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THE IDEMPOTENT RELATION AND THE PROOF OF

URYSOHN’S LEMMA

Seungwook Kim

Abstract. The Urysohn’s lemma which is crucial tool for the study
of the metrization problem is proved in the sense of set-theoretic con-
cept, namely, by the idempotent relation defined on a given topology.

1. Introduction

It is well known in the set-theoretic topology that the lemma of
Urysohn is a crucial tool to study the metrization or pseudometriza-
tion problems. The basic ideas of both distance functions which induce
the given topology are to define a local distance function. In concern
with a psuedometrization problem the local pseudometric is defined as
follows.

If U is an open set of a topological space (X, τ) and f is a continuous
function from X into R with the zero set X \ U , i.e. f(X \ U) = {0},
then the function df : X × X → R+ ∪ {0}, (x, y) 7→ |f(x) − f(y)| is a
pseudometric.

The Urysohn’s lemma guaranties that if a given topological space is
T4 space, there exists a function f mentioned above. But in conventional
literatures([1],[2],[3]) the constructing process of a continuous function
with the given closed sets is not so easy to see because of the compli-
cate structural relations between the sets of the space. In this sense we
will describe a method for the proof of the lemma introducing a set-
theoretic concept, namely an idempotent relation on a given topology,
which makes possible to establish the clear relationship between the or-
dered sets Q

⋂
[0, 1] relative to ≤ and the given topology relative to the

idempotent relation ..
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For this purpose the three steps are given in following ways.
1. step. Establishment of the idempotent relation on a topology τ .
2. step. Defining a function which preserves the relations between an

ordered structure of Q
⋂

[0, 1] and a set X with an idempotent relation.
3. step. Construction of a continuous function on a T4 space with

idempotent relation on τ .

2. Idempotent relation

Definition 2.1. A relation R is said to be idempotent if R ·R = R.

Remark 2.2. The equation R · R = R is including two statements,
R · R ⊂ R and R · R ⊃ R.
R · R ⊂ R means that R is transitive and R · R ⊃ R means that R

satisfies the following intermediate condition, namely, for all x, y with
(x, y) ∈ R there exists z with (x, z) ∈ R and (z, y) ∈ R.

Example 2.3. (a) Every equivalent relation on a set is idempotent.
(b) Every ordering on a set is idempotent.
(c) The relation ‘≤’ on Q is idempotent.
(d) The relation ‘<’ on a finite subset of R with at least two elements

is not idempotent.

Proof. Since (b),(c),(d) are obvious, we prove only (a). Let R be an
equivalent relation on set X. We show that R · R = R

”⊆” : Let x, y ∈ X and (x, y) ∈ R. Since R is reflexive, (y, y) ∈ R.
Hence by the transitivity of R (x, y) ∈ R · R.

”⊇” : Let (x, y) ∈ R·R . Then there is z ∈ X such that (x, z), (z, y) ∈
R. By the transitivity of R (x, y) ∈ R.

Lemma 2.4. Let R be an idempotent relation on a set X. Let E be
a finite subset of R which has at least 2 elements and φ : E −→ X a
function which preserves the relation ‘ <’ on E in X i.e., if x, y ∈ E
with x < y then (φ(x), φ(y)) ∈ R.

Let z ∈ R\E with min E < z < max E. Then there is a function
φ̄ : E ∪ {z} → X such that φ̄|E = φ which preserves the relation < on
E ∪ {z} in X.

Proof. Let

l := max(E ∩ (−∞, z)), r := min(E ∩ (z,∞)).
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Then l < z < r and x ≤ l or x ≥ r for all x ∈ E. By assumption we
have (φ(l), φ(r)) ∈ R. Since R is an idempotent relation on X, there is
c ∈ X such that

(φ(l), c) ∈ R and (c, φ(r)) ∈ R.

Define

φ̄ := E ∪ {z} −→ X, x 7→
{

φ(x) if x 6= z
c if x = z

Then it is obvious that φ̄|E = φ. It remains to show that (φ̄(x), φ̄(y)) ∈ R
for all x, y ∈ E ∪ {z} with x < y.

1. case. x, y ∈ E. Since φ̄|E = φ, (φ̄(x), φ̄(y)) = (φ(x), φ(y)) ∈ R.
2. case. x = z, y ∈ E. Then x < r ≤ y.
Hence

(φ̄(x), φ̄(r)) = (c, φ(r)) ∈ R
and

(φ̄(r), φ̄(y)) = (φ(r), φ(y)) ∈ R.

Since R is an idempotent relation, (φ̄(x), φ̄(y)) ∈ R. The other cases
x ∈ E, y = z could be analogously shown.

Theorem 2.5. Let R be an idempotent relation on a set X. Let
x, y ∈ X with (x, y) ∈ R. Then there is a function φ : [0, 1] ∩ Q → X
which preserves the relation ‘<’ on Q such that φ(0) = x and φ(1) = y .

Proof. Let R be an idempotent relation on X and x, y ∈ X such that
(x, y) ∈ R. Let

q : N ∪ {0} → [0, 1] ∩Q
be a bijection with q0 := 0, q1 := 1. Let En := {q0, q1, q2, · · · , qn} for
every n ∈ N. Define φ1 : E1 → X, q0 = 0 7→ x, q1 = 1 7→ y. Then φ1

preserves the relation < in X. Besides, it holds that for every n ∈ N,

qn+1 ∈ ([0, 1] ∩Q)\En

and

0 = min En < qn+1 < max En = 1.

Then by lemma 2.1 a function φn : En → X preserving < on En in
X can be extended to φn+1 on En+1 = En ∪ {qn+1}. By the successive
process starting from E1 we can define φn : En → X such that

φm = φn|Em for all m,n ∈ N ∪ {0},m ≤ n
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and it preserves < in X. Let φ =
⋃

n∈N
φn. This is a function from

[0, 1] ∩ Q =
⋃

n∈N
En into X with φ(0) = x, φ(1) = y and it preserves <

in X.

Definition 2.6. Let (X, τ) be a topological space and U, V ∈ τ . We
say that U is strongly contained in V denoted by (U, V ) ∈ . if U ⊆ V .

Theorem 2.7. In every T4 space (X, τ) . is an idempotent relation
on τ .

Proof. Let (X, τ) be a T4 space. It is to show that . = . · . .
“ ⊆ ” : Let U, V ∈ τ and (U, V ) ∈ .. Then U∩X\V = ∅. Since (X, τ)

is a T4 space, there are W,W ′ ∈ τ such that U ⊆ W and X\V ⊆ W ′

and W ∩W ′ = ∅. Then X\W ′ ⊆ V and W ⊆ X\W ′. Hence U ⊆ X\W ′

and X\W ′ ⊆ V . Thus (U, V ) ∈ . · ..
“ ⊇ ” : Let U, V ∈ τ and (U, V ) ∈ . · .. Then there is W ∈ τ such

that (U,W ) ∈ . and (W,V ) ∈ .. Then U ⊆ W and W ⊆ V . Thus
(U, V ) ∈ ..

3. The Urysohn’s lemma.

In this section we will give the main proof of Urysohn’s lemma with
the theories of the idempotent relation investigated above.

Lemma 3.1. (Urysohn) Let A,B be closed and disjoint subsets of a
T4 space (X, τ). Then there is a continuous function f : X → [0, 1] such
that f(A) = {0}, f(B) = {1}.

Proof. First we define a function f from (X, τ) into [0, 1] as follows.
By T4 property of (X, τ) there are U, V ∈ τ such that

A ⊆ U,B ⊆ V and U ∩ V = ∅.
Since U ⊆ X\V ⊆ X\B and X\V is closed, U ⊆ X\B. By the def-
inition 2.6 and theorem 2.7, (U,X\B) ∈ . where . is an idempotent
relation on τ . By theorem 2.5, there is a function

φ : [0, 1] ∩Q→ τ, q 7→ Uq, U0 = U, U1 = X\B
and

(Uq, Ur) ∈ . for all q, r ∈ [0, 1] ∩Q, q < r.
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For every x ∈ X, put

K(x) := {q|q ∈ [0, 1] ∩Q, x ∈ Uq} ∪ {1}.
and define

f : X → [0, 1], x 7→ inf K(x).

As a next step we show that
(a) r ∈ K(x) implies f(x) ≤ r and
(b) r /∈ K(x) implies r ≤ f(x) for all r ∈ [0, 1] ∩Q and x ∈ X.
Since (a) is obvious, just (b) will be proved.
(b) Suppose that r > f(x). Then there is q ∈ K(x) such that

(Uq, Ur) ∈ .. It means that

x ∈ Uq ⊆ Uq ⊆ Ur.

Thus x ∈ Ur and r ∈ K(x) which is contrary to assumption. Finally it
remains to show that

(i) f(a) = 0 for all a ∈ A.
(ii) f(b) = 1 for all b ∈ B.
(iii) f is continuous.
(i) Let a ∈ A. By a ∈ A ⊆ U = U0, f(a) = 0.
(ii) Let b ∈ B. Then b /∈ X\B = U1. Since Uq ⊆ U1 for all q ∈

[0, 1] ∩Q with q < 1, b /∈ Uq for all q < 1. Hence f(b) = 1.
(iii) Let x ∈ X. It is to show that for given ε > 0 there is V ∈ τ, x ∈ V

such that |f(x)− f(y)| < ε for all y ∈ V .
1. case : f(x) = 1. Choose q ∈ [0, 1] ∩ Q such that 1 − ε < q < 1.

Then by (a)

q + 1

2
< 1 = f(x) and

q + 1

2
/∈ K(x), i.e., x /∈ U q+1

2
.

By q < q+1
2

, (Uq, U q+1
2

) ∈B. Hence

U q ⊆ U q+1
2

.

Then x /∈ Uq. Put

V := X\Uq.

Then x ∈ V and V ∈ τ . Let y ∈ V . Then y /∈ Uq and also y /∈ Uq. Thus
q /∈ K(y) and q ≤ f(y) by (b). It follows that

|f(x)− f(y)| = 1− f(y) ≤ 1− q < ε.

2. case : f(x) = 0. Choose q ∈ [0, 1] ∩ Q with 0 < q < ε. Then
f(x) = 0 < q and q ∈ K(x) by (b), i.e., x ∈ Uq Choose V := Uq. Then
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x ∈ V, V ∈ τ . Let y ∈ V . Then q ∈ K(y) and by (a) f(y) ≤ q so that
we have

|f(x)− f(y)| = f(y) ≤ q < ε.

3. case : 0 < f(x) < 1. Choose l′, l, r ∈ (0, 1) ∩Q with

f(x)− ε

2
< l < l′ < f(x) < r < f(x) +

ε

2
.

Since l′ < f(x), l′ /∈ K(x) by (a), so that x /∈ Ul′ . By l < l′, Ul < Ul′

so that x /∈ Ul. Since f(x) < r, r ∈ K(x) by (b) so that x ∈ Ur (since
r 6= 1).

Choose V := Ur\Ul. Then x ∈ Ur\Ul and V ∈ τ . Let y ∈ V . Then
y ∈ Ur and also r ∈ K(y), i.e., f(y) ≤ r by (a).

By y /∈ Ul, we have y /∈ Ul. Hence l ≤ f(y) by (b). It holds that

l ≤ f(x) ≤ r, l ≤ f(y) ≤ r

from which follows

|f(x)− f(y)| ≤ r − l < ε.

Lemma 3.2. (Urysohn) Let (X, τ) be a topological space. If to every
two closed and disjoint subsets A, B there is a continuous function f :
X → [0, 1] such that f(A) = {0}, f(B) = {1} then (X, τ) is a T4 space.

Proof. Let A,B ⊆ X be closed and disjoint. It is to show that there
are U, V ∈ τ such that

A ⊆ U,B ⊆ V and U ∩ V = ∅.
Let f : X → [0, 1] be a continuous function such that f(x) = 0 for all
x ∈ A and f(x) = 1 for all x ∈ B. Put

U := f−1([0,
1

2
)), V := f−1((

1

2
, 1]).

Then U, V are open as the inverse images of open sets on [0, 1] and
A ⊆ U,B ⊆ V . Moreover

U ∩ V = f−1([0,
1

2
)) ∩ f−1((

1

2
, 1]) = f−1([0,

1

2
) ∩ (

1

2
, 1]) = f−1(∅) = ∅.

From lemma 3.1 and lemma 3.2 we have the main lemma of Urysohn.



The idempotent relation and the proof of Urysohn’s lemma 417

Lemma 3.3. (Urysohn) A topological space is T4 space if and only if
to every two disjoint and closed subsets A,B of X there is a continuous
function f : X → [0, 1] such that f(A) = {0}, f(B) = {1}.
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