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FUZZY STABILITY OF A CUBIC-QUADRATIC

FUNCTIONAL EQUATION: A FIXED POINT

APPROACH

Choonkil Park∗, Sang Hoon Lee and Sang Hyup Lee

Abstract. Using the fixed point method, we prove the general-
ized Hyers-Ulam stability of the following cubic-quadratic functional
equation

1
2

(f(2x + y) + f(2x− y)− f(−2x− y)− f(y − 2x))(0.1)

= 2f(x + y) + 2f(x− y) + 4f(x)− 8f(−x)− 2f(y)− 2f(−y)

in fuzzy Banach spaces.

1. Introduction and preliminaries

Katsaras [23] defined a fuzzy norm on a vector space to construct a
fuzzy vector topological structure on the space. Some mathematicians
have defined fuzzy norms on a vector space from various points of view
[13, 25, 52]. In particular, Bag and Samanta [3], following Cheng and
Mordeson [8], gave an idea of fuzzy norm in such a manner that the
corresponding fuzzy metric is of Kramosil and Michalek type [24]. They
established a decomposition theorem of a fuzzy norm into a family of
crisp norms and investigated some properties of fuzzy normed spaces [4].

We use the definition of fuzzy normed spaces given in [3, 29, 30] to
investigate a fuzzy version of the generalized Hyers-Ulam stability for
the functional equation (0.1) in the fuzzy normed vector space setting.
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Definition 1.1. [3, 29, 30, 31] Let X be a real vector space. A
function N : X × R → [0, 1] is called a fuzzy norm on X if for all
x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;

(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = 1.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy

norms are given in [29, 28].

Definition 1.2. [3, 29, 30, 31] Let (X,N) be a fuzzy normed vector
space. A sequence {xn} in X is said to be convergent or converge if there
exists an x ∈ X such that limn→∞ N(xn − x, t) = 1 for all t > 0. In
this case, x is called the limit of the sequence {xn} and we denote it by
N -limn→∞ xn = x.

Definition 1.3. [3, 29, 30] Let (X,N) be a fuzzy normed vector
space. A sequence {xn} in X is called Cauchy if for each ε > 0 and
each t > 0 there exists an n0 ∈ N such that for all n ≥ n0 and all p > 0,
we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed
vector space is Cauchy. If each Cauchy sequence is convergent, then the
fuzzy norm is said to be complete and the fuzzy normed vector space is
called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector
spaces X and Y is continuous at a point x0 ∈ X if for each sequence
{xn} converging to x0 in X, then the sequence {f(xn)} converges to
f(x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is
said to be continuous on X (see [4]).

The stability problem of functional equations originated from a ques-
tion of Ulam [51] concerning the stability of group homomorphisms.
Hyers [16] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for
additive mappings and by Th.M. Rassias [41] for linear mappings by
considering an unbounded Cauchy difference. The paper of Th.M. Ras-
sias [41] has provided a lot of influence in the development of what we
call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability
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of functional equations. A generalization of the Th.M. Rassias theo-
rem was obtained by Găvruta [15] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Th.M. Rassias’
approach.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution
of the quadratic functional equation is said to be a quadratic function.
A generalized Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [50] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [9] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an
Abelian group. Czerwik [10] proved the generalized Hyers-Ulam stability
of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem
(see [2], [17], [20]–[22], [32], [33], [36]–[39], [42]–[49]).

In [19], Jun and Kim considered the following cubic functional equa-
tion

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x).(1.1)

It is easy to show that the function f(x) = x3 satisfies the functional
equation (1.1), which is called a cubic functional equation and every
solution of the cubic functional equation is said to be a cubic mapping.

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X ×X → [0,∞] is called a generalized

metric on X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.4. [5, 12] Let (X, d) be a complete generalized metric
space and let J : X → X be a strictly contractive mapping with Lips-
chitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
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(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X |

d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [18] were the first to provide ap-
plications of stability theory of functional equations for the proof of new
fixed point theorems with applications. By using fixed point methods,
the stability problems of several functional equations have been exten-
sively investigated by a number of authors (see [6], [7], [28], [34], [35],
[40]).

This paper is organized as follows: In Section 2, we prove the gen-
eralized Hyers-Ulam stability of the cubic-quadratic functional equation
(0.1) in fuzzy Banach spaces for an odd case. In Section 3, we prove
the generalized Hyers-Ulam stability of the cubic-quadratic functional
equation (0.1) in fuzzy Banach spaces for an even case.

Throughout this paper, assume that X is a vector space and that
(Y, N) is a fuzzy Banach space.

2. Generalized Hyers-Ulam stability of the functional equa-
tion (0.1): an odd case

One can easily show that an even mapping f : X → Y satisfies (0.1)
if and only if the even mapping f : X → Y is a quadratic mapping, i.e.,

f(x + y) + f(x− y) = 2f(x) + 2f(y),

and that an odd mapping f : X → Y satisfies (0.1) if and only if the
odd mapping mapping f : X → Y is a cubic mapping, i.e.,

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x).

For a given mapping f : X → Y , we define

Df(x, y) : =
1

2
(f(2x + y) + f(2x− y)− f(−2x− y)− f(y − 2x))

− 2f(x + y)− 2f(x− y)− 4f(x) + 8f(−x)

+ 2f(y) + 2f(−y)

for all x, y ∈ X.
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Using the fixed point method, we prove the generalized Hyers-Ulam
stability of the functional equation Df(x, y) = 0 in fuzzy Banach spaces:
an odd case.

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that there
exists an L < 1 with

ϕ(x, y) ≤ L

8
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying

N (Df(x, y), t) ≥ t

t + ϕ(x, y)
(2.1)

for all x, y ∈ X and all t > 0. Then C(x) := N -limn→∞ 8nf
(

x
2n

)
exists

for each x ∈ X and defines a cubic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ (16− 16L)t

(16− 16L)t + Lϕ(x, 0)
(2.2)

for all x ∈ X and all t > 0.

Proof. Letting y = 0 in (2.1), we get

N (2f (2x)− 16f(x), t) ≥ t

t + ϕ(x, 0)
(2.3)

for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t + ϕ(x, 0)
, ∀x ∈ X, ∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete.
(See the proof of Lemma 2.1 of [27].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t + ϕ(x, 0)
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for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(
8g

(x

2

)
− 8h

(x

2

)
, Lεt

)

= N

(
g

(x

2

)
− h

(x

2

)
,
L

8
εt

)

≥
Lt
8

Lt
8

+ ϕ
(

x
2
, 0

) ≥
Lt
8

Lt
8

+ L
8
ϕ(x, 0)

=
t

t + ϕ(x, 0)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε.
This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.3) that

N

(
f(x)− 8f

(x

2

)
,

L

16
t

)
≥ t

t + ϕ(x, 0)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
16

.
By Theorem 1.4, there exists a mapping C : X → Y satisfying the

following:
(1) C is a fixed point of J , i.e.,

C
(x

2

)
=

1

8
C(x)(2.4)

for all x ∈ X. Since f : X → Y is odd, C : X → Y is an odd mapping.
The mapping C is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that C is a unique mapping satisfying (2.4) such that there
exists a µ ∈ (0,∞) satisfying

N(f(x)− C(x), µt) ≥ t

t + ϕ(x, 0)

for all x ∈ X;
(2) d(Jnf, C) → 0 as n →∞. This implies the equality

N - lim
n→∞

8nf
( x

2n

)
= C(x)
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for all x ∈ X;
(3) d(f, C) ≤ 1

1−L
d(f, Jf), which implies the inequality

d(f, C) ≤ L

16− 16L
.

This implies that the inequality (2.2) holds.
By (2.1),

N
(
8nDf

( x

2n
,

y

2n

)
, 8nt

)
≥ t

t + ϕ
(

x
2n , y

2n

)

for all x, y ∈ X, all t > 0 and all n ∈ N. So

N
(
8nDf

( x

2n
,

y

2n

)
, t

)
≥

t
8n

t
8n + Ln

8n ϕ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t

8n
t

8n +Ln

8n ϕ(x,y)
= 1

for all x, y ∈ X and all t > 0,

N (DC(x, y), t) = 1

for all x, y ∈ X and all t > 0. Thus the mapping C : X → Y is cubic,
as desired.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 3.
Let X be a normed vector space with norm ‖ · ‖. Let f : X → Y be an
odd mapping satisfying

N (Df(x, y), t) ≥ t

t + θ(‖x‖p + ‖y‖p)
(2.5)

for all x, y ∈ X and all t > 0. Then C(x) := N -limn→∞ 8nf
(

x
2n

)
exists

for each x ∈ X and defines a cubic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ 2(2p − 8)t

2(2p − 8)t + θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 23−p and we get the desired
result.
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Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that there
exists an L < 1 with

ϕ(x, y) ≤ 8Lϕ
(x

2
,
y

2

)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.1).
Then C(x) := N -limn→∞ 1

8n f (2nx) exists for each x ∈ X and defines a
cubic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ (16− 16L)t

(16− 16L)t + ϕ(x, 0)
(2.6)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof
of Theorem 2.1.

Consider the linear mapping J : S → S such that

Jg(x) :=
1

8
g (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t + ϕ(x, 0)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
1

8
g (2x)− 1

8
h (2x) , Lεt

)

= N (g (2x)− h (2x) , 8Lεt)

≥ 8Lt

8Lt + ϕ (2x, 0)
≥ 8Lt

8Lt + 8Lϕ(x, 0)

=
t

t + ϕ(x, 0)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε.
This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.3) that

N

(
f(x)− 1

8
f(2x),

1

16
t

)
≥ t

t + ϕ(x, 0)
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for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1
16

.
By Theorem 1.4, there exists a mapping C : X → Y satisfying the

following:
(1) C is a fixed point of J , i.e.,

C (2x) = 8C(x)(2.7)

for all x ∈ X. Since f : X → Y is odd, C : X → Y is an odd mapping.
The mapping C is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that C is a unique mapping satisfying (2.7) such that there
exists a µ ∈ (0,∞) satisfying

N(f(x)− C(x), µt) ≥ t

t + ϕ(x, 0)

for all x ∈ X;
(2) d(Jnf, C) → 0 as n →∞. This implies the equality

N - lim
n→∞

1

8n
f (2nx) = C(x)

for all x ∈ X;
(3) d(f, C) ≤ 1

1−L
d(f, Jf), which implies the inequality

d(f, C) ≤ 1

16− 16L
.

This implies that the inequality (2.6) holds.
The rest of the proofm is similar to the proof of Theorem 2.1.

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3.
Let X be a normed vector space with norm ‖ · ‖. Let f : X → Y be an
odd mapping satisfying (2.5). Then C(x) := N -limn→∞ 1

8n f (2nx) exists
for each x ∈ X and defines a cubic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ 2(8− 2p)t

2(8− 2p)t + θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−3 and we get the desired
result.
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3. Generalized Hyers-Ulam stability of the functional equa-
tion (0.1): an even case

Using the fixed point method, we prove the generalized Hyers-Ulam
stability of the functional equation Df(x, y) = 0 in fuzzy Banach spaces:
an even case.

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function such that there
exists an L < 1 with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.1). Then Q(x) := N -limn→∞ 4nf

(
x
2n

)
exists for each x ∈ X and

defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (8− 8L)t

(8− 8L)t + Lϕ(x, x)
(3.1)

for all x ∈ X and all t > 0.

Proof. Letting y = x in (2.1), we get

N (2f (2x)− 8f(x), t) ≥ t

t + ϕ(x, x)
(3.2)

for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t + ϕ(x, x)
,∀x ∈ X, ∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete.
(See the proof of Lemma 2.1 of [27].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t + ϕ(x, x)
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for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(
4g

(x

2

)
− 4h

(x

2

)
, Lεt

)

= N

(
g

(x

2

)
− h

(x

2

)
,
L

4
εt

)
≥

Lt
4

Lt
4

+ ϕ
(

x
2
, x

2

)

≥
Lt
4

Lt
4

+ L
4
ϕ(x, x)

=
t

t + ϕ(x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε.
This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.2) that

N

(
f(x)− 4f

(x

2

)
,
L

8
t

)
≥ t

t + ϕ(x, x)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
8
.

By Theorem 1.4, there exists a mapping Q : X → Y satisfying the
following:

(1) Q is a fixed point of J , i.e.,

Q
(x

2

)
=

1

4
Q(x)(3.3)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is an even mapping.
The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that Q is a unique mapping satisfying (3.3) such that there
exists a µ ∈ (0,∞) satisfying

N(f(x)−Q(x), µt) ≥ t

t + ϕ(x, x)

for all x ∈ X;
(2) d(Jnf, Q) → 0 as n →∞. This implies the equality

N - lim
n→∞

4nf
( x

2n

)
= Q(x)

for all x ∈ X;
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(3) d(f, Q) ≤ 1
1−L

d(f, Jf), which implies the inequality

d(f,Q) ≤ L

8− 8L
.

This implies that the inequality (3.1) holds.
The rest of the proof m is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 2.
Let X be a normed vector space with norm ‖ · ‖. Let f : X → Y
be an even mapping satisfying f(0) = 0 and (2.5). Then Q(x) := N -
limn→∞ 4nf

(
x
2n

)
exists for each x ∈ X and defines a quadratic mapping

Q : X → Y such that

N (f(x)−Q(x), t) ≥ (2p − 4)t

(2p − 4)t + θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired
result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function such that there
exists an L < 1 with

ϕ(x, y) ≤ 4Lϕ
(x

2
,
y

2

)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0
and (2.1). Then Q(x) := N -limn→∞ 1

4n f (2nx) exists for each x ∈ X and
defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (8− 8L)t

(8− 8L)t + ϕ(x, x)

for all x ∈ X and all t > 0.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 2.
Let X be a normed vector space with norm ‖ · ‖. Let f : X → Y
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be an even mapping satisfying f(0) = 0 and (2.5). Then Q(x) := N -
limn→∞ 1

4n f (2nx) exists for each x ∈ X and defines a quadratic mapping
Q : X → Y such that

N (f(x)−Q(x), t) ≥ (4− 2p)t

(4− 2p)t + θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−2 and we get the desired
result.
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