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PERIODIC SOLUTIONS FOR THE NONLINEAR
HAMILTONIAN SYSTEMS

TACKSUN JUNG AND Q-HEUNG CHOI*

ABSTRACT. We show the existence of nonconstant periodic solution
for the nonlinear Hamiltonian systems with some nonlinearity. We
approach the variational method. We use the critical point theory
and the variational linking theory for strongly indefinite functional.

1. Introduction

Let L?(SY, R?") denote the set of 2n-tuples of the square integrable
27 periodic functions and choose z € L*(S', R*"). Let H : R* —
R € C' with H(0,...,0) = 0 and H, be its gradient. In this paper
we investigate the existence of the nonconstant periodic solution of the
nonlinear Hamiltonian system

z=J(H,(2)), (1.1)
h 2Ry, =g = (0TI L s the n d
where z € L*(S',R™"), 2 = &, J = I 0,n1sten1-
mensional identity matrix. Let a - b and | - | denote the usual inner
product and norm on R*. Let us set z = (p,q), p = (21, "+, 2n),
q= (Zn41, -, 22n) € R". Then (1.1) can be rewritten as
p = _Hq<p7 Q>7
¢ = Hyp.q)
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We assume that H satisfies the following conditions:
1) H € CY(R*, R) with H(0,...,0) =0,

.....

)
)
) |Z‘ 9
) 2 Hz('z) > /LH(Z)v vz, > 2,
) [ Ho (2)] 4o+ [ Hey, (2)] < A(l2a]" 4+ 4 |220]7), V2, v > 0, v > 1,
1,...,2n.

Let E = W22(S%, R?). We are looking for 2 periodic weak solutions
for (1.1). We observe that the 27 periodic weak solutions of (1.1) coincide
with the critical points of the corresponding functional

I:E—Re(C",

I(u) = % /0 T et - O%H(z(t))dt. (1.2)

In other words, 2m-periodic weak solution of (1.1) is any z = (p,q) € E
such that

/0 W[(ZHHq(taZ(t)))-@b—(Q—Hp(t,Z(t)))-cb]dt =0 forall¢=(¢,¥) € E,

and coincide with the critical points of the corresponding functional

2 2 2
I(z) = / pqdt — H(z(t))dt = A(z) — H(z(t))dt, (1.3)
0 0 0
where A(z) =1 027r Z - Jzdt.
Our main result is the following:

THEOREM 1.1. Assume that H satisfies the conditions (H1)-(H6).
Then (1.1) has at least one nonconstant 2m periodic solution. Moreover,
if H is of class C*, this solution is of class C*(St, R?").

The outline of the proof is the following: In section 2, we investigate
the properties of the nnlinear term H and the functional I. In section
3, we recall a variational linking theorem and prove that the functional
I satisfies the linking geometry. In section 4, prove Theorem 1.1.
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2. Properties of the nonlinear term H and the functional /

Let B = W22(S', R?). The scalar product in L2 extends as the

duality pairing between E and E' = W~22(S1, R*"). We know that if

2 € L2(S', R*"), then it has a Fourier expansion z(t) = S.F=1% gyt

with a, € C*", a_y, = ax and Y, _, |ax|* < o0o. Then E is the closure of
such functions with respect to the norm

Izl = O (1 + [k]laxl?)2.

keZ

Y

Let ey, - , e, denote the usual bases in R*" and set

E° = span{ey, - e},

ET = span{(sin jt)ey — (cos jt)epin, (cos jt)er+(sin jt)epsn,
| jEN1<k<n},

E™ = span{(sin jt)ex + (cos jt)exin, (cos jt)e,—(sin jt)egn
|7 €N, 1 <k<n}
Then £ = E°@® Et @ E~ and E°, ET, E~ are the subspaces of E on

which A is null, positive definite and negative definite, and these spaces
are orthogonal with respective to the bilinear form

27 .
MAGEA P+ ¢ ddt

associated with A. Here z = (p,q) and ( = (¢, ). If z € ET and ( € E~,
then the bilinear form is zero and A(z+ () = A(z) + A(¢). We also note
that E°, Et* and £~ are mutually orthogonal in L?*(S1, R*"). Let P* be
the projection from E onto ET and P~ the one from F onto E~. Then
the norm in F is given by

1207 = 2" + A(z") = A7) = |2 + [PT2[* + | P~ 2|

which is equivalent to the usual one. The space E with this norm is a
Hilbert space.
We need the following facts which is proved in [5]:

PROPOSITION 1. For each s € [1,00), E is compactly embedded in
L#(S', R*™). In particular, there is an a > 0 such that

I2llzs < as]|2]]



334 Tacksun Jung and Q-Heung Choi

for all z € E.

By (H3) and (H5), we obtain the lower bound for H(z) in the term
of |21|M + ...+ |22n|u.

LEMMA 2.1. Assume that H satisfies the conditions (H1) — (H5).
Then there exist agy, by € R with ag > 0 such that

H(z) > ao(|z|*) — bo, Vze E. (2.1)

Proof. Let z € E be such that |z|? > R?. Let us set ¢(£) = H(£z) for
&> 1. Then

SO(OI =z-H,(§2) >

Multiplying by £+, we get

©(§).

M=

(€ "p(£)) =0,
hence p(§) > p(1)&* for € > 1. Thus we have

H(z) > H(%)(“]’?)“

/T2
> Co(%)u > ap(]z]") — b, for some ay, by,

where ¢y = inf{H(z)| |z|* = R*}. O

LEMMA 2.2. Assume that H satisfies the conditions (H1) — (H6).
Then

(i) [T H(0,...,0)dt = 0, [77 H(z)dt > 0 if z(t) # (0,...,0),
grad fo dt—o(H ) as z — (0,...,0);

(ii) z — grad fo ))dt is a compact map;

(iii) if fo z- H,(z) dt — 2f z(t))dt = 0, then

grad fo (2)dt) =

(iv) if ||z,|| — 400 and

JJT 2 He (2)dt—2 [0 H(zp)dt
B -0,

then there exists (zp, ), and w € E such that

grad( [ H(z,)dt)

120 | 12l
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Proof. (i) (i) follows from (H1), (H2) and (H6), since 1 < v.
(ii) (ii) is easily obtained with standard arguments.
(iii) (iii) is implied by (H5) and the fact that H(z) > 0 for z # (0,...,0).
(iv) By Lemma 2.1 and (H5), for z € E,

27 2
/ z- H,(z)dt — 2/ H(z)dt >
0 0

2

(n—2) ; H(z)dt = (1 = 2)(aol|2[|7n — b1)-

By (H6),
2m

||grad(/ H(z)dt)|| < C'|H.(2)||zr < C"|||z|" ||z, for some 1 < r < 2
0

and suitable constants C’, C". To get the conclusion it suffices to esti-
12117 s
gl ) 1] : .
Holder inequality. If p < rv, by the standard interpolation arguments,

it follows that ||%||LT < C(HZH[%“)%HZHI, where [ is such that [ = =1+ 2.

Thus we prove (iv). O

mate |2 ||, in terms of . If 4 > rv, then this is an consequence of
Il

PROPOSITION 2. Assume that H(z) € C'(R*",R). Then I(z) is C",
that is, I(z) is continuous and Fréchet differentiable in E with Fréchet
derivative

DI(z)w — /Ow(é—J(Hz(z))yJu)

_ / 65+ Hy(2) v — (4 — Hy(=)) - gldt,

where z = (p,q) and w = (¢,v) € E. Moreover the functional z —

[27 H(2(t))dt is C*.
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Proof. For z,w € F,
I(z + w)—1(z) — DI(2)w]

2

I3[ Gt aero- [ HEw

= T OQ”H@ -/ Tl ) - T

1 2
= |§/ [Z-Jw+w-Jz+w- Juw)
0

_Aﬁﬂg+m—ﬂgﬂ—lﬂw—ﬂm@DJML
We have

[t )~ HEI < | [ 1) 0+ offullat] = O
Thus we have
|I(z +w) — I(2) — DI(2)w| = O(Jw|?).
Next we prove that I(z) is continuous. For z,w € F,

|1 (24 w) = 1(2)]

:\%Aﬂ@+wa@+wy-o H(z+w)

1 2 2m
——/ Z'-Jz+/ H(z)|
2 0 0

1 2w 2w
:|i/[sz+wuh+w-ﬁd—/ (H(> +w) — H(2)|
0 0
= O(Jw)).
Similarly, it is easily checked that I is C. O

3. Linking geometry

We recall the variational linking theorem for strongly indefinite func-
tional (cf. [5]) which is a crucial role for proving the existence of the
nonconstant 27 periodic weak solution of (1.1).
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LEMMA 3.1. (Variational Linking Theorem)
Let E be a real Hilbert space with E = Fy ® Fy and Ey = Ef We
suppose that
(I1) I € C'(E, R), satisfies (P.S.) condition, and
(12) I(u) = %(Lu,u) +bu, where Lu = LiPiu+ LyPou and L; : E; — E;
is bounded and selfadjoint, i = 1, 2,
(I3) V' is compact, and
(I4) there exists a subspace EE C E and sets S C E, T C E and constants
« > w such that,

(i) S C Ey and I|g > «,

(ii) T is bounded and I|gr < w,

(iii) S and OT link.
Then I possesses a critical value ¢ > .

Let (E,), be a sequence of closed subspaces of E with the conditions:

E,=E, ® E°® E}, where Ef C ET, E, CE foralln, (3.1)
(E;[ and E, are subspaces of F),dim F,, < 400, E, C E,11,UpenEy,
is dense in E. Let Pg, be the orthogonal projections from E onto E,,.

Let us prove that the functional I satisfies the linking geometry.

LEMMA 3.2. Assume that H satisfies the conditions (H1)-(H6). Then
(i) there exist a small number p > 0 and a small ball B, C E° & E*
with radius p such that if U € 0B,, then

a=infI(z) >0,
(i) there is an e € E° ® E* and R > p such that if
W = (BN (E°® E"))® {re|] 0<r < R}

and z € OW, then

sup I1(z) <0
z€O0W

and (§ = supy, 1(2) < 0.
Proof. (i) We note that

2m
if z¢€ E*, then / z-Jzdt > 1,
0

2m
it ze £, then/ Z-Jzdt < —1
0
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for some 71 > 0, 7, > 0. By (H5) and (H6), |H(2)| < alz|® for some
a>0and b>2 If z€ E°® E*, then we have

1 2m 2w
[(z):—/ Z- Jzdt — H(z)dt
2 Jo 0
> 71— allz|z.

Since b > 2, there there exist a small number p > 0 and a small ball B,
with radius p such that if z € 0B, then o = inf I(z) > 0. Thus the
assertion (1) hold.
(ii) By Lemma 2.1, there exist ag, by € R, ap > 0 such that H(z) >
ag|z|* — by, Vz € E. Let us choose an element e € B; C E1 with
lell=1and 2z # (0,...,0) € E°® E~ & {re| 0 <r}. Then z = w + re,
we E°®E~, w#(0,...,0). Then we have

1 2w 1 2m 27
I(z) = 5/ wJw — 5/ reJ(re) —/ H(w +re)dt
0 0 0

1
< -7+ 57“2 — agrt — agl|w||* — by

for some ag > 0, ag, by € R. Since u > 2 and w € E° @ E~, there exists
R > 0 such that if
W= (BrN(E°@ E")) @ {re|]0<r < R}

and z € OW, then sup, ey 1(2) < 0. Moreover supy, I(z) < 1r? < oco.
Thus the assertion (ii) hold. So the lemma is proved. O

We shall prove that the functional I satisfies the (P.S.)’ condition for
any c € R.

LEMMA 3.3. Assume that H satisfies the conditions (H1)-(H6). Then
the functional I satisfies the (P.S.)% condition with respect to (E,), for
any real number c.

Proof. Let ¢ € R and (h,) be a sequence in N such that h,, — +oo,
(zn)n be a sequence such that
Zn € Ep,,, 0, I(2,) — ¢, Pg, VI(z,) — 0.
We claim that (z,), is bounded. By contradiction we suppose that

||zn|| — 400 and set z, = IIEZII' Then

I(Zn)

(Pei, V1 (), Z0) = (V1(za), 50) = 2720
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S H (20) - 2pdt —2 [77H
Izl

Hence
f% H.(z,) - zpdt — 2 f27r H(z,)dt

0 0
|zl

By Lemma 2.2,
grad [77 H(z)dt

Iz

converges

and 7, — 0. We get

Izl

Pg, grad([’" H(z)dt)

[z

~

Ey, Zp —

— 0,

so (Pg, #, converges. Since (7,), is bounded and (4)~" is a compact
mapping, up to subsequence, (z,), has a limit. Since z, — (0,...,0), we
get 2, — (0,...,0), which is a contradiction to the fact that ||Z,| = 1.
Thus (2,), is bounded. We can now suppose that z, — z for some
z € E. Since the mapping z — grad fo (z)dt) is a compact map-
ping, grad fo (z,)dt) — grad fo (z)dt). Thus (Pg, 2,) con-
verges. Since (%)_1 is a compact operator and (z,), is bounded, we
deduce that, up to a subsequence, (z,), converges to some z strongly
with VI(2z) =lim VI(z,) = 0. Thus we prove the lemma. O

4. Proof of theorem 1.1

Assume that H satisfies the conditions (H1)-(H6). We note that
1(0,0) = 0. By Proposition 2.2, I(z) € C'. By (ii) of Lemma 2.2,
z +— grad fo z)dt is a compact mapping. By Lemma 3.2, there exist
a small number p > 0 and a small ball B, C EY@® E* with radius p such
that if z € 9B,, then a = inf I(z) > 0, and there is an e € E°@® E* and
R > p such that if

W =(BrN(E°®@E"))® {re|] 0 <r < R},

then

sup I(z) <0.
zeOW
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Let us set = supy, I. We note that 3 < +oo. Let (E,), be a sequence
of subspaces of E satisfying (3.2). Clearly E° C E, for all n, and 0B,
and OW link. We have, for all n € N,
sup I < inf [.
OWNE, 9BpNEn
Moreover, by Lemma 3.3, I,, = I|g, satisfies the (P.S.)% condition for
any ¢ € R. Thus by Lemma 3.1 (Variational Linking Theorem), there
exists a critical point z, for I, with
< inf I<IT < 1 <3

“ S e, S 100 = g 120
Since I, satisfies the (P.S.)! condition, we obtain that, up to a subse-
quence, z, — z, with z a critical point for [ such that o < I(z) < .
Hence z # (0,0). Thus system (1.1) has a nontrivial solution. Thus
Theorem 1.1 is proved.
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