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THE COEFFICIENTS OF BELL DOMAINS AND THE

CRITICAL POINTS OF CORRESPONDING FUNCTIONS

Moonja Jeong

Abstract. In this note, we determine the properties of the coef-
ficients of Bell domains in the plane and find some coefficients to
consist of Bell domain.

1. Introduction

In this paper, a non-degenerate finitely connected domain in the plane
is a domain such that no boundary component is a point. To calculate
the Bergman kernel associated to the given domain explicitly is possible
only for a few special domains. It is well known that the Bergman kernel
can be rational only for simply connected domains (see [1]). Conditions
for checking whether the Bergman kernel associated to a given domain
is algebraic are as follows (see [2], [3]).

Proposition 1.1. Suppose Ω is a non-degenerate finitely connected
domain in the plane. The following conditions are equivalent.

(1) The Bergman kernel associated to Ω is algebraic.
(2) The Szegö kernel associated to Ω is algebraic.
(3) There is a single proper holomorphic mapping of Ω onto the unit

disc which is algebraic.
(4) Every proper holomorphic mapping of Ω onto the unit disc is

algebraic.

So in order to know that the Bergman kernel associated to Ω is al-
gebraic, it is enough to find a proper holomorphic map of Ω onto the
unit disc which is algebraic. Also, to find such a domain with algebraic
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proper map from the given domain onto the unit disc is an interesting
problem.

A domain D = {z ∈ C : |z+1/z| < r} with r > 2 is doubly connected
and the function f defined by

f(z) =
1

r
(z +

1

z
)

is an algebraic proper map from the given domain D onto the unit disc.
So the Bergman kernel associated with D is algebraic.

We are seeking for n-connected domains satisfying similar equation.
We know that every non-degenerate n-connected domain in the plane
has a canonical representation as in the following theorem in [6], which
is called a Bell domain of it.

Theorem 1.2. Every non-degenerate n-connected planar domain with
n ≥ 2 is mapped biholomorphically onto a domain Wa,b defined by

{
z ∈ C :

∣∣∣∣∣z +
n−1∑

k=1

ak

z − bk

∣∣∣∣∣ < 1

}

with suitable complex numbers ak and bk where a = (a1, a2, · · · , an−1)
and b = (b1, b2, · · · , bn−1).

Bell domain is important in the sense that every Bell domain Wa,b

has the algebraic Bergman kernel. That is, the function fa,b defined by

fa,b(z) = z +
n−1∑

k=1

ak

z − bk

is an algebraic proper holomorphic mapping from Wa,b onto the unit
disc.

Therefore, the above theorem implies the following corollary.

Corollary 1.3. Every non-degenerate n-connected domain in the
plane is biholomorphic to a domain with the algebraic Bergman kernel.

In this paper we study the set of coefficients (a,b) which correspond
to Bell domains representing non-degenerate n-connected domains in the
plane.
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2. The coefficient body of Bell domains

To find the property of the coefficients, we define the following.

Definition 2.1. For every n ≥ 2, let Bn be the set of all complex
vectors (a,b) in C2n−2 such that the corresponding domains

Wa,b =

{
z ∈ C :

∣∣∣∣∣z +
n−1∑

k=1

ak

z − bk

∣∣∣∣∣ < 1

}

are non-degenerate n-connected domains in the plane.
We call Bn the coefficient body for non-degenerate n-connected canon-

ical domains.

The analysis of B2 can be seen in [7] as follows.

Proposition 2.2. For a complex number a, let a′ be a complex num-
ber such that (a′)2 = a. Then B2 = {(a, b) ∈ C2 : a 6= 0, |b + 2a′| <
1, |b− 2a′| < 1}.

Note that it is independent of the choice of a′. The following lemma
for the condition of Bn with n ≥ 2 is in [8].

Lemma 2.3. The coefficient body Bn is the set of all (a,b) such that

f ′a,b(z) = 0

has 2n− 2 solutions c1, · · · , c2n−2 counted with multiplicities such that

|fa,b(cj)| < 1

for every j.
In particular, Bn is an open subset of C2n−2.

Now we seek for a condition for B3. Let

f1(z) = fa,a,b,−b(z) = z +
a

z − b
+

a

z + b

with a, b ∈ C− {0}. Then

f ′1(z) = 1− a

(z − b)2
− a

(z + b)2

=
(z2 − b2)2 − 2az2 − 2ab2

(z2 − b2)2
.
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Hence f ′1(z) = 0 has 4 roots

(
b2 + a + (4ab2 + a2)1/2

)1/2
.

The solutions of the equation z4 − 2(b2 + a)z2 + b4 − 2ab2 = 0 are
critical points of f1. If it holds for c, then it is also satisfied for −c. So,
if c is a critical point of f1, then −c is also a critical point of f1. Hence
we get the following theorem.

Theorem 2.4. The element (a, a, b,−b) ∈ B3 if and only if a, b satisfy
the inequality

|b2 + a + (4ab2 + a2)1/2| · |b2 − 1

2
a2 +

a

2
(4ab2 + a2)1/2|2 < |b4|

where the same value of (4ab2 + a2)1/2 is taken on each side.

Proof. Let

f1(z) = z +
a

z − b
+

a

z + b
.

Then (a, a, b,−b) ∈ B3 if and only if |f1| < 1 at each critical points
of f1.

Note that f ′1(z) has 4 roots

(
b2 + a + (4ab2 + a2)1/2

)1/2

and

|f1(z)|2 = |z(1 +
2a

z2 − b2
)|2.

Hence (a, a, b,−b) ∈ B3 if and only if

|b2 + a + (4ab2 + a2)1/2| |3a + (4ab2 + a2)1/2

a + (4ab2 + a2)1/2
|2

=|b2 + a + (4ab2 + a2)1/2| |(3a + (4ab2 + a2)1/2)(a− (4ab2 + a2)1/2)

−4ab2
|2

=|b2 + a + (4ab2 + a2)1/2| |b
2 − 1

2
a2 + a

2
(4ab2 + a2)1/2

b2
|2 < 1.

So we get desired conclusion.

Now, we find the condition for a point in B3 with multiplicity 2.
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Theorem 2.5. Let

f1 = fa,a,b,−b(z) = z +
a

z − b
+

a

z + b

with a, b ∈ C− {0}.
All the critical points of f1 are of multiplicity 2 if a = −4b2. The

point 0 is a critical point of f1 with multiplicity 2 if b2 = 2a.

Proof. We represent

f ′1(z) =
g(z2)

(z2 − b2)2

where g(z2) = (z2− b2)2− 2az2− 2ab2. Hence g(z2) = z4− 2(b2 +a)z2 +
b4 − 2ab2.

Since the discriminant of g(z) is

(b2 + a)2 − (b4 − 2ab2) = 4ab2 + a2 = a(4b2 + a),

all the critical points of f1 are of multiplicity 2 if a = −4b2.
In order to find a condition for 0 to be a critical point of f1 with

multiplicity 2, we use the quadratic formula for g(z). The equation

(b2 + a) + (4ab2 + a2)1/2 = 0

holds if and only if

(b2 + a)2 = 4ab2 + a2.

Hence 0 is a critical point of f1 with multiplicity 2 if and only if b2 =
2a.

Now we find some elements (a, a, b,−b) of B3.

Example 2.6. 1) Let a = 1/200 and b = 1/10. Then (a, a, b,−b)
satisfies the inequality in Theorem 2.4 and so it belongs to B3. Note
that 0 is a critical point of fa,a,b,−b with multiplicity 2 since b2 = 2a.

In fact, the critical points of fa,a,b,−b are

{±
√

3

10
, 0, 0}.

2) Let a = −1/25 and b = 1/10. Then (a, a, b,−b) belongs to B3. We
notice that all the critical points of fa,a,b,−b are of multiplicity 2 since
a = −4b2.
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In fact, the critical points of fa,a,b,−b are

{±
√

3

10
i,±

√
3

10
i}.

3) Let a = 9/400 and b = 1/10. Then (a, a, b,−b) belongs to B3. The
critical points of fa,a,b,−b are

{±
√

7

10
,±
√

2

20
i}.

Note that all the critical points are simple.

3. Projection mapping

We study the mapping from the coefficient body onto the set of critical
points of the functions fa,b or that of the critical values, i.e. the images
of critical points.

Definition 3.1. Let Γ be the set of all points (a,b) ∈ Bn such that
the corresponding rational map fa,b has a non-simple critical point or
has a pair of critical points whose images are the same. Γ is called the
collision locus.

It implies that the rational map fa,b has 2n− 2 simple critical values
if (a,b) in Bn−Γ. We denote the set of simple critical values of fa,b by

Va,b = {α1, · · · , α2n−2},
where αj = fa,b(cj) for every j if we let {cj}2n−2

j=1 be the set of the simple
critical points of fa,b. This set can be considered as a point in B0,2n−2U
where B0,2n−2C is the quotient space of F0,2n−2C = {(z1, · · · , z2n−2) ∈
C2n−2 : zi 6= zj if i 6= j} by the symmetric group S2n−2. In fact Va,b is a
point in B0,2n−2U where U ⊂ C2n−2 is the unit disc.

Consider the projection

πV : Bn − Γ → B0,2n−2U

defined by
πV (a,b) = Va,b.

Since

fa,b(z) = z +
n−1∑

k=1

ak

(z − bk)2
,
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f ′a,b(z) = 1−
n−1∑

k=1

ak

(z − bk)2

=
n−1∏
j=1

(z − bj)
2

(
1−

n−1∑

k=1

ak

(z − bk)2

)
.

Hence, for every point (a,b) ∈ Bn−Γ, the critical points c1, · · · , c2n−2

of fa,b are the simple solutions of the algebraic equation f ′a,b(z) = 0. cj

moves holomorphically with respect to (a,b) and so does the image αj

of cj for each j = 1, · · · , 2n− 2. Therefore the map πS is holomorphic.
For the projection πV the following theorem is known (see [8]).

Theorem 3.2. The projection πS is a

(2n− 2)! nn−3

-sheeted proper holomorphic covering of B0,2n−2U for every n ≥ 2.

It means the number of points in π−1
V (V) of V by πV is always (2n−

2)! nn−3. The number
(2n− 2)! nn−3

n!
is known as a Hurwitz number (see [5]).

Now we define another projection.

Definition 3.3. Let ∆ ⊂ Γ be the set of all points (a,b) in (C∗)n−1×
F0,n−1C where (C∗) = C−{0} such that the corresponding rational map
fa,b has a non-simple critical point. It is called the non-simple locus.

Then for every point (a,b) in (C∗)n−1 × F0,n−1C − ∆, the rational
function fa,b has 2n − 2 simple critical points. We denote the set of
simple critical points of fa,b by

Ca,b = {c1, · · · , c2n−2}.
We see that Ca,b can be considered as a point in B0,2n−2C.

Thus the projection

πC : (C∗)n−1 × F0,n−1C−∆ → B0,2n−2C
defined by

πC(a,b) = Ca,b

is a well defined holomorphic map.
The following theorem can be checked in [8].
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Theorem 3.4. For every point C in B0,2n−2C, there are at most

(2n− 2)!

n!

preimages of C by πC .

The number
(2n− 2)!

n! (n− 1)!

is called the n-th Catalan number. For every fixed C in B0,2n−2C, there
are

(2n− 2)!

n! (n− 1)!

classes of rational functions of degree n which have C as the set of critical
points ([4]).

Example 3.5. In Example 2.6 we find that the set of critical points
of fa,a,b,−b is

C = {±
√

7

10
,±
√

2

20
i}

where a = 9/400 and b = 1/10.
On the other hand, for

C = {±
√

7

10
,±
√

2

20
i} ∈ B0,2n−2C,

there are at most 4!/3! preimages of C by πC by Theorem 3.4. Two of
them are known as

(
9

400
,

9

400
,

1

10
,− 1

10
), (

9

400
,

9

400
,− 1

10
,

1

10
)

By calculation we find another 2 preimages

(
1

48
,

1

48
,

√
7

10
√

6
,−

√
7

10
√

6
), (

1

48
,

1

48
,−

√
7

10
√

6
,

√
7

10
√

6
).

So we find 4 preimages of C by πC and there are 4!/(3!2!) = 2 classes
of rational functions of degree 3 which have C as a set of critical points.
They are

f1 = z +
9/400

z − 1/10
+

9/400

z + 1/10
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and

f2 = z +
1/48

z −
√

7
10
√

6

+
1/48

z +
√

7
10
√

6

.

We know that |f1(ci) = αi| < 1 at each critical point ci. The set of
critical values of f1 is

V = {α1, α2, α3, α4} = {±21
√

7

120
,±
√

2

10
i} ∈ B0,2n−2U.

So we have 4! preimages of V by πV by Theorem 3.2.
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