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CODES OVER POLYNOMIAL RINGS AND THEIR

PROJECTIONS

Young Ho Park

Abstract. We study codes over the polynomial ring Fq[D] and
their projections to the finite rings Fq[D]/(Dm) and the weight enu-
merators of self-dual codes over these rings. We also give the formula
for the number of codewords of minimum weight in the projections.

1. Codes over polynomial rings

A code of length n over a ring R (finite or infinite) is a subset of Rn.
If the code is a R-submodule of Rn then it is a linear code. We will
always assume that codes are linear. The Hamming weight wt(v) of a
vector v is the number of non-zero coordinates. The minimum distance
of a code C, denoted by d(C), is the smallest of all non-zero weights in
the code. To the ambient space Rn we attach the inner product

(1) [v,w] =
∑

viwi,

where v = (vi), w = (wi). We define the dual code of C to be

(2) C⊥ = {v | [v,w] = 0 for all w ∈ C}.
A code C satisfying C = C⊥ is called a self-dual code.

Let Fq be the field of q elements, and throughout this paper let

P = Fq[D]

denote the infinite ring of polynomials in one indeterminate D over Fq.
The elements of the finite ring

Pm = Fq[D]/(Dm)
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are identified with polynomials a0 + a1D + a2D
2 + · · · + am−1D

m−1 of
degree less than m. This ring is a commutative ring with qm elements.
We sometimes view Pm as a subset of Pr for r > m, and of P by assuming
all coefficients of Di are 0 for i > m. The units of P are precisely the
non-zero elements of degree 0, i.e., P∗ = Fq −{0}, while the units of Pm

are polynomials with a nonzero constant term.
Since P is a principal ideal domain, any code C of length n over P is

a free module of rank k ≤ n. In this case, we shall write rank C = k. If
C1 ⊂ C2 are codes over P, then rank C1 ≤ rank C2. A code C of length n
and rank k is said to be an [n, k]-code, or [n, k, d]-code if the minimum
distance of C is d. A k×n matrix whose rows form a basis of [n, k]-code
C is called a generator matrix of C. A generator matrix of C⊥ is called a
parity check matrix of C.

Lemma 1.1. For a code C over P of length n, we have

rank C⊥ + rank C = n.

From the lemma, we obtain

(3) rank C = rank (C⊥)⊥.

Furthermore, if C is a self-dual [n, k]-code over P, then n = 2k.
For codes C over an infinite ring Fq[D], we do not always have (C⊥)⊥ =

C. For example, let C = (Dm) be the code of length 1 generated by Dm.
Then C⊥ = {0} and (C⊥)⊥ = P, which is much larger than C = (Dm).
Nevertheless, it is always true that

(4) C ⊂ (C⊥)⊥.

Definition 1.2. A code C over P is said to be basic if C = (C⊥)⊥.

Lemma 1.3. Let C1 ⊂ C2 be codes over P of the same rank. If v ∈ C2,
then αv ∈ C1 for some nonzero α ∈ P.

Proof. Let rank C1 = k and {w1,w2, · · · ,wk} be a basis for C1. Since

rank C2 ≥ rank 〈C1,v〉 ≥ rank C1 = rank C2,

we have rank 〈C1,v〉 = k. Thus the k + 1 vectors w1,w2, · · · ,wk and
v are linearly dependent over P. Hence there is a dependence relation
α1w1 + · · · + αkwk + αv = 0, and thus αv ∈ C1. Finally, α 6= 0 since if
α = 0 then αi = 0 for all i.

Theorem 1.4. The following conditions are equivalent for a code C
over P.
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i. C is basic.
ii. αv ∈ C implies v ∈ C for any nonzero α ∈ P.

Proof. Suppose C is basic. If αv ∈ C, then [αv,w] = 0 for all w ∈ C⊥,
which implies [v,w] = 0 for all w ∈ C⊥ since P is an integral domain,
and thus v ∈ (C⊥)⊥ = C. The converse follows from the previous lemma,
(3) and (4).

Remark. Theorem 1.4 is true for any code of finite rank over a prin-
cipal ideal domain.

Corollary 1.5. A code C over P is basic if and only if C is a dual
code of some code over P.

Proof. If C = C⊥1 and αv ∈ C, then 0 = [αv,w] = α[v,w] for all w ∈
C1 and hence [v,w] = 0 for all w ∈ C1, which implies that v ∈ C⊥1 = C.
The converse is clear.

This corollary provides us a way of constructing basic codes. Indeed,
the basic codes of length n are exactly the codes defined by an s × n
matrix H0 as

C(H0) = {v ∈ Pn | H0v
T = 0},

i.e., the solutions sets to a family of linear equations. C(H0) is then
basic, since it is dual to the code generated by the rows of H0. Note
that H0 is not necessarily a parity check matrix of C(H0) even if the row
vectors of H0 are linearly independent.

We shall present another way of describing basic codes in terms of
their generator matrices. For a vector u = (u1, . . . , ur) ∈ Pr, we denote

c(u) = gcd{u1, · · · , ur}.
It is clear that c(αu) = αc(u) for any α ∈ P, and c(u) | c(uG) for
any r × s matrix G over P, since the components of uG are linear
combinations of the components of u. In addition, we can write u =
c(u)u0, with c(u0) = 1.

Lemma 1.6. Let {gi} be the rows of the generator matrix G of a basic
code C. Then c(gi) = 1 for all i.

Proof. Suppose gi0 = βf for some β ∈ P = Fq[D]. Since C is basic,

we have f ∈ C. Write f =
∑k

i=1 αigi. We then have

βα1g1 + · · ·+ (βαi0 − 1)gi0 + · · ·+ βαkgk = 0,

which implies that βαi0 − 1 = 0. Thus β ∈ F∗q and hence c(gi0) = 1.
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The converse of the above lemma is not true. For example, let C be
the code with generator matrix G = ( 1 D

D 1 ). So c(1, D) = c(D, 1) = 1.
But G′ =

(
1 D

D+1 1+D

)
is also a generator matrix with c(D + 1, D + 1) =

D + 1 6= 1. Thus C is not basic. In fact, since rank C = 2, we have
C⊥ = {0} and (C⊥)⊥ = P2 6= C.

Theorem 1.7. Let G be a generator matrix of an [n, k]-code C over
P. Then C is basic if and only if one of the following is satisfied.

i. c(u) = 1 ⇒ c(uG) = 1 for all u ∈ Pk.
ii. c(u) = c(uG) for all u ∈ Pk.

Proof. (basic) ⇐⇒ (i). First note that uG ∈ C for all u, and if
u1G = u2G then u1 = u2. Assume that C is basic and c(u) = 1. Let
uG = αv for some α ∈ P. Since C is basic, we have v ∈ C so that
v = wG for some w. Thus uG = αv = αwG, which implies u = αw.
Since c(u) = 1, we have α ∈ Fq and hence c(uG) = 1. Conversely,
suppose αv ∈ C. There exists some u such that αv = uG. Write
u = c(u)u0 with c(u0) = 1. Since c(u0G) = 1 by (i) and αv = c(u)u0G,
we have c(αv) = c(u). Hence αv = c(u)u0G = c(αv)u0G = αc(v)u0G.
Consequently, v = c(v)u0G ∈ C.

(i) ⇐⇒ (ii). Write u = c(u)u0 with c(u0) = 1. Then c(uG) =
c(u)c(u0G). Thus the proof follows from the fact that c(u0G) = 1 iff
c(u) = c(uG).

We now recall the definitions and facts about basic matrices over P.

Definition 1.8. A k×n matrix G over P is said to be basic if G has
a (polynomial) right inverse, that is, if there exists an n × k matrix M
over P such that GM = Ik.

There are other characterizations of basic matrices as follows [2].

Theorem 1.9. A k × n matrix G = G(D) over Fq[D] is basic iff one
of the following conditions is satisfied.

i. The invariant factors of G are all 1.
ii. The gcd of the k × k minors of G is 1.
iii. G(α) has rank k for any α in the algebraic closure of Fq.
iv. If uG ∈ Fq[D]n for u ∈ Fq(D)k, then u ∈ Fq[D]k.

v. There exists an (n−k)×n matrix L such that det

(
G
L

)
is a nonzero

element of Fq.
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It turns out that basic codes are exactly those generated by basic
matrices.

Theorem 1.10. Let G be a generator matrix of a code C over P.
Then C is basic if and only if G is basic.

Proof. Assume that the k × n matrix G generates a basic code. Sup-
pose uG ∈ Pn for u ∈ Fq(x)k. There exists α ∈ P such that v = αu ∈ Pk.
Write v = c(v)v0 for some v0 ∈ Pk. Now Theorem 1.7 implies

αc(uG) = c(αuG) = c(vG) = c(v).

Thus α | c(v) and then u = 1
α
v = c(v)

α
v0 ∈ Pk. Therefore, G is basic by

Theorem 1.9(iv). Conversely, suppose that G is basic so that there is a
matrix M such that GM = Ik. Let αv ∈ C. Then αv = uG for some u,
and αvM = uGM = u. Thus αv = uG = (αvM)G = α(vMG), which
implies that v = (vM)G ∈ C.

Corollary 1.11. If C1 is basic and C2 is equivalent to C1, then C2 is
also basic.

Proof. Let Gi be generator matrices for Ci. The theorem follows from
Theorem 1.9(ii) and the fact that the minors for G1 and G2 are the same
up to ±1.

Theorem 1.12. i. Self-dual codes are basic.
ii. If C is a basic self-orthogonal [2k, k]-code, then C is self-dual.

Proof. (i) If C⊥ = C, then (C⊥)⊥ = C⊥ = C.
(ii) Suppose that v ∈ C⊥. Since C ⊂ C⊥ and rank C⊥ = 2k − k = k =

rank C, it follows from Lemma 1.3 that αv ∈ C for some α ∈ P. As C is
basic, we have v ∈ C.

2. Codes over Fq[D]/(Dm)

We recall some of the basic facts about the codes over Pm = Fq[D]/(Dm).
Let M be a k × n matrix over Pm. Then by performing operations of
the type

(R1) Permutation of the rows,
(R2) Multiplication of a row by a unit of Pm,
(R3) Addition of a scalar multiple of one row to another,
(C1) Permutation of the columns,
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M can be transformed to the standard form
(5)

M ′ =




Ik0 A01 A02 A03 . . . A0,m−1 A0m

0 DIk1 DA12 DA13 . . . DA1,m−1 DA1m

0 0 D2Ik2 D2A23 . . . D2A2,m−1 D2A2m

· · · · . . . · ·
0 0 0 0 . . . Dm−1Ikm−1 Dm−1Am−1,m

0 0 0 0 . . . 0 0Ikm

· · · · . . . · ·
0 0 0 0 . . . 0 0




where the columns are grouped into square blocks of sizes k0, k1, . . . , km−1,
km and the ki are nonnegative integers adding to n. A matrix with stan-
dard form as in (5) is said to have type

(6) (1)k0(D)k1(D2)k2 · · · (Dm−1)km−10km ,

omitting terms with zero exponents, if any. Often the 0km is left off the
type, but we retain it since we use km later. Any [n, k]-code C over Pm is
equivalent to a code with a generator matrix of the form as above with
no zero rows. Such a code C is said to have type

1k0(D)k1(D2)k2 · · · (Dm−1)km−1 .

We have that k =
∑m−1

i=0 ki, km = n− k and |C| = ∏m−1
j=0 (qm−j)kj . The

dual code C⊥ has type 1km(D)km−1(D2)km−2 · · · (Dm−1)k1 . Since Pm is
finite, (C⊥)⊥ = C and |C||C⊥| = |Pn

m| = qmn.

3. Weight enumerators and invariants

Throughout this section let q = pe. For a code C over Pm = Fq[D]/(Dm)
of length n, define the Hamming weight enumerator

(7) WC(x, y) =
∑
v∈C

xn−wt(v)ywt(v).

Fix an isomorphism ψ between the additive group Fq and Fe
p and de-

fine a map φ : Fq → Fp by φ(a) =
∑e

i=1 ai, where ψ(a) = (a1, a2, . . . , ae).
We now define an additive character χ1 on Pm by

χ1(f) = exp

(
2π
√−1

p

m−1∑
i=0

φ(ai)

)
,
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where f = a0 + a1D + a2D
2 + · · · + am−1D

m−1 ∈ Pm. For any g ∈ Pm,
define χf (g) = χ1(fg).

Theorem 3.1. Pm is a Frobenius ring for every m.

Proof. By the results in [4], it suffices to show that χ1 is a generating
character, i.e., every character of Pm has the form χg for some g ∈
Pm. Since there are exactly |Pm| characters, it is enough to show that
χg = χh implies g = h. Suppose χg(f) = χh(f) for all f ∈ Pm. Then
χ1((g − h)f) = 1 for all f . This means that the additive subgroup
ker χ1 contains the ideal (g − h) of the ring Pm. Now note that either
(g− h) = {0} or (g− h) = (Di0) for some i0 ≥ 0. However, if we choose
any b ∈ Fq such that φ(b) 6= 0, then

χ1(bD
i) = exp

(
2π
√−1

p
φ(b)

)
6= 1

and hence bDi 6∈ ker χ1 for any i ≥ 0. Therefore (g − h) = {0} and the
theorem is proved.

By the results in [4] we have the following corollary.

Corollary 3.2 (MacWilliams relations). Let C be a linear code over
Pm. Then

(8) WC⊥(x, y) =
1

|C|WC(x + (qm − 1)y, x− y).

4. Projections

Define the map Ψm : P → Pm by

(9) Ψm(a0 + a1D + · · ·+ ar−1D
r−1) = a0 + a1D + · · ·+ am−1D

m−1.

The maps is extended coordinatewise to make a map Ψm : Pn → (Pm)n.
We define the similar map Ψm

r : Pr → Pm for r > m by

(10) Ψr
m(a0 + a1D + · · ·+ ar−1D

r−1) = a0 + a1D + · · ·+ am−1D
m−1.

Again this map is applied coordinatewise to make a map Ψr
m : (Pr)

n →
(Pm)n. The following lemma follows from a straightforward computation.

Lemma 4.1. The maps Ψm and Ψr
m are linear.
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Let C be a basic [n, k]-code over P. For every integer m > 0, define a
code Cm over Pm as

Cm = Ψm(C) = {Ψm(v) | v ∈ C}.
Let G be a generator matrix of C and H its parity check matrix. Let

Gm = Ψm(G), Hm = Ψm(H).

For any integer s ≥ 0, we have

(11) Ψm+s
m (Cm+s) = Cm, Ψm+s

m (Gm+s) = Gm, and Ψm+s
m (Hm+s) = Hm.

Theorem 4.2. Let C be a basic [n, k]-code over P. Then we have

i. rank Cm = rank C and each Cm has type 1k for every m. In particular,
|Cm| = qmk.

ii. Gm is a generator matrix of Cm.
iii. Ψm(C⊥) = Ψm(C)⊥ and hence Hm is a parity check matrix of Cm.

Proof. (i) Let G = (gij) and write gij = aij + Dfij, aij ∈ Fq, fij ∈ P.
Then the rows of G1 = (aij) generates C1. We first show that rank C1 =
rank C = k. Suppose to the contrary that rank C1 < rank C = k. By
performing a sequence of operations of types (R1), (R2), (R3) and (C1),
G1 can be transformed into its standard form G′

1 which must have a zero
row. Note that the units of Fq are precisely the units of P. Thus we can
apply the same sequence of operations to G and obtain a matrix of the
form G′ = G′

1 + DF ′. Undo the operations of type (C1), if any, applied
to G in the reverse order. It is clear that the resulting matrix G′′ is again
a generator matrix of C. But now G′′ contains a row which is a multiple
of D. This contradicts Lemma 1.6. Therefore rank C1 = k and C1 has
type 1k. Since Ψm

1 (Gm) = G1 and Ψ1(D
j) = 0, it is now clear that Gm

has rank k and type 1k.
(ii) This follows from (i).
(iii) Let {gi} be the rows of G. Let vm ∈ Ψm(C⊥). Then vm = Ψm(v)

for some v ∈ C⊥, i.e., for some v with [v,gi] = 0 for all i. Thus
[vm, Ψm(gi)] = Ψm([v,gi]) = 0 for all i, and hence vm ∈ Ψm(C)⊥.
Therefore Ψm(C⊥) ⊂ Ψm(C)⊥. By (i), Ψm(C⊥) has type 1n−k since
rank C⊥ = n − k, and Ψm(C)⊥ has type 1n−k since it is dual to Ψm(C)
which has type 1k. Now they have the same type and hence have the
same number of codewords. Thus Ψm(C⊥) = Ψm(C)⊥. Finally, Hm is
a generator matrix of Ψm(C⊥) = Ψm(C)⊥ by (ii). Thus Hm is a parity
check matrix of Cm = Ψm(C).
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Corollary 4.3. If C is self-dual, then Cm is self-dual for every m.

Proof. It follows from Theorem 4.2(iii) that (Cm)⊥ = Ψm(C)⊥ =
Ψm(C⊥) = Ψm(C) = Cm.

Theorem 4.4. Self-dual codes of length n exist over Fq[D] if and only
if self-dual codes of length n exist over Fq.

Proof. If a matrix G over Fq generates a self-dual code over Fq, then
it generates a self-dual code over Fq[D] by Theorem 1.12(ii). Conversely,
if C is a self-dual [n, k]-code over Fq[D], then n = 2k and Ψ1(C) = C1 is
a self-orthogonal [n, k]-code over Fq. The code C1 has type 1k = 1n/2 by
Theorem 4.2, and thus C1 is self-dual.

For a matrix G over P = Fq[D], the projections Ψm(G) of G may be
viewed as matrices over P. The property of being basic is not preserved
by the projections.

Next, we shall show that the minimum distances of projections Cm

are all the same.

Lemma 4.5. Let C be a basic code over P. If vm ∈ Cm then Dsvm ∈
Cm+s for any s ≥ 0.

Proof. Let vm ∈ Cm. If v ∈ C is the codeword with Ψm(v) = vm

then DsΨm+s(v) ∈ Cm+s since Ds is in the ring. Then we notice that
Ψm+s(v) − Ψm(v) is a multiple of Dm and hence DsΨm+s(v) = Dsvm

in Pn
m+s which gives the result.

If vm = (v1, · · · , vn) ∈ Cm, then deg vi ≤ m − 1 for all i, and thus
Dsvm ∈ Cm+s has the same weight as vm ∈ Cm. Therefore, it follows
that for any s ≥ 0

(12) d(Cm+s) ≤ d(Cm).

Lemma 4.6. Let C be a basic code over P. Then we have

{v ∈ Cm+s | Ψm+s
s (v) = 0} = DsCm.

Proof. View Ψm+s
s : Cm+s → Cs as a map from Cm+s to Cs. We

know that Ψm+s
s is linear and that Ψm+s

s (C) = Cs. If vm ∈ Cm then
Dsvm ∈ Cm+s by Lemma 4.5. Since Ψm+s

s (Dsvm) = 0, we have DsCm ⊆
ker(Ψm+s

s ). Furthermore, since Cs has type 1k for any s, we have |Cs| =
(qs)k. Thus we have

| ker(Ψm+s
s )| = |Cm+s|

|Cs| =
q(m+s)k

qsk
= qmk = |Cm| = |DsCm|,
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which gives the result.

Theorem 4.7. Let C be a basic code over P. Then we have

i. d(Cm) = d(C1) for all m.
ii. d(C) ≥ d(Cm).

Proof. (i) We use induction on m, so assume that d(Cm) = d(C1). We
shall prove that d(Cm+1) = d(C1). Taking into account (12), it suffices to
show that d(Cm+1) ≥ d(C1). Suppose, to the contrary, that there exists
some nonzero v ∈ Cm+1 with wt(v) < d(C1). Then wt(Ψm+1

1 (v)) ≤
wt(v) < d(C1), which implies Ψm+1

1 (v) = 0. By Lemma 4.6, we can
find some nonzero vm ∈ Cm such that v = Dvm. Then 0 < wt(vm) =
wt(v) < d(C1) = d(Cm), which is a contradiction.

(ii) If v ∈ C, then Ψm(v) = v for some m.

There exist codes C such that d(C) > d(C1). As an example, take
the [n, 1]-code C generated by the vector (1, D, D, · · · , D) over P of
length n. Clearly G is basic and d(C) = n. On the other hand,
Dm−1(1, D, · · · , D) = (Dm−1, 0, · · · , 0) ∈ Cm has the weight 1, and thus
d(Cm) = 1 for all m.

5. Number of codewords of minimum weight

Lemma 5.1. Let k, n be any positive integers and let M be a k × n
matrix over Pm = Fq[D]/(Dm) whose standard form has type

(1)k0(D)k1(D2)k2 · · · (Dm−1)km−1 .

Then ker M = {v ∈ Pn
m | MvT = 0} has cardinality

(13) | ker M | = (1)k0(q)k1(q2)k2 · · · (qm−1)km−1(qm)km .

Proof. We may assume that M is in standard form as in (5). Then
v = (v0,v1, . . . ,vm) ∈ Pn

m, where vi ∈ Pki
m, is in ker M iff

Ik0v
T
0 + A01v

T
1 + · · ·+ A0,m−1v

T
m−1 + A0mvT

m ≡ 0 (mod Dm)(14)

Ik1v
T
1 + · · ·+ A1,m−1v

T
m−1 + A1mvT

m ≡ 0 (mod Dm−1)(15)

...

Ikm−2v
T
m−2 + Am−2,m−1v

T
m−1 + Am−2,mvT

m ≡ 0 (mod D2)(16)

Ikm−1v
T
m−1 + Am−1,mvT

m ≡ 0 (mod D).(17)
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From these equations, we can see that vm ∈ Pkm
m can be set to be an

arbitrary vector, and then (17) determines vm−1 (mod D) in a unique
way, and then (16) determines vm−2 (mod D2) in a unique way, and so
on. Therefore,

| ker M | = (qm)km × (qm−1)km−1 × · · · × (q1)k1 × (q0)k0 ,

which gives the result.

Let C be a basic [n, k, d∞] code over P. Fix a parity check matrix H of
the code C over P. We now introduce some notations. If S = {i1, · · · , is}
is a subset of {1, 2, · · · , n} and v is a vector of length n, then vS denotes
the vector of length s obtained from v by puncturing components outside
S. For a given S as above and a vector y = (y1, · · · , ys) of length s, yS

denotes the vector of length n obtained by adjoining 0’s outside S, i.e.,
yS = (x1, x2, · · · , xn) where xi = 0 if i /∈ S, and xij = yj if ij ∈ S.
For a matrix M = (mi), where mi denotes the i-th column of M , let
M [S] = (mi)i∈S be the matrix whose columns are the i-th columns of
M for i ∈ S.

Let d be the minimum distance of C1. For each subset S ⊂ {1, 2, · · · , n}
of d elements, let Hm[S]′ denote the standard form of Hm[S]. Since
Ψr

m(P∗r) = P∗m for r > m, we have that

(18) Ψr
m(Hr[S]′) = Hm[S]′

for all r > m. Since any d − 1 columns of H1 are independent over
Fq, any matrix consisting of d − 1 columns of Hm has type 1d−1. Thus
Hm[S] will have type 1d−1(0)1 or 1d−1(Dj)1 for some j ≥ 0. We divide
the subsets S into two classes:

(I) For any m, Hm[S] has type 1d−101.
(II) For some m = m(S), Hm[S] has type 1d−1(Dj)1 for some 0 ≤ j < m.

If S is of class (II) so that Hm[S] has type 1d−1(Dj)1, then Hr[S] has
the same type 1d−1(Dj)1 for all r > j, while Hr[S] has type 1d−101 for
all r ≤ j .

Theorem 5.2. Hm[S] has type 1d−101 for all m iff d × d minors of
H[S] are all zero.

Proof. Suppose S is of class (I). Then the d×d minors of Hm[S] are all
zero, since the property that determinant being zero is invariant under
the operations (R1), (R2), (R3) and (C1). The minors of Hm[S] are
images of minors of H[S] under Ψm. For any matrix M with entries in
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P, det M ≡ 0 (mod Dm) for all m implies that det M = 0. Thus all
d× d minors of H[S] are zero. The converse is clear.

Let

(19) µ−∞ = |{S | S is of class (I)}|.
Let N be the maximum of m(S)’s for S of class (II) and then let for
j ≥ 0

(20) µj = |{S | HN [S] has type 1d−1(Dj)1}|
Theorem 5.3. The number Am,d of codewords of weight d in Cm is

given as follows.

(21) Am,d =

(
µ−∞ +

∑
j≥m

µj

)
(qm − 1) +

m−1∑
j=1

µj(q
j − 1).

Proof. Let D be the set of all codewords of weight d in Cm, and

ES = {yS | 0 6= y ∈ ker Hm[S]}
for the subsets S of d elements. Here ker Hm[S] = {v ∈ (Pm)|S| |
Hm[S]vT = 0}. Clearly (vS)S = v for any codeword v, where S =
supp(v). Thus D is a subset of ∪SES. Since wt(yS) = wt(y) and d is
the minimum distance of Cm, we have wt(y) = wt(yS) = d whenever 0 6=
y ∈ ker(He[S]). Thus D = ∪SES. Furthermore, if wt(y1) = wt(y2) = d,
then it is clear that yS1

1 = yS2
2 iff y1 = y2 and S1 = S2. Therefore ∪SES

is a disjoint union and |ES| = | ker Hm[S]|.
If S is of class (II) and HN [S] has type 1d−1(Dj)1 with 1 ≤ j ≤ m− 1

then | ker Hm[S]| = qj by Lemma 5.1. On the other hand, and if S is of
class (I) or if S is of class (II) such that HN [S] has type 1d−1(Dj)1 with
j ≥ m, then Hm[S] has type 1d−101 and | ker Hm[S]| = qm. Finally, if S
is of class (II) such that HN [S] has type 1d, then Hm[S] has type 1d and
| ker Hm[S]| = 1. The theorem is proved.

Corollary 5.4. For m > N , Am,d = aqm + b, where a, b are inde-
pendent of m. In other words, Am,d is a linear polynomial in Q = qm,
independent of m.

Proof. Simply let a = µ−∞, and b =
∑N

j=1 µj(q
j − 1)− µ−∞.
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It is easy to check that

(22) Am+1,d − Am,d = (qm+1 − qm)

(
µ−∞ +

∑
j≥m+1

µj

)
.

From this equation, we obtain the following corollaries.

Corollary 5.5. If Am,d = Am+1,d for some m, then Am+s,d = Am,d

for all s ≥ 0.

Corollary 5.6. Suppose µ−∞ = 0. Then Am,d = AN,d for all m ≥
N . In particular, every codeword of weight d in Cm has the form Dm−Nv0

for some codeword v0 of weight d in CN .

Similar results and examples for the p-adic codes can be found in [1].
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