PALAIS-SMALE CONDITION FOR THE STRONGLY DEFINITE FUNCTIONAL

Tacksun Jung and Q-Heung Chor*

Abstract

Let Ω be a bounded subset of R^{n} with smooth boundary and H be a Sobolev space $W_{0}^{1,2}(\Omega)$. Let $I \in C^{1,1}$ be a strongly definite functional defined on a Hilbert space H. We investigate the conditions on which the functional I satisfies the Palais-Smale condition. Palais-Smale condition is important for determining the critical points for I by applying the critical point theory.

1. Introduction

Let Ω be a bounded subset of R^{n} with smooth boundary. Let L be an elliptic linear differential operator defined by

$$
-L=\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}} .
$$

Let H be a Sobolev space $W_{0}^{1,2}(\Omega)$ with the norm

$$
\|u\|=\left[\int_{\Omega} L u \cdot u d x\right]^{\frac{1}{2}} .
$$

Let I be a strongly definite functional defined on H which is of the form

$$
I(u)=\int_{\Omega}\left[\frac{1}{2} L u \cdot u-b(x, u(x))\right] d x
$$

where $b(x, u(x)) \in C^{1}(\bar{\Omega} \times H, R)$ is a given function. In this paper we investigate the conditions on which the functional I satisfies the Palais-Smale condition. We say that the functional I satisfies the PalaisSmale condition if for any given number $c \in R$, the sequence $\left(u_{n}\right)_{n}$ in

[^0]H with $I\left(u_{n}\right) \rightarrow c$ and $\nabla I\left(u_{n}\right) \rightarrow 0$ possesses a convergent subsequence. Whether I satisfies the Palais-Smale condition or not is important for determining the critical points for I by applying the critical point theory.

Our main results are as follows:
Theorem 1.1. Let $g(x, u)=u_{+}^{p}, h(x, u)=u_{-}^{p}$, with $2<p<2^{*}$, $2^{*}=\frac{2 n}{n-2}, n \geq 3$, where $u_{+}=\max \{u, 0\}$ and $u_{-}=-\min \{u, 0\}$. Then the functionals

$$
I(u)=\int_{\Omega}\left[\frac{1}{2} L u \cdot u-g(x, u)\right] d x
$$

and

$$
K(u)=\int_{\Omega}\left[\frac{1}{2} L u \cdot u-h(x, u)\right] d x
$$

satisfy the Palais-Smale condition.
Theorem 1.2. Assume that $f \in C^{1}(\bar{\Omega} \times R, R)$ satisfies the following growth conditions:
$(f 1) f(x, 0)=0, f(x, u)>0$ if $u \neq 0, \inf _{\substack{x \in \Omega \\|u|^{2}=R^{2}}} f(x, u)>0$,
(f2) $u \cdot f_{u}(x, u) \geq p f(x, u) \forall x, u$,
(f3) $\left|f_{u}(x, u)\right| \leq \gamma|u|^{\nu}, \forall x, u$,
where $\left.C>0,2<p<2^{*}, 2^{*}=\frac{2 n}{n-2}, n \geq 3, \gamma \geq 0, \mu \in\right] 2,2^{*}[, \nu \leq$ $2^{*}-1-\left(2^{*}-p\right)\left(1-\frac{2^{* \prime}}{2^{*}}\right)$.
Then the functional

$$
\begin{equation*}
J(u)=\int_{\Omega}\left[\frac{1}{2}(L u) \cdot u-f(x, u(x))\right] d x \tag{1.2}
\end{equation*}
$$

satisfies the Palais-Smale condition.
In section 2 we obtain some results and properties of the linear operator L, and the function f. In section 2 we obtain some result on the corresponding functional $I(u)$ and prove Theorem 1.1. In section 3 we obtain some results and properties of the function f and the corresponding functional $J(u)$, and prove Theorem 1.2.

Remark 1.1. We note that the function $a(x, u)=|u|^{p}$, with $2<$ $p<2^{*}$ and Ω bounded subset of R^{n}, satisfies the conditions $(f 1)-(f 3)$. Then the functional on H

$$
A(u)=\int_{\Omega}\left[\frac{1}{2} L u \cdot u-f(x, u)\right] d x
$$

satisfies the Palais-Smale condition.

Remark 1.2. Let $u_{+}=\max \{u, 0\}$ and $u_{-}=-\min \{u, 0\}$. Although the functions $g(x, u)=u_{+}^{p}, h(x, u)=u_{-}^{p}$, with $2<p<2^{*}$ and Ω bounded subset of R^{n}, do not satisfy the conditions (f2), the functionals

$$
I(u)=\int_{\Omega}\left[\frac{1}{2} L u \cdot u-g(x, u)\right] d x
$$

and

$$
K(u)=\int_{\Omega}\left[\frac{1}{2} L u \cdot u-h(x, u)\right] d x
$$

satisfy the Palais-Smale condition.

2. Proof of Theorem 1.1

First we shall prove that the functional

$$
\left.I(u)=\int_{\Omega}\left[\frac{1}{2} L u \cdot u-u_{+}^{p}\right)\right] d x, \quad 2<p<2^{*}, 2^{*}=\frac{2 n}{n-2}, n \geq 3 .
$$

satisfy the Palais-Smale condition. The eigenvalue problem $-L u=\lambda u$ in $\Omega, u=0$ on $\partial \Omega$ has infinitely many eigenvalues $\lambda_{k}, k \geq 1$ with $\lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{k} \leq \ldots$, and infinitely many eigenfunctions ϕ_{k} be the eigenfunction belonging to the eigenvalue $\lambda_{k}, k \geq 1$. We need the following proposition for applying the critical point theory:

Proposition 2.1. The functional $I(u)$ is continuous, Fréchet differentiable in H, with Fréchet derivative

$$
\nabla I(u) v=\int_{\Omega}\left[L u \cdot v-p u_{+}^{p-1} \cdot v\right] d x
$$

Moreover $\nabla I \in C$. That is $I \in C^{1}$.
Proof. First we prove that $I(u)$ is continuous at u. For $u, v \in H$,

$$
\begin{aligned}
& |I(u+v)-I(u)| \\
& =\left|\frac{1}{2} \int_{\Omega}(L u+L v) \cdot(u+v) d x-\int_{\Omega}(u+v)_{+}^{p} d x-\frac{1}{2} \int_{\Omega} L u \cdot u d x+\int_{\Omega} u_{+}^{p} d x\right| \\
& \left.=\left\lvert\, \frac{1}{2} \int_{\Omega}(L u \cdot v+L v \cdot u+L v \cdot v) d x-\int_{\Omega}(u+v)_{+}^{p} d x-u_{+}^{p}\right.\right) d x \mid .
\end{aligned}
$$

Let $u=\sum h_{n} \phi_{n}, v=\sum k_{n} \phi_{n}$. Then we have

$$
\left|\int_{\Omega} L u \cdot v d x\right|=\left|\sum \lambda_{n} h_{n} k_{n}\right| \leq\|u\| \cdot\|v\|,
$$

$$
\begin{gathered}
\left|\int_{\Omega} L v \cdot u d x\right|=\left|\sum \lambda_{n} k_{n} h_{n}\right| \leq\|u\| \cdot\|v\|, \\
\quad\left|\int_{\Omega} L v \cdot v d x\right|=\left|\sum \lambda_{n} k_{n} k_{n}\right| \leq\|v\|^{2}
\end{gathered}
$$

from which we have

$$
\begin{equation*}
\left|\frac{1}{2} \int_{\Omega}(L u \cdot v+L v \cdot u+L v \cdot v) d x\right| \leq\|u\| \cdot\|v\|+\|v\|^{2} \tag{2.1}
\end{equation*}
$$

On the other hand

$$
\left|\left|(u+v)_{+}\right|^{p}-\left|u_{+}\right|^{p}\right| \leq C_{1}\left|u_{+}^{p-1}\right||v|+R_{2}\left(\left|u_{+}\right|,\left|v_{+}\right|\right)
$$

and hence we have

$$
\left|\int_{\Omega}\left(\left|(u+v)_{+}\right|^{2}-\left|u_{+}\right|^{2}\right) d x\right| \leq 2\left\|u_{+}\right\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)}^{2} \leq 2\|u\| \cdot\|v\|+\|v\|^{2}
$$

$$
\begin{equation*}
\left|\int_{\Omega}\left(\left|(u+v)_{+}\right|^{p}-\left|u_{+}\right|^{p}\right) d x\right| \leq C_{1}\left\|u_{+}^{p-1}\right\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}+R_{2}\left(\|u\|_{L^{2}(\Omega)},\|v\|_{L^{2}(\Omega)}\right) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\leq C_{2}\left\|u_{+}^{p-1}\right\|\|v\|+R_{2}(\|u\|,\|v\| \tag{2.3}
\end{equation*}
$$

Combining (2.1) with (2.2) and (2.3), we have

$$
|I(u+v)-I(u)|=o\left(\|v\|^{2}\right)
$$

from which we can conclude that $I(u)$ is continuous at u. Next we prove that $I(u)$ is Fréchet differentiable in H. For $u, v \in H$,

$$
\begin{aligned}
& |I(u+v)-I(u)-\nabla I(u) v| \\
& =\left\lvert\, \frac{1}{2} \int_{\Omega}(L u+L v) \cdot(u+v) d x-\int_{\Omega}(u+v)_{+}^{p} d x\right. \\
& \left.-\frac{1}{2} \int_{\Omega}(L u) \cdot u d x+\int_{\Omega} u_{+}^{p} d x-\int_{\Omega}\left(L u-p u_{+}^{p-1}\right) \cdot v d x \right\rvert\, \\
& =\left|\int_{\Omega}\left[\frac{1}{2}(L v) \cdot v-(u+v)_{+}^{p}+u_{+}^{p}+p u_{+}^{p-1} v\right] d x\right| .
\end{aligned}
$$

Combining (2.1) with (2.2) and (2.3), we have that

$$
\begin{equation*}
|I(u+v)-I(u)-\nabla I(u) v|=O\left(\|v\|^{2}\right) . \tag{2.4}
\end{equation*}
$$

Thus $I(u)$ is Fréchet differentiable in H. Similarly, it is easily checked that $I \in C^{1}$.

Proof of Theorem 1.1

Let $c \in R$ and $\left(u_{n}\right)_{n}$ be a sequence such that

$$
u_{n} \in H, \forall n, I\left(u_{n}\right) \rightarrow c, \nabla I\left(u_{n}\right) \rightarrow 0 .
$$

We claim that $\left(u_{n}\right)_{n}$ is bounded. By contradiction we suppose that $\left\|u_{n}\right\| \rightarrow+\infty$ and set $\hat{u_{n}}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Then we have

$$
\begin{aligned}
\left\langle\nabla I\left(u_{n}\right), \hat{u_{n}}\right\rangle & =\frac{2 I\left(u_{n}\right)}{\left\|u_{n}\right\|}-\frac{\int_{\Omega} p\left(u_{n}\right)_{+}^{p-1} \cdot u_{n} d x}{\left\|u_{n}\right\|} \\
& +\frac{2 \int_{\Omega}\left(u_{n}\right)_{+}^{p} d x}{\left\|u_{n}\right\|} \longrightarrow 0 .
\end{aligned}
$$

Hence

$$
\frac{\int_{\Omega}\left[p\left(u_{n}\right)_{+}^{p-1} \cdot u_{n}-2\left(u_{n}\right)_{+}^{p}\right] d x}{\left\|u_{n}\right\|} \longrightarrow 0 .
$$

Thus there exists a constant $M>0$ such that

$$
\begin{aligned}
M> & \left.\int_{\Omega}\left[p\left(u_{n}\right)_{+}^{p-1} \cdot u_{n}\right)-2\left(u_{n}\right)_{+}^{p}\right] d x \mid \\
& \geq\left|\int_{\Omega}\left[p\left(u_{n}\right)_{+}^{p-1} \cdot u_{n}-2\left(u_{n}\right)_{+}^{p}\right] d x\right| \\
& \geq \int_{\Omega}\left[\left|p\left(u_{n}\right)_{+}^{p-1}\right|\left|u_{n}\right|-2\left|\left(u_{n}\right)_{+}^{p}\right|\right] d x \\
& \geq \int_{\Omega}\left[\left|p\left(u_{n}\right)_{+}^{p-1}\right|\left|\left(u_{n}\right)_{+}\right|-2\left|\left(u_{n}\right)_{+}^{p}\right|\right] d x \\
& =\int_{\Omega}\left[\left|p\left(u_{n}\right)_{+}^{p}\right|-2\left|\left(u_{n}\right)_{+}^{p}\right|\right] d x \\
& =(p-2) \int_{\Omega}\left|\left(u_{n}\right)_{+}\right|^{p} d x=(p-2)\left\|\left(u_{n}\right)_{+}\right\|_{L^{p}(\Omega)}^{p}
\end{aligned}
$$

Thus

$$
\begin{gathered}
0 \longleftarrow \frac{\left.\mid \int_{\Omega}\left[p\left(u_{n}\right)_{+}^{p-1} \cdot u_{n}-2\left(u_{n}\right)_{+}^{p}\right)\right] d x \mid}{\left\|u_{n}\right\|} \\
\quad \geq(p-2) \frac{\left\|\left(u_{n}\right)_{+}\right\|_{L^{p}(\Omega)}^{p}}{\left\|u_{n}\right\|} .
\end{gathered}
$$

Since $p>2$,

$$
\frac{\left\|\left(u_{n}\right)_{+}\right\|_{L^{p}(\Omega)}^{p}}{\left\|u_{n}\right\|} \text { converges . }
$$

On the other hand

$$
\left\|p\left(u_{n}\right)_{+}^{p-1}\right\| \leq C_{1}\left\|\left(u_{n}\right)_{+}^{p-1}\right\|_{L^{2^{*^{\prime}}}(\Omega)}
$$

for suitable constant C_{1}. Then we have

$$
\left\|\frac{p\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|}\right\| \leq C_{1}\left\|\frac{\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|}\right\|_{L^{2^{*}}(\Omega)}
$$

If $p \geq 2^{*^{\prime}}(p-1)$, then by the Hölder's inequality, it is easily checked that $\left\|\frac{\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|}\right\|_{L^{2^{*^{\prime}}}(\Omega)}$ can be estimated in terms of $\frac{\left\|\left(u_{n}\right)+\right\|_{L^{p}(\Omega)}^{p}}{\left\|u_{n}\right\|}$. If $p \leq 2^{*^{\prime}}(p-$ $1)$, then by the standard interpolation inequalities, $\left\|\frac{\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|}\right\|_{L^{2^{\prime}}(\Omega)} \leq$ $C_{2}\left(\frac{\left\|\left(u_{n}\right)+\right\|_{L^{p}(\Omega)}^{p}}{\left\|u_{n}\right\|}\right)^{\frac{(p-1) \alpha}{p}}\left\|\left(u_{n}\right)+\right\|^{\beta}$ for some constant C_{2}, where $\alpha>0$ is such that $\frac{\alpha}{p}+\frac{1-\alpha}{2^{*}}=\frac{1}{2^{*}}$ and $\beta=(1-\alpha)(p-1)-1-\frac{(p-1) \alpha}{p}$. Since $p-1 \leq$ $2^{*}-1-\left(2^{*}-p\right)\left(1-\frac{2^{*^{\prime}}}{2^{*}}\right), \beta<0$. Thus we have

$$
\left\|\frac{p\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|}\right\| \leq C_{2}\left(\frac{\left\|\left(u_{n}\right)_{+}\right\|_{L^{p}(\Omega)}^{p}}{\left\|u_{n}\right\|}\right)^{\frac{(p-1) \alpha}{p}}\left\|\left(u_{n}\right)_{+}\right\|^{\beta}
$$

for a constant C_{2}. Since $\frac{\left\|\left(u_{n}\right)+\right\|^{p}}{\left\|u_{n}\right\|}$ converges and $\beta<0$,

$$
\begin{equation*}
\frac{p\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|} \text { converges. } \tag{2.5}
\end{equation*}
$$

By (2.5) and the boundedness of $\hat{u_{n}}$,

$$
\left\langle\frac{p\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|}, \hat{u_{n}}\right\rangle \text { converges. }
$$

Thus by (2.5), we have

$$
\begin{gathered}
\left\langle\frac{p\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|}, \hat{u_{n}}\right\rangle=\int_{\Omega} \frac{p\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|} \cdot \hat{u_{n}} \\
=\frac{\frac{\int_{\Omega}\left(p\left(u_{n}\right)_{+}^{p-1}\right) \cdot u_{n}}{\left\|u_{n}\right\|}}{\left\|u_{n}\right\|} \longrightarrow 0 .
\end{gathered}
$$

Thus $\hat{u_{n}} \rightharpoonup 0$. We get

$$
\frac{\nabla I\left(u_{n}\right)}{\left\|u_{n}\right\|}=L \hat{u_{n}}-\frac{p\left(u_{n}\right)_{+}^{p-1}}{\left\|u_{n}\right\|} \longrightarrow 0
$$

By (2.5), L $\hat{u_{n}}$ converges. Since $\left(\hat{u_{n}}\right)_{n}$ is bounded and the operator of L^{-1} is a compact mapping, up to subsequence, $\left(\hat{u_{n}}\right)_{n}$ has a limit. Since $\hat{u_{n}} \rightharpoonup 0$, we get $\hat{u_{n}} \rightarrow 0$, which is a contradiction to the fact that $\left\|\hat{u_{n}}\right\|=$ 1. Thus $\left(u_{n}\right)_{n}$ is bounded. We can now suppose that $u_{n} \rightharpoonup u$ for some $u \in H$. We claim that $u_{n} \rightarrow u$ strongly. We have that

$$
\left\langle\nabla I\left(u_{n}\right), u_{n}\right\rangle=\left(\left\|u_{n}\right\|^{2}-\int_{\Omega}\left[p\left(u_{n}\right)_{+}^{p-1} u_{n}\right] d x\right) \longrightarrow 0
$$

Since $\int_{\Omega}\left[p\left(u_{n}\right)_{+}^{p-1} u_{n}\right] d x \longrightarrow \int_{\Omega}\left[p u_{-}^{p-1} u\right] d x,\left\|u_{n}\right\|^{2}$ converge. Thus $\left(u_{n}\right)_{n}$ converges to some u strongly with $\nabla I(u)=\lim \nabla I\left(u_{n}\right)=0$. Thus we prove the lemma.

For the case $K(u)$, the proof follows arguing as in the case $I(u)$.

3. Proof of Theorem 1.2

We need some lemmas:
Lemma 3.1. Assume that f satisfies the conditions (f1)-(f3). Then there exist $a_{0}>0, b_{0} \in R$ such that

$$
\begin{equation*}
f(x, u) \geq a_{0}|u|^{p}-b_{0}, \quad \forall x, u . \tag{3.1}
\end{equation*}
$$

Proof. Let u be such that $|u|^{2} \geq R^{2}$. Let us set $\varphi(\xi)=f(x, \xi u)$ for $\xi \geq 1$. Then

$$
\varphi(\xi)^{\prime}=u \cdot f_{u}(x, \xi u) \geq \frac{\mu}{\xi} \varphi(\xi)
$$

Multiplying by ξ^{-p}, we get

$$
\left(\xi^{-p} \varphi(\xi)\right)^{\prime} \geq 0,
$$

hence $\varphi(\xi) \geq \varphi(1) \xi^{p}$ for $\xi \geq 1$. Thus we have

$$
\begin{aligned}
f(x, u) & \geq f\left(x, \frac{R|u|}{\sqrt{|u|^{2}}}\right)\left(\frac{\sqrt{|u|^{2}}}{R}\right)^{p} \geq c_{0}\left(\frac{\sqrt{|u|^{2}}}{R}\right)^{p} \\
& \geq a_{0}|u|^{p}-b_{0}, \text { for some } a_{0}, b_{0}
\end{aligned}
$$

where $c_{0}=\inf \left\{\left.f(x, u)| | u\right|^{2}=R^{2}\right\}$.

Lemma 3.2. Assume that f satisfies the conditions (f1)-(f3). Then if $\left\|u_{n}\right\| \rightarrow+\infty$ and

$$
\frac{\int_{\Omega} u_{n} \cdot f_{u}\left(x, u_{n}\right) d x-2 \int_{\Omega} f\left(x, u_{n}\right) d x}{\left\|u_{n}\right\|} \rightarrow 0,
$$

then there exist $\left(u_{h_{n}}\right)_{n}$ and $w \in H$ such that

$$
\frac{\operatorname{grad}\left(\int_{\Omega} f\left(x, u_{h_{n}}\right) d x\right)}{\left\|u_{h_{n}}\right\|} \rightarrow w \text { and } \frac{u_{h_{n}}}{\left\|u_{h_{n}}\right\|} \rightharpoonup 0 .
$$

Proof. By (f2) and Lemma 3.1, for $u \in H$,

$$
\begin{gathered}
\int_{\Omega}\left[u \cdot f_{u}(x, u)\right] d x-2 \int_{\Omega} f(x, u) d x \geq \\
(p-2) \int_{\Omega} f(x, u) d x \geq(p-2)\left(a_{0}\|u\|_{L^{p}}^{p}-b_{1}\right)
\end{gathered}
$$

By (f3),

$$
\left\|\operatorname{grad}\left(\int_{\Omega} f(x, u) d x\right)\right\| \leq C^{\prime}\left\||u|^{\nu}\right\|_{L^{2^{* \prime}}}
$$

for suitable constant C^{\prime}. To get the conclusion it suffices to estimate $\| \frac{\mid u u^{\nu}}{\|u\|_{L^{2^{* \prime}}}}$ in terms of $\frac{\|u\|_{L^{p}}^{p}}{\|u\|}$. If $p \geq 2^{* \prime} \nu$, then this is an consequence of Hölder inequality. Next we consider the case $p<2^{* \prime} \nu$. By the assumptions p and ν,

$$
\begin{equation*}
\nu \leq 2^{*}-1-\left(2^{*}-p\right)\left(1-\frac{2^{* \prime}}{2^{*}}\right) . \tag{3.2}
\end{equation*}
$$

By the standard interpolation arguments, it follows that $\left\|\frac{|u|^{\nu}}{\|u\| \|}\right\|_{L^{2^{* \prime}}} \leq$ $C\left(\frac{\|u\|_{L^{p}}^{p}}{\|u\|^{\frac{\nu \alpha}{p}}}\|u\|^{\beta}\right.$, where α is such that $\frac{\alpha}{p}+\frac{1-\alpha}{2^{*}}=\frac{1}{2^{*^{\prime} \nu}}(\alpha>0)$ and $\beta=(1-\alpha) \nu-1-\frac{\nu \alpha}{p}$. By (3.2), $\beta \leq 0$. Thus we prove the lemma.

By (f3), the functional $I(u)$ is well-defined and continuous on H.
Proposition 3.1. Assume that the conditions $(f 1)-(f 3)$ hold. Then the functional $J(u)$ is continuous, Fréchet differentiable in H with Fréchet derivative

$$
\nabla J(u) v=\int_{\Omega}\left[(L u) \cdot v-f_{u}(x, u) \cdot v\right] d x .
$$

Moreover $\nabla J \in C$. That is $J \in C^{1}$.

Proof. First we shall prove that $J(u)$ is continuous at u. For $u, v \in H$,

$$
\begin{aligned}
& |J(u+v)-J(u)| \\
& =\left\lvert\, \frac{1}{2} \int_{\Omega}(L u+L v) \cdot(u+v) d x-\int_{\Omega} f(x, u+v) d x\right. \\
& \left.-\frac{1}{2} \int_{\Omega}(L u) \cdot u d x+\int_{\Omega} f(x, u) d x \right\rvert\, \\
& =\left\lvert\, \frac{1}{2} \int_{\Omega}\left[(L u \cdot v+L v \cdot u+L v \cdot v) d x-\int_{\Omega}(f(x, u+v)-f(x, u)) d x \mid .\right.\right.
\end{aligned}
$$

Since $f \in C^{1}(\bar{\Omega} \times H, R)$, we have

$$
\begin{equation*}
\left|\int_{\Omega}[f(x, u+v)-f(x, u)] d x\right| \leq\left|\int_{\Omega}\left[f_{u}(x, u) \cdot v+o(|v|)\right] d x\right|=O(|v|) . \tag{3.3}
\end{equation*}
$$

Thus we have

$$
|J(u+v)-J(u)|=O\left(|v|^{2}\right),
$$

So $J(u)$ is continuous at u in H. Next we shall prove that $J(u)$ is Fréchet differentiable in H. For $u, v \in H$,

$$
\begin{aligned}
& |J(u+v)-J(u)-\nabla J(u) v| \\
& =\left\lvert\, \frac{1}{2} \int_{\Omega}(L u+L v) \cdot(u+v) d x-\int_{\Omega} f(x, u+v) d x\right. \\
& \left.-\frac{1}{2} \int_{\Omega}(L u) \cdot u d x+\int_{\Omega} f(x, u) d x-\int_{\Omega}\left(L u-f_{u}(x, u)\right) \cdot v d x \right\rvert\, \\
& =\left\lvert\, \frac{1}{2} \int_{\Omega}[L u \cdot v+L v \cdot u+L v \cdot v] d x\right. \\
& -\int_{\Omega}[f(x, u+v)-f(x, u)] d x-\int_{\Omega}\left[\left(L u-f_{u}(x, u)\right) \cdot v\right] d x \mid
\end{aligned}
$$

By (3.3), we have

$$
|J(u+v)-J(u)-\nabla J(u) v|=O\left(|v|^{2}\right)
$$

Similarly, it is easily checked that $J \in C^{1}$.
Proof of Theorem 1.2
From now on we shall prove that J satisfies Palais-Smale condition under the assumptions (f1)-(f3). Assume that the (f1)-(f3) hold. Let $c \in R$ and $\left(u_{n}\right)_{n}$ be a sequence in H such that

$$
J\left(u_{n}\right) \rightarrow c, \quad \nabla J\left(u_{n}\right) \rightarrow 0 .
$$

We claim that $\left(u_{n}\right)_{n}$ is bounded. By contradiction we suppose that $\left\|u_{n}\right\| \rightarrow+\infty$ and set $\hat{u_{n}}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Then

$$
\begin{gathered}
\left\langle\nabla J\left(u_{n}\right), \hat{u_{n}}\right\rangle=2 \frac{J\left(u_{n}\right)}{\left\|u_{n}\right\|}- \\
\frac{\int_{\Omega} f_{u}\left(x, u_{n}\right) \cdot u_{n} d x-2 \int_{\Omega} f\left(x, u_{n}\right) d x}{\left\|u_{n}\right\|} \longrightarrow 0 .
\end{gathered}
$$

Hence

$$
\frac{\int_{\Omega} f_{u}\left(x, u_{n}\right) \cdot u_{n} d x-2 \int_{\Omega} f\left(x, u_{n}\right) d x}{\left\|u_{n}\right\|} \longrightarrow 0 .
$$

By Lemma 3.2,

$$
\frac{\operatorname{grad} \int_{\Omega} f\left(x, u_{n}\right) d x}{\left\|u_{n}\right\|} \quad \text { converges }
$$

and $\hat{u_{n}} \rightharpoonup 0$. We get

$$
\frac{\nabla J\left(u_{n}\right)}{\left\|u_{n}\right\|}=L \hat{u_{n}}-\frac{\operatorname{grad}\left(\int_{\Omega} f\left(x, u_{n}\right) d x\right)}{\left\|u_{n}\right\|} \longrightarrow 0
$$

so $L \hat{u_{n}}$ converges. Since $\left(\hat{u_{n}}\right)_{n}$ is bounded and the operator of L^{-1} is a compact mapping, up to subsequence, $\left(\hat{u_{n}}\right)_{n}$ has a limit. Since $\hat{u_{n}} \rightharpoonup 0$, we get $\hat{u_{n}} \rightarrow 0$, which is a contradiction to the fact that $\left\|\hat{u_{n}}\right\|=1$. Thus $\left(u_{n}\right)_{n}$ is bounded. We can now suppose that $u_{n} \rightharpoonup u$ for some $u \in$ H. Since the mapping $u \mapsto \operatorname{grad}\left(\int_{\Omega} f(x, u) d x\right)$ is a compact mapping, $\operatorname{grad}\left(\int_{\Omega} f\left(x, u_{n}\right) d x\right) \longrightarrow \operatorname{grad}\left(\int_{\Omega} f(x, u) d x\right)$. Thus Lun converges. Since the operator of L^{-1} is a compact operator and $\left(u_{n}\right)_{n}$ is bounded, we deduce that, up to a subsequence, $\left(u_{n}\right)_{n}$ converges to some u strongly with $\nabla J(u)=\lim \nabla J\left(u_{n}\right)=0$. Thus we prove the lemma.

References

[1] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14, 349-381 (1973).
[2] Q. H. Choi and T. Jung, Multiple periodic solutions of a semilinear wave equation at double external resonances, Communications in Applied Analysis 3, No. 1, 73-84 (1999).
[3] E. N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinb. 76 A, 283-300 (1977).
[4] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 6, American Mathematical Society, Providence, R1,(1986).

Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail: tsjung@kunsan.ac.kr
Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr

[^0]: Received October 12, 2009. Revised November 29, 2009.
 2000 Mathematics Subject Classification: 35B10, 35L05, 35L20.
 Key words and phrases: Strongly definite functional, Sobolev space, Palais-smale condition, critical point theory, corresponding functional.
 *Corresponding author.

