is not a projective representation if $P \neq 0$. Because we can not complete the following diagram

\[
\begin{array}{ccc}
(P \xrightarrow{id} P \xrightarrow{id} 0) \\
\downarrow {\text{id}} & \downarrow {\text{id}} & \downarrow 0 \\
(P \xrightarrow{id} P \xrightarrow{id} P) \rightarrow (P \xrightarrow{id} P \xrightarrow{id} 0) \rightarrow (0 \rightarrow 0 \rightarrow 0)
\end{array}
\]
as a commutative diagram.

Theorem 2.6. A representation $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3$ of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$ is projective if and only if each M_1, M_2, M_3 is projective left R-module and $f_1(M_1)$ is a summand of M_2 and $f_2(M_2)$ is a summand.
of M_3. That is,

$$(M_1 \longrightarrow M_2 \longrightarrow M_3) \cong (P_1 \longrightarrow P_1 \longrightarrow P_1) \oplus (0 \longrightarrow P_2 \longrightarrow P_2) \oplus (0 \longrightarrow 0 \longrightarrow P_3),$$

where P_1, P_2, and P_3 are projective left R-modules.

Proof. The diagram

$$
\begin{array}{ccc}
(M_1 \overset{f_1}{\longrightarrow} M_2 \overset{f_2}{\longrightarrow} M_3) & \overset{id}{\downarrow} & \\
(M_1 \overset{id}{\longrightarrow} M_1 \longrightarrow 0) & \longrightarrow & (M_1 \overset{0}{\longrightarrow} M_1 \longrightarrow 0) \longrightarrow (0 \longrightarrow 0 \longrightarrow 0)
\end{array}
$$

can be completed to a commutative diagram by $id : M_1 \longrightarrow M_1$, $t : M_2 \longrightarrow M_1$, $0 : M_3 \longrightarrow 0$. Then we can get $tf_1 = id_{M_1}$ so that $M_2 \cong M_1 \oplus Ker(t)$. Now the following diagram

$$
\begin{array}{ccc}
(M_1 \overset{f_1}{\longrightarrow} M_2 \overset{f_2}{\longrightarrow} M_3) & \overset{id}{\downarrow} & \\
(M_2 \overset{id}{\longrightarrow} M_2 \longrightarrow M_2) & \longrightarrow & (M_2 \overset{id}{\longrightarrow} M_2 \longrightarrow 0) \longrightarrow (0 \longrightarrow 0 \longrightarrow 0)
\end{array}
$$

can be completed to a commutative diagram by $f_1 : M_1 \longrightarrow M_2$, $id : M_2 \longrightarrow M_2$, $u : M_3 \longrightarrow M_2$. Then we can get $uf_2 = id_{M_2}$ so that $M_3 \cong M_2 \oplus Ker(u)$. Therefore,

$$M_3 \cong M_2 \oplus Ker(u) \cong M_1 \oplus Ker(t) \oplus Ker(u).$$

This completes the proof.

3. Injective representation of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$

Definition 3.1. A representation $E_1 \overset{f_1}{\longrightarrow} E_2 \overset{f_2}{\longrightarrow} E_3$ of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$ is called an injective representation if every diagram of representations

Theorem 3.2. If \(E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} E_3 \) is a injective representation of a quiver \(Q = \bullet \rightarrow \bullet \rightarrow \bullet \), then \(E_1, E_2, \) and \(E_3 \) are injective left \(R \)-modules.

Proof. Let \(N \) be a left \(R \)-module, \(S \) be a submodule of \(N \) and \(\gamma : S \rightarrow E_3 \) be an \(R \)-linear map. The since \(E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} E_3 \) is an injective representation we can complete the following diagram

\[
\begin{array}{c}
(0 \rightarrow 0 \rightarrow 0) \\
\downarrow \\
(0 \rightarrow 0 \rightarrow S) \\
\downarrow \\
(0 \rightarrow 0 \rightarrow N)
\end{array}
\]

as a commutative diagram. Thus \(E_3 \) is an injective left \(R \)-module.

Let \(N \) be a left \(R \)-module, \(S \) be a submodule of \(N \) and \(\beta : S \rightarrow E_2 \) be an \(R \)-linear map. The since \(E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} E_3 \) is an injective representation we can complete the following diagram

\[
\begin{array}{c}
(0 \rightarrow 0 \rightarrow 0) \\
\downarrow \\
(0 \rightarrow S) \\
\downarrow \\
(0 \rightarrow N)
\end{array}
\]

as a commutative diagram. Thus \(E_2 \) is an injective left \(R \)-module.
Let N be a left R-module, S be a submodule of N and $\alpha : S \rightarrow E_1$ be an R-linear map. The since $E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} E_3$ is an injective representation we can complete the following diagram

\[
\begin{array}{c}
(0 \rightarrow 0 \rightarrow 0) \rightarrow (S \xrightarrow{id} S \xrightarrow{id} S) \rightarrow (N \xrightarrow{id} N \xrightarrow{id} N)
\end{array}
\]

as a commutative diagram. Thus E_1 is an injective left R-module.

Lemma 3.3. If E is an injective left R-module, then a representation $E \rightarrow 0 \rightarrow 0$ of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$ is an injective representation.

Proof. The lemma follows by completing the diagram

\[
\begin{array}{c}
(0 \rightarrow 0 \rightarrow 0) \rightarrow (S_1 \xrightarrow{s_2|s_1} S_2 \xrightarrow{s_3|s_2} S_3) \rightarrow (N_1 \xrightarrow{g_1} N_2 \xrightarrow{g_2} N_3)
\end{array}
\]

as a commutative diagram

Lemma 3.4. If E is an injective left R-module, then a representation $E \xrightarrow{id} E \rightarrow 0$ of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet$ is an injective representation.

Proof. Let $\beta : S_2 \rightarrow E$ be an R-linear map and choose $\beta g_1 : S_1 \rightarrow E$ as an R-linear map. Then since E is a injective left R-module, there exist $t : N_2 \rightarrow E$ such that $g_1 t = \beta$. Now choose $tg_1 : N_1 \rightarrow E$ as an R-linear map. Then t and tg_1 complete the following diagram

\[
\begin{array}{c}
(0 \rightarrow 0 \rightarrow 0) \rightarrow (S_1 \xrightarrow{s_2|s_1} S_2 \xrightarrow{s_3|s_2} S_3) \rightarrow (N_1 \xrightarrow{g_1} N_2 \xrightarrow{g_2} N_3)
\end{array}
\]
as a commutative diagram. Therefore, \(E \xrightarrow{id} E \xrightarrow{id} 0 \) is an injective representation.

\[\text{Lemma 3.5. If } E \text{ is a injective left } R \text{-module, then a representation } E \xrightarrow{id} E \xrightarrow{id} E \text{ of a quiver } Q = \bullet \rightarrow \bullet \rightarrow \bullet \text{ is an injective representation.} \]

\[\text{Proof. Let } \gamma : S_3 \rightarrow E \text{ be an } R \text{-linear map and choose } \gamma g_2 : S_2 \rightarrow E \text{ and } \gamma g_2 g_1 : S_1 \rightarrow E \text{ as } R \text{-linear maps. Then since } E \text{ is an injective left } R \text{-module, there exist } u : N_3 \rightarrow E \text{ such that } ug_2 = \gamma. \text{ Now choose } ug_2 : N_2 \rightarrow E \text{ and } ug_2 g_1 : N_1 \rightarrow E \text{ as } R \text{-linear maps. Then } u \text{ and } ug_2 \text{, and } ug_2 g_1 \text{ complete the following diagram} \]

\[
\begin{array}{c}
(0 \rightarrow 0 \rightarrow 0) \xrightarrow{(S_1 \xrightarrow{g_1} S_2 \xrightarrow{g_2} S_3)} (N_1 \xrightarrow{g_1} N_2 \xrightarrow{g_2} N_3) \\
\downarrow \gamma g_2 g_1 \downarrow \gamma g_2 \downarrow \gamma \\
(0 \rightarrow E \xrightarrow{id} E \rightarrow 0)
\end{array}
\]

as a commutative diagram. Therefore, \(E \xrightarrow{id} E \xrightarrow{id} E \) is an injective representation. \[\square \]

\[\text{Remark 3. A representation } 0 \rightarrow 0 \rightarrow 0 \rightarrow E \text{ of a quiver } Q = \bullet \rightarrow \bullet \rightarrow \bullet \text{ is not a injective representation if } E \neq 0. \text{ Because we can not complete the following diagram} \]

\[
\begin{array}{c}
(0 \rightarrow 0 \rightarrow 0) \xrightarrow{(0 \rightarrow 0 \rightarrow E)} (0 \rightarrow E \xrightarrow{id} E) \\
\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
(0 \rightarrow 0 \rightarrow E)
\end{array}
\]

as a commutative diagram.

\[\text{Remark 4. A representation } 0 \rightarrow E \xrightarrow{id} E \text{ of a quiver } Q = \bullet \rightarrow \bullet \rightarrow \bullet \text{ is not an injective representation if } E \neq 0. \text{ Because we can not complete the following diagram} \]
A representation \(M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \) of a quiver \(Q = \bullet \rightarrow \bullet \rightarrow \bullet \) is injective if and only if each \(M_1, M_2, M_3 \) is injective left \(R \)-module and \(\ker(f_1) \) is a summand of \(M_1 \) and \(\ker(f_2) \) is a summand of \(M_2 \). That is
\[
(M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3) \cong (E_1 \xrightarrow{id} E_1 \xrightarrow{id} E_1) \oplus (E_2 \xrightarrow{id} E_2 \rightarrow 0) \oplus (E_3 \rightarrow 0 \rightarrow 0),
\]
where \(E_1, E_2, \) and \(E_3 \) are injective left \(R \)-modules.

Proof. The diagram
\[
(0 \rightarrow 0 \rightarrow 0) \xrightarrow{f_1} (0 \rightarrow M_2 \xrightarrow{id} M_2) \xrightarrow{f_2} (M_2 \xrightarrow{id} M_2 \xrightarrow{id} M_2)
\]
can be completed to a commutative diagram by \(s : M_2 \rightarrow M_1, \ id : M_2 \rightarrow M_2 \) and \(f_2 : M_2 \rightarrow M_3 \). Then we can get \(f_1 s = id_{M_2} \) so that \(M_1 \cong M_2 \oplus \ker(f_1) \). Now the diagram
\[
(0 \rightarrow 0 \rightarrow 0) \xrightarrow{f_1} (0 \rightarrow 0 \rightarrow M_3) \xrightarrow{f_2} (0 \rightarrow M_3 \xrightarrow{id} M_3)
\]
can be completed to a commutative diagram by \(0 : 0 \rightarrow M_1, \ t : M_3 \rightarrow M_2, \ id : M_3 \rightarrow M_3 \). Then, we can get \(f_2 t = id_{M_3} \) so that \(M_2 \cong M_3 \oplus \ker(f_2) \). Therefore, \(M_1 \cong M_3 \oplus \ker(f_2) \oplus \ker(f_1) \). This completes the proof.
References

Department of Mathematics
Dong-A University
Pusan, 604-714 Korea
E-mail: swpark@donga.ac.kr

Department of Mathematics Educations
Pusan National University
Pusan, 609-735 Korea
E-mail: jchan@puan.ac.kr