CODES OVER POLYNOMIAL RINGS AND THEIR PROJECTIONS

Young Ho Park

Abstract

We study codes over the polynomial ring $\mathbb{F}_{q}[D]$ and their projections to the finite rings $\mathbb{F}_{q}[D] /\left(D^{m}\right)$ and the weight enumerators of self-dual codes over these rings. We also give the formula for the number of codewords of minimum weight in the projections.

1. Codes over polynomial rings

A code of length n over a ring R (finite or infinite) is a subset of R^{n}. If the code is a R-submodule of R^{n} then it is a linear code. We will always assume that codes are linear. The Hamming weight $\mathrm{wt}(\mathbf{v})$ of a vector \mathbf{v} is the number of non-zero coordinates. The minimum distance of a code \mathcal{C}, denoted by $d(\mathcal{C})$, is the smallest of all non-zero weights in the code. To the ambient space R^{n} we attach the inner product

$$
\begin{equation*}
[\mathbf{v}, \mathbf{w}]=\sum v_{i} w_{i} \tag{1}
\end{equation*}
$$

where $\mathbf{v}=\left(v_{i}\right), \mathbf{w}=\left(w_{i}\right)$. We define the dual code of \mathcal{C} to be

$$
\begin{equation*}
\mathcal{C}^{\perp}=\{\mathbf{v} \mid[\mathbf{v}, \mathbf{w}]=0 \text { for all } \mathbf{w} \in \mathcal{C}\} . \tag{2}
\end{equation*}
$$

A code \mathcal{C} satisfying $\mathcal{C}=\mathcal{C}^{\perp}$ is called a self-dual code.
Let \mathbb{F}_{q} be the field of q elements, and throughout this paper let

$$
\mathrm{P}=\mathbb{F}_{q}[D]
$$

denote the infinite ring of polynomials in one indeterminate D over \mathbb{F}_{q}. The elements of the finite ring

$$
\mathrm{P}_{m}=\mathbb{F}_{q}[D] /\left(D^{m}\right)
$$

Received September 12, 2008. Revised October 14, 2008.
2000 Mathematics Subject Classification: 94B10, 94B05.
Key words and phrases: self-dual codes, weight enumerators.
are identified with polynomials $a_{0}+a_{1} D+a_{2} D^{2}+\cdots+a_{m-1} D^{m-1}$ of degree less than m. This ring is a commutative ring with q^{m} elements. We sometimes view P_{m} as a subset of P_{r} for $r>m$, and of P by assuming all coefficients of D^{i} are 0 for $i>m$. The units of P are precisely the non-zero elements of degree 0 , i.e., $\mathrm{P}^{*}=\mathbb{F}_{q}-\{0\}$, while the units of P_{m} are polynomials with a nonzero constant term.

Since P is a principal ideal domain, any code \mathcal{C} of length n over P is a free module of rank $k \leq n$. In this case, we shall write $\operatorname{rank} \mathcal{C}=k$. If $\mathcal{C}_{1} \subset \mathcal{C}_{2}$ are codes over P , then $\operatorname{rank} \mathcal{C}_{1} \leq \operatorname{rank} \mathcal{C}_{2}$. A code \mathcal{C} of length n and rank k is said to be an $[n, k]$-code, or $[n, k, d]$-code if the minimum distance of \mathcal{C} is d. A $k \times n$ matrix whose rows form a basis of $[n, k]$-code \mathcal{C} is called a generator matrix of \mathcal{C}. A generator matrix of \mathcal{C}^{\perp} is called a parity check matrix of \mathcal{C}.

Lemma 1.1. For a code \mathcal{C} over P of length n, we have

$$
\operatorname{rank} \mathcal{C}^{\perp}+\operatorname{rank} \mathcal{C}=n
$$

From the lemma, we obtain

$$
\begin{equation*}
\operatorname{rank} \mathcal{C}=\operatorname{rank}\left(\mathcal{C}^{\perp}\right)^{\perp} . \tag{3}
\end{equation*}
$$

Furthermore, if \mathcal{C} is a self-dual $[n, k]$-code over P , then $n=2 k$.
For codes \mathcal{C} over an infinite ring $\mathbb{F}_{q}[D]$, we do not always have $\left(\mathcal{C}^{\perp}\right)^{\perp}=$ \mathcal{C}. For example, let $\mathcal{C}=\left(D^{m}\right)$ be the code of length 1 generated by D^{m}. Then $\mathcal{C}^{\perp}=\{0\}$ and $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathrm{P}$, which is much larger than $\mathcal{C}=\left(D^{m}\right)$. Nevertheless, it is always true that

$$
\begin{equation*}
\mathcal{C} \subset\left(\mathcal{C}^{\perp}\right)^{\perp} \tag{4}
\end{equation*}
$$

Definition 1.2. A code \mathcal{C} over P is said to be basic if $\mathcal{C}=\left(\mathcal{C}^{\perp}\right)^{\perp}$.
Lemma 1.3. Let $\mathcal{C}_{1} \subset \mathcal{C}_{2}$ be codes over P of the same rank. If $\mathbf{v} \in \mathcal{C}_{2}$, then $\alpha \mathbf{v} \in \mathcal{C}_{1}$ for some nonzero $\alpha \in \mathrm{P}$.

Proof. Let $\operatorname{rank} \mathcal{C}_{1}=k$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}\right\}$ be a basis for \mathcal{C}_{1}. Since $\operatorname{rank} \mathcal{C}_{2} \geq \operatorname{rank}\left\langle\mathcal{C}_{1}, \mathbf{v}\right\rangle \geq \operatorname{rank} \mathcal{C}_{1}=\operatorname{rank} \mathcal{C}_{2}$,
we have $\operatorname{rank}\left\langle\mathcal{C}_{1}, \mathbf{v}\right\rangle=k$. Thus the $k+1$ vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}$ and \mathbf{v} are linearly dependent over P. Hence there is a dependence relation $\alpha_{1} \mathbf{w}_{1}+\cdots+\alpha_{k} \mathbf{w}_{k}+\alpha \mathbf{v}=0$, and thus $\alpha \mathbf{v} \in \mathcal{C}_{1}$. Finally, $\alpha \neq 0$ since if $\alpha=0$ then $\alpha_{i}=0$ for all i.

Theorem 1.4. The following conditions are equivalent for a code \mathcal{C} over P .
i. \mathcal{C} is basic.
ii. $\alpha \mathbf{v} \in \mathcal{C}$ implies $\mathbf{v} \in \mathcal{C}$ for any nonzero $\alpha \in \mathrm{P}$.

Proof. Suppose \mathcal{C} is basic. If $\alpha \mathbf{v} \in \mathcal{C}$, then $[\alpha \mathbf{v}, \mathbf{w}]=0$ for all $\mathbf{w} \in \mathcal{C}^{\perp}$, which implies $[\mathbf{v}, \mathbf{w}]=0$ for all $\mathbf{w} \in \mathcal{C}^{\perp}$ since P is an integral domain, and thus $\mathbf{v} \in\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$. The converse follows from the previous lemma, (3) and (4).

Remark. Theorem 1.4 is true for any code of finite rank over a principal ideal domain.

Corollary 1.5. A code \mathcal{C} over P is basic if and only if \mathcal{C} is a dual code of some code over P.

Proof. If $\mathcal{C}=\mathcal{C}_{1}^{\perp}$ and $\alpha \mathbf{v} \in \mathcal{C}$, then $\mathbf{0}=[\alpha \mathbf{v}, \mathbf{w}]=\alpha[\mathbf{v}, \mathbf{w}]$ for all $\mathbf{w} \in$ \mathcal{C}_{1} and hence $[\mathbf{v}, \mathbf{w}]=\mathbf{0}$ for all $\mathbf{w} \in \mathcal{C}_{1}$, which implies that $\mathbf{v} \in \mathcal{C}_{1}^{\perp}=\mathcal{C}$. The converse is clear.

This corollary provides us a way of constructing basic codes. Indeed, the basic codes of length n are exactly the codes defined by an $s \times n$ matrix H_{0} as

$$
\mathcal{C}\left(H_{0}\right)=\left\{\mathbf{v} \in \mathrm{P}^{n} \mid H_{0} \mathbf{v}^{T}=0\right\},
$$

i.e., the solutions sets to a family of linear equations. $\mathcal{C}\left(H_{0}\right)$ is then basic, since it is dual to the code generated by the rows of H_{0}. Note that H_{0} is not necessarily a parity check matrix of $\mathcal{C}\left(H_{0}\right)$ even if the row vectors of H_{0} are linearly independent.

We shall present another way of describing basic codes in terms of their generator matrices. For a vector $\mathbf{u}=\left(u_{1}, \ldots, u_{r}\right) \in \mathrm{P}^{r}$, we denote

$$
c(\mathbf{u})=\operatorname{gcd}\left\{u_{1}, \cdots, u_{r}\right\}
$$

It is clear that $c(\alpha \mathbf{u})=\alpha c(\mathbf{u})$ for any $\alpha \in \mathrm{P}$, and $c(\mathbf{u}) \mid c(\mathbf{u} G)$ for any $r \times s$ matrix G over P , since the components of $\mathbf{u} G$ are linear combinations of the components of \mathbf{u}. In addition, we can write $\mathbf{u}=$ $c(\mathbf{u}) \mathbf{u}_{0}$, with $c\left(\mathbf{u}_{0}\right)=1$.

Lemma 1.6. Let $\left\{\mathbf{g}_{i}\right\}$ be the rows of the generator matrix G of a basic code \mathcal{C}. Then $c\left(\mathbf{g}_{i}\right)=1$ for all i.

Proof. Suppose $\mathbf{g}_{i_{0}}=\beta \mathbf{f}$ for some $\beta \in \mathrm{P}=\mathbb{F}_{q}[D]$. Since \mathcal{C} is basic, we have $\mathbf{f} \in \mathcal{C}$. Write $\mathbf{f}=\sum_{i=1}^{k} \alpha_{i} \mathbf{g}_{i}$. We then have

$$
\beta \alpha_{1} \mathbf{g}_{1}+\cdots+\left(\beta \alpha_{i_{0}}-1\right) \mathbf{g}_{i_{0}}+\cdots+\beta \alpha_{k} \mathbf{g}_{k}=0
$$

which implies that $\beta \alpha_{i_{0}}-1=0$. Thus $\beta \in \mathbb{F}_{q}^{*}$ and hence $c\left(\mathbf{g}_{i_{0}}\right)=1$.

The converse of the above lemma is not true. For example, let \mathcal{C} be the code with generator matrix $G=\left(\begin{array}{cc}1 & D \\ D & 1\end{array}\right)$. So $c(1, D)=c(D, 1)=1$. But $G^{\prime}=\left(\begin{array}{cc}1 & D \\ D+1 & 1+D\end{array}\right)$ is also a generator matrix with $c(D+1, D+1)=$ $D+1 \neq 1$. Thus \mathcal{C} is not basic. In fact, since $\operatorname{rank} \mathcal{C}=2$, we have $\mathcal{C}^{\perp}=\{0\}$ and $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathrm{P}^{2} \neq \mathcal{C}$.

Theorem 1.7. Let G be a generator matrix of an $[n, k]$-code \mathcal{C} over P . Then \mathcal{C} is basic if and only if one of the following is satisfied.
i. $c(\mathbf{u})=1 \Rightarrow c(\mathbf{u} G)=1$ for all $\mathbf{u} \in \mathrm{P}^{k}$.
ii. $c(\mathbf{u})=c(\mathbf{u} G)$ for all $\mathbf{u} \in \mathbf{P}^{k}$.

Proof. (basic) \Longleftrightarrow (i). First note that $\mathbf{u} G \in \mathcal{C}$ for all \mathbf{u}, and if $\mathbf{u}_{1} G=\mathbf{u}_{2} G$ then $\mathbf{u}_{1}=\mathbf{u}_{2}$. Assume that \mathcal{C} is basic and $c(\mathbf{u})=1$. Let $\mathbf{u} G=\alpha \mathbf{v}$ for some $\alpha \in \mathrm{P}$. Since \mathcal{C} is basic, we have $\mathbf{v} \in \mathcal{C}$ so that $\mathbf{v}=\mathbf{w} G$ for some \mathbf{w}. Thus $\mathbf{u} G=\alpha \mathbf{v}=\alpha \mathbf{w} G$, which implies $\mathbf{u}=\alpha \mathbf{w}$. Since $c(\mathbf{u})=1$, we have $\alpha \in \mathbb{F}_{q}$ and hence $c(\mathbf{u} G)=1$. Conversely, suppose $\alpha \mathbf{v} \in \mathcal{C}$. There exists some \mathbf{u} such that $\alpha \mathbf{v}=\mathbf{u} G$. Write $\mathbf{u}=c(\mathbf{u}) \mathbf{u}_{0}$ with $c\left(\mathbf{u}_{0}\right)=1$. Since $c\left(\mathbf{u}_{0} G\right)=1$ by (i) and $\alpha \mathbf{v}=c(\mathbf{u}) \mathbf{u}_{0} G$, we have $c(\alpha \mathbf{v})=c(\mathbf{u})$. Hence $\alpha \mathbf{v}=c(\mathbf{u}) \mathbf{u}_{0} G=c(\alpha \mathbf{v}) \mathbf{u}_{0} G=\alpha c(\mathbf{v}) \mathbf{u}_{0} G$. Consequently, $\mathbf{v}=c(\mathbf{v}) \mathbf{u}_{0} G \in \mathcal{C}$.
(i) \Longleftrightarrow (ii). Write $\mathbf{u}=c(\mathbf{u}) \mathbf{u}_{0}$ with $c\left(\mathbf{u}_{0}\right)=1$. Then $c(\mathbf{u} G)=$ $c(\mathbf{u}) c\left(\mathbf{u}_{0} G\right)$. Thus the proof follows from the fact that $c\left(\mathbf{u}_{0} G\right)=1$ iff $c(\mathbf{u})=c(\mathbf{u} G)$.

We now recall the definitions and facts about basic matrices over P .
Definition 1.8. A $k \times n$ matrix G over P is said to be basic if G has a (polynomial) right inverse, that is, if there exists an $n \times k$ matrix M over P such that $G M=I_{k}$.

There are other characterizations of basic matrices as follows [2].
Theorem 1.9. A $k \times n$ matrix $G=G(D)$ over $\mathbb{F}_{q}[D]$ is basic iff one of the following conditions is satisfied.
i. The invariant factors of G are all 1 .
ii. The gcd of the $k \times k$ minors of G is 1 .
iii. $G(\alpha)$ has rank k for any α in the algebraic closure of \mathbb{F}_{q}.
iv. If $\mathbf{u} G \in \mathbb{F}_{q}[D]^{n}$ for $\mathbf{u} \in \mathbb{F}_{q}(D)^{k}$, then $\mathbf{u} \in \mathbb{F}_{q}[D]^{k}$.
v. There exists an $(n-k) \times n$ matrix L such that $\operatorname{det}\binom{G}{L}$ is a nonzero element of \mathbb{F}_{q}.

It turns out that basic codes are exactly those generated by basic matrices.

Theorem 1.10. Let G be a generator matrix of a code \mathcal{C} over P . Then \mathcal{C} is basic if and only if G is basic.

Proof. Assume that the $k \times n$ matrix G generates a basic code. Suppose $\mathbf{u} G \in \mathrm{P}^{n}$ for $\mathbf{u} \in \mathbb{F}_{q}(x)^{k}$. There exists $\alpha \in \mathrm{P}$ such that $\mathbf{v}=\alpha \mathbf{u} \in \mathrm{P}^{k}$. Write $\mathbf{v}=c(\mathbf{v}) \mathbf{v}_{0}$ for some $\mathbf{v}_{0} \in \mathrm{P}^{k}$. Now Theorem 1.7 implies

$$
\alpha c(\mathbf{u} G)=c(\alpha \mathbf{u} G)=c(\mathbf{v} G)=c(\mathbf{v})
$$

Thus $\alpha \mid c(\mathbf{v})$ and then $\mathbf{u}=\frac{1}{\alpha} \mathbf{v}=\frac{c(\mathbf{v})}{\alpha} \mathbf{v}_{0} \in \mathrm{P}^{k}$. Therefore, G is basic by Theorem 1.9(iv). Conversely, suppose that G is basic so that there is a matrix M such that $G M=I_{k}$. Let $\alpha \mathbf{v} \in \mathcal{C}$. Then $\alpha \mathbf{v}=\mathbf{u} G$ for some \mathbf{u}, and $\alpha \mathbf{v} M=\mathbf{u} G M=\mathbf{u}$. Thus $\alpha \mathbf{v}=\mathbf{u} G=(\alpha \mathbf{v} M) G=\alpha(\mathbf{v} M G)$, which implies that $\mathbf{v}=(\mathbf{v} M) G \in \mathcal{C}$.

Corollary 1.11. If \mathcal{C}_{1} is basic and \mathcal{C}_{2} is equivalent to \mathcal{C}_{1}, then \mathcal{C}_{2} is also basic.

Proof. Let G_{i} be generator matrices for \mathcal{C}_{i}. The theorem follows from Theorem 1.9(ii) and the fact that the minors for G_{1} and G_{2} are the same up to ± 1.

Theorem 1.12. i. Self-dual codes are basic.
ii. If \mathcal{C} is a basic self-orthogonal $[2 k, k]$-code, then \mathcal{C} is self-dual.

Proof. (i) If $\mathcal{C}^{\perp}=\mathcal{C}$, then $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}^{\perp}=\mathcal{C}$.
(ii) Suppose that $\mathbf{v} \in \mathcal{C}^{\perp}$. Since $\mathcal{C} \subset \mathcal{C}^{\perp}$ and $\operatorname{rank} \mathcal{C}^{\perp}=2 k-k=k=$ $\operatorname{rank} \mathcal{C}$, it follows from Lemma 1.3 that $\alpha \mathbf{v} \in \mathcal{C}$ for some $\alpha \in \mathrm{P}$. As \mathcal{C} is basic, we have $\mathbf{v} \in \mathcal{C}$.

2. Codes over $\mathbb{F}_{q}[D] /\left(D^{m}\right)$

We recall some of the basic facts about the codes over $\mathrm{P}_{m}=\mathbb{F}_{q}[D] /\left(D^{m}\right)$. Let M be a $k \times n$ matrix over P_{m}. Then by performing operations of the type
(R1) Permutation of the rows,
(R2) Multiplication of a row by a unit of P_{m},
(R3) Addition of a scalar multiple of one row to another,
(C1) Permutation of the columns,
M can be transformed to the standard form
(5)

$$
M^{\prime}=\left[\begin{array}{ccccccc}
I_{k_{0}} & A_{01} & A_{02} & A_{03} & \ldots & A_{0, m-1} & A_{0 m} \\
0 & D I_{k_{1}} & D A_{12} & D A_{13} & \ldots & D A_{1, m-1} & D A_{1 m} \\
0 & 0 & D^{2} I_{k_{2}} & D^{2} A_{23} & \ldots & D^{2} A_{2, m-1} & D^{2} A_{2 m} \\
. & . & . & . & \ldots & \cdot \\
0 & 0 & 0 & 0 & \ldots & D^{m-1} I_{k_{m-1}} & D^{m-1} A_{m-1, m} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 I_{k_{m}} \\
. & . & . & . & \ldots & . & . \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

where the columns are grouped into square blocks of sizes $k_{0}, k_{1}, \ldots, k_{m-1}$, k_{m} and the k_{i} are nonnegative integers adding to n. A matrix with standard form as in (5) is said to have type

$$
\begin{equation*}
(1)^{k_{0}}(D)^{k_{1}}\left(D^{2}\right)^{k_{2}} \cdots\left(D^{m-1}\right)^{k_{m-1}} 0^{k_{m}} \tag{6}
\end{equation*}
$$

omitting terms with zero exponents, if any. Often the $0^{k_{m}}$ is left off the type, but we retain it since we use k_{m} later. Any $[n, k]$-code C over P_{m} is equivalent to a code with a generator matrix of the form as above with no zero rows. Such a code C is said to have type

$$
1^{k_{0}}(D)^{k_{1}}\left(D^{2}\right)^{k_{2}} \cdots\left(D^{m-1}\right)^{k_{m-1}}
$$

We have that $k=\sum_{i=0}^{m-1} k_{i}, k_{m}=n-k$ and $|C|=\prod_{j=0}^{m-1}\left(q^{m-j}\right)^{k_{j}}$. The dual code C^{\perp} has type $1^{k_{m}}(D)^{k_{m-1}}\left(D^{2}\right)^{k_{m-2}} \cdots\left(D^{m-1}\right)^{k_{1}}$. Since P_{m} is finite, $\left(C^{\perp}\right)^{\perp}=C$ and $|C|\left|C^{\perp}\right|=\left|\mathrm{P}_{m}^{n}\right|=q^{m n}$.

3. Weight enumerators and invariants

Throughout this section let $q=p^{e}$. For a code C over $\mathrm{P}_{m}=\mathbb{F}_{q}[D] /\left(D^{m}\right)$ of length n, define the Hamming weight enumerator

$$
\begin{equation*}
W_{C}(x, y)=\sum_{\mathbf{v} \in C} x^{n-w t(\mathbf{v})} y^{w t(\mathbf{v})} . \tag{7}
\end{equation*}
$$

Fix an isomorphism ψ between the additive group \mathbb{F}_{q} and \mathbb{F}_{p}^{e} and define a map $\phi: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ by $\phi(a)=\sum_{i=1}^{e} a_{i}$, where $\psi(a)=\left(a_{1}, a_{2}, \ldots, a_{e}\right)$. We now define an additive character χ_{1} on P_{m} by

$$
\chi_{1}(f)=\exp \left(\frac{2 \pi \sqrt{-1}}{p} \sum_{i=0}^{m-1} \phi\left(a_{i}\right)\right)
$$

where $f=a_{0}+a_{1} D+a_{2} D^{2}+\cdots+a_{m-1} D^{m-1} \in \mathrm{P}_{m}$. For any $g \in \mathrm{P}_{m}$, define $\chi_{f}(g)=\chi_{1}(f g)$.

Theorem 3.1. P_{m} is a Frobenius ring for every m.
Proof. By the results in [4], it suffices to show that χ_{1} is a generating character, i.e., every character of P_{m} has the form χ_{g} for some $g \in$ P_{m}. Since there are exactly $\left|\mathrm{P}_{m}\right|$ characters, it is enough to show that $\chi_{g}=\chi_{h}$ implies $g=h$. Suppose $\chi_{g}(f)=\chi_{h}(f)$ for all $f \in \mathrm{P}_{m}$. Then $\chi_{1}((g-h) f)=1$ for all f. This means that the additive subgroup ker χ_{1} contains the ideal $(g-h)$ of the ring P_{m}. Now note that either $(g-h)=\{0\}$ or $(g-h)=\left(D^{i_{0}}\right)$ for some $i_{0} \geq 0$. However, if we choose any $b \in \mathbb{F}_{q}$ such that $\phi(b) \neq 0$, then

$$
\chi_{1}\left(b D^{i}\right)=\exp \left(\frac{2 \pi \sqrt{-1}}{p} \phi(b)\right) \neq 1
$$

and hence $b D^{i} \notin \operatorname{ker} \chi_{1}$ for any $i \geq 0$. Therefore $(g-h)=\{0\}$ and the theorem is proved.

By the results in [4] we have the following corollary.
Corollary 3.2 (MacWilliams relations). Let C be a linear code over P_{m}. Then

$$
\begin{equation*}
W_{C^{\perp}}(x, y)=\frac{1}{|C|} W_{C}\left(x+\left(q^{m}-1\right) y, x-y\right) . \tag{8}
\end{equation*}
$$

4. Projections

Define the map $\Psi_{m}: \mathrm{P} \rightarrow \mathrm{P}_{m}$ by

$$
\begin{equation*}
\Psi_{m}\left(a_{0}+a_{1} D+\cdots+a_{r-1} D^{r-1}\right)=a_{0}+a_{1} D+\cdots+a_{m-1} D^{m-1} \tag{9}
\end{equation*}
$$

The maps is extended coordinatewise to make a map $\Psi_{m}: \mathrm{P}^{n} \rightarrow\left(\mathrm{P}_{m}\right)^{n}$.
We define the similar map $\Psi_{r}^{m}: \mathrm{P}_{r} \rightarrow \mathrm{P}_{m}$ for $r>m$ by

$$
\begin{equation*}
\Psi_{m}^{r}\left(a_{0}+a_{1} D+\cdots+a_{r-1} D^{r-1}\right)=a_{0}+a_{1} D+\cdots+a_{m-1} D^{m-1} \tag{10}
\end{equation*}
$$

Again this map is applied coordinatewise to make a map $\Psi_{m}^{r}:\left(\mathrm{P}_{r}\right)^{n} \rightarrow$ $\left(\mathrm{P}_{m}\right)^{n}$. The following lemma follows from a straightforward computation.

Lemma 4.1. The maps Ψ_{m} and Ψ_{m}^{r} are linear.

Let \mathcal{C} be a basic $[n, k]$-code over P . For every integer $m>0$, define a code \mathcal{C}_{m} over P_{m} as

$$
\mathcal{C}_{m}=\Psi_{m}(\mathcal{C})=\left\{\Psi_{m}(\mathbf{v}) \mid \mathbf{v} \in \mathcal{C}\right\} .
$$

Let G be a generator matrix of \mathcal{C} and H its parity check matrix. Let

$$
G_{m}=\Psi_{m}(G), H_{m}=\Psi_{m}(H)
$$

For any integer $s \geq 0$, we have

$$
\begin{equation*}
\Psi_{m}^{m+s}\left(\mathcal{C}_{m+s}\right)=\mathcal{C}_{m}, \Psi_{m}^{m+s}\left(G_{m+s}\right)=G_{m}, \text { and } \Psi_{m}^{m+s}\left(H_{m+s}\right)=H_{m} . \tag{11}
\end{equation*}
$$

Theorem 4.2. Let \mathcal{C} be a basic $[n, k]$-code over P . Then we have
i. $\operatorname{rank} \mathcal{C}_{m}=\operatorname{rank} \mathcal{C}$ and each \mathcal{C}_{m} has type 1^{k} for every m. In particular, $\left|\mathcal{C}_{m}\right|=q^{m k}$.
ii. G_{m} is a generator matrix of \mathcal{C}_{m}.
iii. $\Psi_{m}\left(\mathcal{C}^{\perp}\right)=\Psi_{m}(\mathcal{C})^{\perp}$ and hence H_{m} is a parity check matrix of \mathcal{C}_{m}.

Proof. (i) Let $G=\left(g_{i j}\right)$ and write $g_{i j}=a_{i j}+D f_{i j}, a_{i j} \in \mathbb{F}_{q}, f_{i j} \in \mathrm{P}$. Then the rows of $G_{1}=\left(a_{i j}\right)$ generates \mathcal{C}_{1}. We first show that rank $\mathcal{C}_{1}=$ $\operatorname{rank} \mathcal{C}=k$. Suppose to the contrary that $\operatorname{rank} \mathcal{C}_{1}<\operatorname{rank} \mathcal{C}=k$. By performing a sequence of operations of types (R1), (R2), (R3) and (C1), G_{1} can be transformed into its standard form G_{1}^{\prime} which must have a zero row. Note that the units of \mathbb{F}_{q} are precisely the units of P . Thus we can apply the same sequence of operations to G and obtain a matrix of the form $G^{\prime}=G_{1}^{\prime}+D F^{\prime}$. Undo the operations of type (C1), if any, applied to G in the reverse order. It is clear that the resulting matrix $G^{\prime \prime}$ is again a generator matrix of C. But now $G^{\prime \prime}$ contains a row which is a multiple of D. This contradicts Lemma 1.6. Therefore $\operatorname{rank} \mathcal{C}_{1}=k$ and \mathcal{C}_{1} has type 1^{k}. Since $\Psi_{1}^{m}\left(G_{m}\right)=G_{1}$ and $\Psi_{1}\left(D^{j}\right)=0$, it is now clear that G_{m} has rank k and type 1^{k}.
(ii) This follows from (i).
(iii) Let $\left\{\mathbf{g}_{i}\right\}$ be the rows of G. Let $\mathbf{v}_{m} \in \Psi_{m}\left(\mathcal{C}^{\perp}\right)$. Then $\mathbf{v}_{m}=\Psi_{m}(\mathbf{v})$ for some $\mathbf{v} \in \mathcal{C}^{\perp}$, i.e., for some \mathbf{v} with $\left[\mathbf{v}, \mathbf{g}_{i}\right]=0$ for all i. Thus $\left[\mathbf{v}_{m}, \Psi_{m}\left(\mathbf{g}_{i}\right)\right]=\Psi_{m}\left(\left[\mathbf{v}, \mathbf{g}_{i}\right]\right)=0$ for all i, and hence $\mathbf{v}_{m} \in \Psi_{m}(\mathcal{C})^{\perp}$. Therefore $\Psi_{m}\left(\mathcal{C}^{\perp}\right) \subset \Psi_{m}(\mathcal{C})^{\perp}$. By (i), $\Psi_{m}\left(\mathcal{C}^{\perp}\right)$ has type 1^{n-k} since $\operatorname{rank} \mathcal{C}^{\perp}=n-k$, and $\Psi_{m}(\mathcal{C})^{\perp}$ has type 1^{n-k} since it is dual to $\Psi_{m}(\mathcal{C})$ which has type 1^{k}. Now they have the same type and hence have the same number of codewords. Thus $\Psi_{m}\left(\mathcal{C}^{\perp}\right)=\Psi_{m}(\mathcal{C})^{\perp}$. Finally, H_{m} is a generator matrix of $\Psi_{m}\left(\mathcal{C}^{\perp}\right)=\Psi_{m}(\mathcal{C})^{\perp}$ by (ii). Thus H_{m} is a parity check matrix of $\mathcal{C}_{m}=\Psi_{m}(\mathcal{C})$.

Corollary 4.3. If \mathcal{C} is self-dual, then \mathcal{C}_{m} is self-dual for every m.
Proof. It follows from Theorem $4.2($ iii $)$ that $\left(\mathcal{C}_{m}\right)^{\perp}=\Psi_{m}(\mathcal{C})^{\perp}=$ $\Psi_{m}\left(\mathcal{C}^{\perp}\right)=\Psi_{m}(\mathcal{C})=\mathcal{C}_{m}$.

Theorem 4.4. Self-dual codes of length n exist over $\mathbb{F}_{q}[D]$ if and only if self-dual codes of length n exist over \mathbb{F}_{q}.

Proof. If a matrix G over \mathbb{F}_{q} generates a self-dual code over \mathbb{F}_{q}, then it generates a self-dual code over $\mathbb{F}_{q}[D]$ by Theorem 1.12(ii). Conversely, if \mathcal{C} is a self-dual $[n, k]$-code over $\mathbb{F}_{q}[D]$, then $n=2 k$ and $\Psi_{1}(\mathcal{C})=\mathcal{C}_{1}$ is a self-orthogonal $[n, k]$-code over \mathbb{F}_{q}. The code \mathcal{C}_{1} has type $1^{k}=1^{n / 2}$ by Theorem 4.2, and thus \mathcal{C}_{1} is self-dual.

For a matrix G over $\mathrm{P}=\mathbb{F}_{q}[D]$, the projections $\Psi_{m}(G)$ of G may be viewed as matrices over P. The property of being basic is not preserved by the projections.

Next, we shall show that the minimum distances of projections \mathcal{C}_{m} are all the same.

Lemma 4.5. Let \mathcal{C} be a basic code over P . If $\mathbf{v}_{m} \in \mathcal{C}_{m}$ then $D^{s} \mathbf{v}_{m} \in$ \mathcal{C}_{m+s} for any $s \geq 0$.

Proof. Let $\mathbf{v}_{m} \in \mathcal{C}_{m}$. If $\mathbf{v} \in \mathcal{C}$ is the codeword with $\Psi_{m}(\mathbf{v})=\mathbf{v}_{m}$ then $D^{s} \Psi_{m+s}(\mathbf{v}) \in \mathcal{C}_{m+s}$ since D^{s} is in the ring. Then we notice that $\Psi_{m+s}(\mathbf{v})-\Psi_{m}(\mathbf{v})$ is a multiple of D^{m} and hence $D^{s} \Psi_{m+s}(\mathbf{v})=D^{s} \mathbf{v}_{m}$ in P_{m+s}^{n} which gives the result.

If $\mathbf{v}_{m}=\left(v_{1}, \cdots, v_{n}\right) \in \mathcal{C}_{m}$, then $\operatorname{deg} v_{i} \leq m-1$ for all i, and thus $D^{s} \mathbf{v}_{m} \in \mathcal{C}_{m+s}$ has the same weight as $\mathbf{v}_{m} \in \mathcal{C}_{m}$. Therefore, it follows that for any $s \geq 0$

$$
\begin{equation*}
d\left(\mathcal{C}_{m+s}\right) \leq d\left(\mathcal{C}_{m}\right) \tag{12}
\end{equation*}
$$

Lemma 4.6. Let \mathcal{C} be a basic code over P . Then we have

$$
\left\{\mathbf{v} \in \mathcal{C}_{m+s} \mid \Psi_{s}^{m+s}(\mathbf{v})=0\right\}=D^{s} \mathcal{C}_{m} .
$$

Proof. View $\Psi_{s}^{m+s}: \mathcal{C}_{m+s} \rightarrow \mathcal{C}_{s}$ as a map from \mathcal{C}_{m+s} to \mathcal{C}_{s}. We know that Ψ_{s}^{m+s} is linear and that $\Psi_{s}^{m+s}(\mathcal{C})=\mathcal{C}_{s}$. If $\mathbf{v}_{m} \in \mathcal{C}_{m}$ then $D^{s} \mathbf{v}_{m} \in \mathcal{C}_{m+s}$ by Lemma 4.5. Since $\Psi_{s}^{m+s}\left(D^{s} \mathbf{v}_{m}\right)=0$, we have $D^{s} \mathcal{C}_{m} \subseteq$ $\operatorname{ker}\left(\Psi_{s}^{m+s}\right)$. Furthermore, since \mathcal{C}_{s} has type 1^{k} for any s, we have $\left|\mathcal{C}_{s}\right|=$ $\left(q^{s}\right)^{k}$. Thus we have

$$
\left|\operatorname{ker}\left(\Psi_{s}^{m+s}\right)\right|=\frac{\left|\mathcal{C}_{m+s}\right|}{\left|\mathcal{C}_{s}\right|}=\frac{q^{(m+s) k}}{q^{s k}}=q^{m k}=\left|\mathcal{C}_{m}\right|=\left|D^{s} \mathcal{C}_{m}\right|
$$

which gives the result.
Theorem 4.7. Let \mathcal{C} be a basic code over P . Then we have
i. $d\left(\mathcal{C}_{m}\right)=d\left(\mathcal{C}_{1}\right)$ for all m.
ii. $d(\mathcal{C}) \geq d\left(\mathcal{C}_{m}\right)$.

Proof. (i) We use induction on m, so assume that $d\left(\mathcal{C}_{m}\right)=d\left(\mathcal{C}_{1}\right)$. We shall prove that $d\left(\mathcal{C}_{m+1}\right)=d\left(\mathcal{C}_{1}\right)$. Taking into account (12), it suffices to show that $d\left(\mathcal{C}_{m+1}\right) \geq d\left(\mathcal{C}_{1}\right)$. Suppose, to the contrary, that there exists some nonzero $\mathbf{v} \in \mathcal{C}_{m+1}$ with $\mathrm{wt}(\mathbf{v})<d\left(\mathcal{C}_{1}\right)$. Then $\operatorname{wt}\left(\Psi_{1}^{m+1}(\mathbf{v})\right) \leq$ $\mathrm{wt}(\mathbf{v})<d\left(\mathcal{C}_{1}\right)$, which implies $\Psi_{1}^{m+1}(\mathbf{v})=0$. By Lemma 4.6, we can find some nonzero $\mathbf{v}_{m} \in \mathcal{C}_{m}$ such that $\mathbf{v}=D \mathbf{v}_{m}$. Then $0<\mathrm{wt}\left(\mathbf{v}_{m}\right)=$ $\mathrm{wt}(\mathbf{v})<d\left(\mathcal{C}_{1}\right)=d\left(\mathcal{C}_{m}\right)$, which is a contradiction.
(ii) If $\mathbf{v} \in \mathcal{C}$, then $\Psi_{m}(\mathbf{v})=\mathbf{v}$ for some m.

There exist codes \mathcal{C} such that $d(\mathcal{C})>d\left(\mathcal{C}_{1}\right)$. As an example, take the $[n, 1]$-code \mathcal{C} generated by the vector $(1, D, D, \cdots, D)$ over P of length n. Clearly G is basic and $d(\mathcal{C})=n$. On the other hand, $D^{m-1}(1, D, \cdots, D)=\left(D^{m-1}, 0, \cdots, 0\right) \in \mathcal{C}_{m}$ has the weight 1 , and thus $d\left(\mathcal{C}_{m}\right)=1$ for all m.

5. Number of codewords of minimum weight

Lemma 5.1. Let k, n be any positive integers and let M be a $k \times n$ matrix over $\mathrm{P}_{m}=\mathbb{F}_{q}[D] /\left(D^{m}\right)$ whose standard form has type

$$
(1)^{k_{0}}(D)^{k_{1}}\left(D^{2}\right)^{k_{2}} \cdots\left(D^{m-1}\right)^{k_{m-1}}
$$

Then $\operatorname{ker} M=\left\{\mathbf{v} \in \mathrm{P}_{m}^{n} \mid M \mathbf{v}^{T}=\mathbf{0}\right\}$ has cardinality

$$
\begin{equation*}
|\operatorname{ker} M|=(1)^{k_{0}}(q)^{k_{1}}\left(q^{2}\right)^{k_{2}} \cdots\left(q^{m-1}\right)^{k_{m-1}}\left(q^{m}\right)^{k_{m}} \tag{13}
\end{equation*}
$$

Proof. We may assume that M is in standard form as in (5). Then $\mathbf{v}=\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right) \in \mathrm{P}_{m}^{n}$, where $\mathbf{v}_{i} \in \mathrm{P}_{m}^{k_{i}}$, is in ker M iff

$$
\begin{align*}
I_{k_{0}} \mathbf{v}_{0}^{T}+A_{01} \mathbf{v}_{1}^{T}+\cdots+A_{0, m-1} \mathbf{v}_{m-1}^{T}+A_{0 m} \mathbf{v}_{m}^{T} \equiv 0 & \left(\bmod D^{m}\right) \tag{14}\\
I_{k_{1}} \mathbf{v}_{1}^{T}+\cdots+A_{1, m-1} \mathbf{v}_{m-1}^{T}+A_{1 m} \mathbf{v}_{m}^{T} \equiv 0 & \left(\bmod D^{m-1}\right) \tag{15}
\end{align*}
$$

$$
\begin{array}{rlr}
I_{k_{m-2}} \mathbf{v}_{m-2}^{T}+A_{m-2, m-1} \mathbf{v}_{m-1}^{T}+A_{m-2, m} \mathbf{v}_{m}^{T} & \equiv 0 & \left(\bmod D^{2}\right) \\
I_{k_{m-1}} \mathbf{v}_{m-1}^{T}+A_{m-1, m} \mathbf{v}_{m}^{T} & \equiv 0 & (\bmod D) \tag{17}
\end{array}
$$

From these equations, we can see that $\mathbf{v}_{m} \in \mathrm{P}_{m}^{k_{m}}$ can be set to be an arbitrary vector, and then (17) determines $\mathbf{v}_{m-1}(\bmod D)$ in a unique way, and then (16) determines $\mathbf{v}_{m-2}\left(\bmod D^{2}\right)$ in a unique way, and so on. Therefore,

$$
|\operatorname{ker} M|=\left(q^{m}\right)^{k_{m}} \times\left(q^{m-1}\right)^{k_{m-1}} \times \cdots \times\left(q^{1}\right)^{k_{1}} \times\left(q^{0}\right)^{k_{0}}
$$

which gives the result.
Let \mathcal{C} be a basic $\left[n, k, d_{\infty}\right]$ code over P . Fix a parity check matrix H of the code \mathcal{C} over P . We now introduce some notations. If $S=\left\{i_{1}, \cdots, i_{s}\right\}$ is a subset of $\{1,2, \cdots, n\}$ and \mathbf{v} is a vector of length n, then \mathbf{v}_{S} denotes the vector of length s obtained from \mathbf{v} by puncturing components outside S. For a given S as above and a vector $\mathbf{y}=\left(y_{1}, \cdots, y_{s}\right)$ of length s, \mathbf{y}^{S} denotes the vector of length n obtained by adjoining 0 's outside S, i.e., $\mathbf{y}^{S}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ where $x_{i}=0$ if $i \notin S$, and $x_{i_{j}}=y_{j}$ if $i_{j} \in S$. For a matrix $M=\left(\mathbf{m}_{i}\right)$, where \mathbf{m}_{i} denotes the i-th column of M, let $M[S]=\left(\mathbf{m}_{i}\right)_{i \in S}$ be the matrix whose columns are the i-th columns of M for $i \in S$.

Let d be the minimum distance of \mathcal{C}_{1}. For each subset $S \subset\{1,2, \cdots, n\}$ of d elements, let $H_{m}[S]^{\prime}$ denote the standard form of $H_{m}[S]$. Since $\Psi_{m}^{r}\left(\mathrm{P}_{r}^{*}\right)=\mathrm{P}_{m}^{*}$ for $r>m$, we have that

$$
\begin{equation*}
\Psi_{m}^{r}\left(H_{r}[S]^{\prime}\right)=H_{m}[S]^{\prime} \tag{18}
\end{equation*}
$$

for all $r>m$. Since any $d-1$ columns of H_{1} are independent over \mathbb{F}_{q}, any matrix consisting of $d-1$ columns of H_{m} has type 1^{d-1}. Thus $H_{m}[S]$ will have type $1^{d-1}(0)^{1}$ or $1^{d-1}\left(D^{j}\right)^{1}$ for some $j \geq 0$. We divide the subsets S into two classes:
(I) For any $m, H_{m}[S]$ has type $1^{d-1} 0^{1}$.
(II) For some $m=m(S), H_{m}[S]$ has type $1^{d-1}\left(D^{j}\right)^{1}$ for some $0 \leq j<m$. If S is of class (II) so that $H_{m}[S]$ has type $1^{d-1}\left(D^{j}\right)^{1}$, then $H_{r}[S]$ has the same type $1^{d-1}\left(D^{j}\right)^{1}$ for all $r>j$, while $H_{r}[S]$ has type $1^{d-1} 0^{1}$ for all $r \leq j$.

Theorem 5.2. $H_{m}[S]$ has type $1^{d-1} 0^{1}$ for all m iff $d \times d$ minors of $H[S]$ are all zero.

Proof. Suppose S is of class (I). Then the $d \times d$ minors of $H_{m}[S]$ are all zero, since the property that determinant being zero is invariant under the operations (R1), (R2), (R3) and (C1). The minors of $H_{m}[S]$ are images of minors of $H[S]$ under Ψ_{m}. For any matrix M with entries in
$\mathrm{P}, \operatorname{det} M \equiv 0\left(\bmod D^{m}\right)$ for all m implies that $\operatorname{det} M=0$. Thus all $d \times d$ minors of $H[S]$ are zero. The converse is clear.

Let

$$
\begin{equation*}
\mu_{-\infty}=\mid\{S \mid S \text { is of class (I) }\} \mid . \tag{19}
\end{equation*}
$$

Let N be the maximum of $m(S)$'s for S of class (II) and then let for $j \geq 0$

$$
\begin{equation*}
\mu_{j}=\mid\left\{S \mid H_{N}[S] \text { has type } 1^{d-1}\left(D^{j}\right)^{1}\right\} \mid \tag{20}
\end{equation*}
$$

Theorem 5.3. The number $A_{m, d}$ of codewords of weight d in \mathcal{C}_{m} is given as follows.

$$
\begin{equation*}
A_{m, d}=\left(\mu_{-\infty}+\sum_{j \geq m} \mu_{j}\right)\left(q^{m}-1\right)+\sum_{j=1}^{m-1} \mu_{j}\left(q^{j}-1\right) . \tag{21}
\end{equation*}
$$

Proof. Let D be the set of all codewords of weight d in \mathcal{C}_{m}, and

$$
E_{S}=\left\{\mathbf{y}^{S} \mid 0 \neq y \in \operatorname{ker} H_{m}[S]\right\}
$$

for the subsets S of d elements. Here ker $H_{m}[S]=\left\{\mathbf{v} \in\left(\mathrm{P}_{m}\right)^{|S|} \mid\right.$ $\left.H_{m}[S] \mathbf{v}^{T}=0\right\}$. Clearly $\left(\mathbf{v}_{S}\right)^{S}=\mathbf{v}$ for any codeword \mathbf{v}, where $S=$ $\operatorname{supp}(\mathbf{v})$. Thus D is a subset of $\cup_{S} E_{S}$. Since $\operatorname{wt}\left(\mathbf{y}^{S}\right)=\mathrm{wt}(\mathbf{y})$ and d is the minimum distance of \mathcal{C}_{m}, we have $\mathrm{wt}(\mathbf{y})=\mathrm{wt}\left(\mathbf{y}^{S}\right)=d$ whenever $0 \neq$ $\mathbf{y} \in \operatorname{ker}\left(H_{e}[S]\right)$. Thus $D=\cup_{S} E_{S}$. Furthermore, if $\mathrm{wt}\left(\mathbf{y}_{1}\right)=\mathrm{wt}\left(\mathbf{y}_{2}\right)=d$, then it is clear that $\mathbf{y}_{1}^{S_{1}}=\mathbf{y}_{2}^{S_{2}}$ iff $\mathbf{y}_{1}=\mathbf{y}_{2}$ and $S_{1}=S_{2}$. Therefore $\cup_{S} E_{S}$ is a disjoint union and $\left|E_{S}\right|=\left|\operatorname{ker} H_{m}[S]\right|$.

If S is of class (II) and $H_{N}[S]$ has type $1^{d-1}\left(D^{j}\right)^{1}$ with $1 \leq j \leq m-1$ then $\left|\operatorname{ker} H_{m}[S]\right|=q^{j}$ by Lemma 5.1. On the other hand, and if S is of class (I) or if S is of class (II) such that $H_{N}[S]$ has type $1^{d-1}\left(D^{j}\right)^{1}$ with $j \geq m$, then $H_{m}[S]$ has type $1^{d-1} 0^{1}$ and $\left|\operatorname{ker} H_{m}[S]\right|=q^{m}$. Finally, if S is of class (II) such that $H_{N}[S]$ has type 1^{d}, then $H_{m}[S]$ has type 1^{d} and \mid ker $H_{m}[S] \mid=1$. The theorem is proved.

Corollary 5.4. For $m>N, A_{m, d}=a q^{m}+b$, where a, b are independent of m. In other words, $A_{m, d}$ is a linear polynomial in $Q=q^{m}$, independent of m.

Proof. Simply let $a=\mu_{-\infty}$, and $b=\sum_{j=1}^{N} \mu_{j}\left(q^{j}-1\right)-\mu_{-\infty}$.

It is easy to check that

$$
\begin{equation*}
A_{m+1, d}-A_{m, d}=\left(q^{m+1}-q^{m}\right)\left(\mu_{-\infty}+\sum_{j \geq m+1} \mu_{j}\right) \tag{22}
\end{equation*}
$$

From this equation, we obtain the following corollaries.
Corollary 5.5. If $A_{m, d}=A_{m+1, d}$ for some m, then $A_{m+s, d}=A_{m, d}$ for all $s \geq 0$.

Corollary 5.6. Suppose $\mu_{-\infty}=0$. Then $A_{m, d}=A_{N, d}$ for all $m \geq$ N. In particular, every codeword of weight d in \mathcal{C}_{m} has the form $D^{m-N} \mathbf{v}_{0}$ for some codeword \mathbf{v}_{0} of weight d in \mathcal{C}_{N}.

Similar results and examples for the p-adic codes can be found in [1].

References

[1] S. T. Dougherty, S. Y. Kim, and Y. H. Park, Lifted Codes and their Weight Enumerators, submitted, 2004.
[2] R. J. McEliece, The algebraic theory of convolutional codes, Handbook of Coding Theory (V. S. Pless and W. C. Huffman, eds.), Elsevier, Amsterdam, 1998, 11651138.
[3] E. Rains and N. J. A. Sloane, Self-dual codes, Handbook of Coding Theory (V. S. Pless and W. C. Huffman, eds.), Elsevier, Amsterdam, 1998, 177-294.
[4] J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math 121, 1999, 555-575

Department of Mathematics
Kangwon National University
Chuncheon, Korea 200-701
E-mail: yhpark@kangwon.ac.kr

