SPECTRUMS OF WEIGHTED LEFT REGULAR ISOMETRIES OF A STRONGLY PERFORATED SEMIGROUP

S.Y. Jang*, B. J. Kim, T. W. Lee, Y. J. Kang and S.H. Jeon

Abstract

We compute spectrums of left regular isometries and weighted left regular isometries of a strongly perforated semigroup $P=\{0,2,3,4, \cdots\}$.

1. Introduction

Let \mathcal{H} be a Hilbert space, A a bounded linear operator on \mathcal{H}, and $C^{*}(A)$ denote the C^{*}-algebra generated by A and the identity operator I. The operator A is called GCR, or postliminal, if $C^{*}(A)$ is a GCR C^{*}-algebra. Recall that a C^{*}-algebra \mathcal{A} is called CCR, or liminal, if for every irreducible representation π of \mathcal{A} on a Hilbert space and for every $A \in \mathcal{A}, \pi(A)$ is compact [$4,4.2 .1$]. A C^{*}-algebra \mathcal{A} is called GCR if \mathcal{A} has an increasing family of closed two-sided ideals $\left(\mathcal{I}_{\rho}\right)_{0 \leq \rho \leq \alpha}$ satisfying $\mathcal{I}_{0}=\{0\}, \mathcal{I}_{\alpha}=\mathcal{A}$, if $\rho \leq \alpha$ is a limit ordinal, then \mathcal{I}_{ρ} is the uniform closure of $\cup\left\{\mathcal{I}_{\rho}^{\prime}: \rho^{\prime}<\rho\right\}$ and $\mathcal{I}_{\rho+1} / \mathcal{I}_{\rho}$ is CCR [4, 4.3.4]. Equivalently, \mathcal{A} is GCR if every irreducible representation of \mathcal{A} contains a nonzero compact operator [16, 4.6.4]. It has been known that this is equivalent to requiring that for every representation π on a Hilbert space, $\pi(\mathcal{A})$ generates a type I W^{*}-algebra [16].

The basic examples of CCR algebras are commutative C^{*}-algebra, the algebras M_{n} of $n \times n$ complex matrices, and the algebra $\mathcal{K}(\mathcal{H})$ of all compact operators on a Hilbert space \mathcal{H}. Also C^{*}-subalgebras of GCR algebras are GCR [4, 4.3.5].

Received December 31, 2008. Revised January 9, 2009.
2000 Mathematics Subject Classification: 46L05, 47C15.
Key words and phrases: CCR, GCR, isometric representation, left regular isometric representation, weighted left regular isometry, Toeplitz algebra.
*Corresponding author.

An operator A on a Hilbert space \mathcal{H} is called n-normal [14] if

$$
\sum \operatorname{sgn}(\sigma) A_{\sigma(1)} A_{\sigma(2)} \cdots A_{\sigma(2 n)}=0
$$

where $A_{1}, A_{2}, \cdots, A_{2 n}$ are arbitrary elements of the C^{*}-algebra generated by A, and the summation is taken over all permutations σ of $(1,2, \cdots, 2 n)$. It is clear that if A is n-normal, then every operator in $C^{*}(A)$ is also n-normal. Every n-normal operator A can be written as the direct sum of $\left\{A_{k}\right\}_{k=1}^{n}$ where each A_{k} is a $k \times k$ operator-valued matrix whose entries belong to a commutative C^{*}-algebra [14]. Thus n-normal operators are CCR, since every irreducible representation is of dimension less than or equal to n. Let $\mathcal{K}(\mathcal{H})$ denote the ideal of compact operators in $\mathcal{B}(\mathcal{H})$, and let ϕ denote the canonical homomorphism for $\mathcal{B}(\mathcal{H})$ onto the Calkin algebra $\mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$. We call an operator A essentially n-normal if $\phi(A)$ is n-normal, or equivalent if

$$
\sum \operatorname{sgn}(\sigma) A_{\sigma(1)} A_{\sigma(2)} \cdots A_{\sigma(2 n)} \in \mathcal{K}(\mathcal{H})
$$

where $A_{1}, A_{2}, \cdots, A_{2 n}$ are arbitrary elements of the C^{*}-algebra generated by A. We remark that essentially n-normal operators are GCR since $C^{*}(A) /\left(C^{*}(A) \cap \mathcal{K}(\mathcal{H})\right)$ is an n-normal algebra and hence CCR. A large class of essentially n-normal operators are those operators which can be written as direct sum of $k \times k$ operator-valued matrices $(k \leq n)$ with entries in a C^{*}-algebra \mathcal{A}_{k} such that $\phi\left(\mathcal{A}_{k}\right)$ is commutative. As an important example we mention those $n \times n$ operator-valued matrices whose entries are Toeplitz operators with continuous symbol [6].

Now fix a separable Hilbert space $l^{2}(\mathbb{N})$ and an orthonormal basis $\left\{e_{n}\right\}_{n=0}^{\infty}$ for $l^{2}(\mathbb{N})$. A bounded linear operator S on $l^{2}(\mathbb{N})$ is called a weighted shift with weights $\left\{\alpha_{n}\right\}_{n=1}^{\infty} \in l^{\infty}(\mathbb{N})$ if

$$
S\left(e_{n}\right)=\alpha_{n+1} e_{n+1}
$$

for $n=0,1,2, \cdots$. Since the weighted shift with weights $\left\{\left|\alpha_{n}\right|\right\}_{n=1}^{\infty}$, we assume that $\alpha_{n} \geq 0$. When $\alpha_{n}=1$ for all n, we obtain the unilateral shift U defined by $U\left(e_{n}\right)=e_{n+1}$. Notice that U is a pure isometry that is essentially normal hence GCR. In fact, it is known that $\mathcal{K}\left(l^{2}(\mathbb{N})\right) \subset C^{*}(U)$ and $C^{*}(U) / \mathcal{K}\left(l^{2}(\mathbb{N})\right)$ is *-isomorphic to $C(\mathbb{T})$, the continuous functions on the unit circle \mathbb{T}. If S is any weighted shift, then $S=U D$ where D is the diagonal operator, $D=\operatorname{Diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)$, defined by $D e_{n}=\alpha_{n+1} e_{n}$. Since we assume that $\alpha_{n} \geq 0$, we have that $D=\left(S^{*} S\right)^{1 / 2} \in C^{*}(S)$, and that $S=U D$ is the polar decomposition of S if $\alpha_{n}>0$ for all n. A weighted shift S with weights $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is
called periodic if there exists an integer p such that $\alpha_{n}=\alpha_{n+p}$ for all n. In this case S is said to be periodic of period p. It is known that a weighted shift with weights $\left\{\alpha_{n}\right\}$ such that $\alpha_{n}-\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$ for some periodic sequence $\left\{\beta_{n}\right\}$ is GCR.

In this paper we will study shifts on a $\operatorname{Hilbert}$ space $l^{2}(P)$ when $P=$ $\{0,2,3, \cdots\}$. Though the natural number semigroup $\mathbb{N}=\{0,1,2,3, \cdots\}$ is a totally and well ordered semigroup, the semigroup $P=\{0,2,3, \cdots\}$ is partially ordered semigroup and strongly perforated semigroup. That is, the order structure of P is very different from \mathbb{N}. Hence the shift on $l^{2}(P)$ acts differently from the shift on $l^{2}(\mathbb{N})$.

We define an isometric representation of a semigroup M and also the left regular isometry \mathcal{L}_{x} as a generalized shift on a Hilbert space for each $x \in M$. We compute spectrums of left regular isometries and weighted left regular isometries on $l^{2}(P)$. And also we show that the operator $\mathcal{L}_{3} \mathcal{L}_{2}^{*}$ can be perturbed as a GCR element for $2,3 \in P$.

2. Isometric representation

Let M denote a semigroup with unit e and let B be a unital C^{*}-algebra with unit I_{B}. We call a map $W: M \rightarrow B, x \rightarrow W_{x}$ an isometric homomorphism if each W_{x} is an isometry and $W_{x y}=W_{x} W_{y}$ for all $x, y \in M$ and $W_{e}=1_{B}$. If $B=B(\mathcal{H})$ for a Hilbert space $\mathcal{H},(\mathcal{H}, W)$ is called an isometric representation of M.

If M is left cancellative, we can have a specific isometric representation. Let \mathcal{H} be a non-zero Hilbert space and $l^{2}(M, \mathcal{H})$ denote the Hilbert space of all norm-square summable maps f from M to \mathcal{H}, i.e.,

$$
l^{2}(M, \mathcal{H})=\left\{\left.f\left|f: M \rightarrow \mathcal{H}, \Sigma_{x \in M}\right| f(x)\right|^{2}<\infty\right\}
$$

The norm and scalar product on $l^{2}(M, \mathcal{H})$ are given as follows;

$$
\begin{gathered}
\|f\|^{2}=\Sigma_{x \in M}|f(x)|^{2}<\infty \\
<f, g>=\Sigma_{x \in M}<f(x), g(x)>.
\end{gathered}
$$

For each $x \in M$, we define a map \mathcal{L}_{x} on $l^{2}(M, \mathcal{H})$ by the equation ;

$$
\left(\mathcal{L}_{x} f\right)(z)= \begin{cases}f(y), & \text { if } z=x y \text { for some } y \in M \\ 0, & \text { if } z \notin x M\end{cases}
$$

By the definition of adjoint operator $\left(\mathcal{L}_{x}^{*} f\right)(z)=f(z x)$ for $x, z \in M$, we have

$$
\left(\mathcal{L}_{x}^{*} \mathcal{L}_{x} f\right)(z)= \begin{cases}\mathcal{L}_{x}^{*} f(y), & \text { if } z=x y \text { for some } y \in M \\ 0, & \text { if } z \notin x M\end{cases}
$$

so $\mathcal{L}_{x}^{*} \mathcal{L}_{x}$ is the identity operator on $l^{2}(M, H)$. And

$$
\left(\mathcal{L}_{x} \mathcal{L}_{x}^{*} f\right)(z)=f(z x)= \begin{cases}\mathcal{L}_{x} f(y), & \text { if } z=x y \text { for some } y \in M \\ 0, & \text { if } z \notin x M .\end{cases}
$$

Thus $\mathcal{L}_{x} \mathcal{L}_{x}^{*}$ is the orthogonal projection onto the subspace generated by $\{z \in M \mid z \in x M\}$, so \mathcal{L}_{x} is a non-unitary isometry on $l^{2}(M, \mathcal{H})$ when $x \neq e \in M$.

Since \mathcal{L}_{x} is an isometry and $\mathcal{L}_{x} \mathcal{L}_{y}=\mathcal{L}_{x y}$ for each $x, y \in M$, the map $\mathcal{L}: M \rightarrow B\left(l^{2}(M, \mathcal{H})\right), x \rightarrow \mathcal{L}_{x}$ is an isometric representation. The map \mathcal{L} is called a left regular isometric representation.

If the Hilbert space \mathcal{H} is the complex field \mathbb{C}, then we have $l^{2}(M, \mathcal{H})=$ $l^{2}(M)$. In this case we can see more explicitly how \mathcal{L}_{x} acts for each $x \in M$. Let $\left\{\delta_{x} \mid x \in M\right\}$ be the orthonormal basis of $l^{2}(M)$ defined by

$$
\delta_{x}(y)= \begin{cases}1, & x=y \\ 0, & \text { otherwise }\end{cases}
$$

\mathcal{L}_{x} acts like a shift and translates the elements of the orthonormal basis of $l^{2}(M, \mathcal{H})$ as follows:

$$
\left(\mathcal{L}_{x}\left(\delta_{y}\right)\right)(z)=\left\{\begin{array}{ll}
\delta_{y}(t), & z=x t \\
0, & \text { otherwise }
\end{array}= \begin{cases}1, & z=x y \\
0, & \text { otherwise }\end{cases}\right.
$$

Hence $\mathcal{L}_{x}\left(\delta_{y}\right)=\delta_{x y}$ for each $x, y \in M$. Clearly $\mathcal{L}_{x}^{*} \mathcal{L}_{x}$ is the identity because $\mathcal{L}_{x}^{*} \mathcal{L}_{x}\left(\delta_{y}\right)=\mathcal{L}_{x}^{*}\left(\delta_{x y}\right)=\delta_{y}$ for all $y \in M$. Furthermore, since

$$
\left(\mathcal{L}_{x} \mathcal{L}_{x}^{*}\left(\delta_{y}\right)\right)=\left\{\begin{array}{ll}
\mathcal{L}_{x}\left(\delta_{y}\right), & y=x z \\
0, & \text { otherwise }
\end{array}= \begin{cases}\delta_{x z}=\delta_{y}, & z=x y \\
0, & \text { otherwise }\end{cases}\right.
$$

$\mathcal{L}_{x} \mathcal{L}_{x}^{*}$ is the projection onto the sub-Hilbert space generated by $\{y \in M \mid$ $y \in x M\}$.

If $M=\mathbb{N}$, the semigroup of natural numbers, \mathcal{L}_{1} is the unilateral shift on $l^{2}(\mathbb{N})$ with respect to the orthonormal basis $\left\{\delta_{n} \mid n \in \mathbb{N}\right\}$ because $\mathcal{L}_{1}\left(\delta_{n}\right)=\delta_{n+1}$ for all $n \in \mathbb{N}$. This is why the left regular isometry can be called as a generalized shifts.

Assume that $x \in M$ is invertible in M. Then we have $\left(\mathcal{L}_{x} f\right)(z)=$ $f\left(x^{-1} z\right)$ for $x, z \in M, \mathcal{L}_{x}$ is an unitary.

The C^{*}-algebra generated by $\left\{\mathcal{L}_{x} \mid x \in M\right\}$ is denoted by $C_{\text {red }}^{*}\left(\mathcal{L}_{M}\right)$ [7]. The C^{*}-algebras generated by isometries is one of the interesting area of C^{*}-algebras $[2,3,9,10,11,12,13]$

Let $\alpha=\left(\alpha_{x}\right)_{x \in M}$, and $\alpha \in l^{\infty}(M)$. Let D_{α} be the diagonal operator acting as follows:

$$
D_{\alpha}\left(\delta_{x}\right)=\alpha_{x} \delta_{x}
$$

for all $x \in M$. Let $W_{x}^{\alpha}=\mathcal{L}_{x} D_{\alpha}$ be the weighted left regular isometry for each $x \in M$

3. Left regular isometric representation of $P=\{0,2,3, \cdots\}$

Let M be a countable discrete semigroup. We can give an order on M as follows: if an element x in M is contained in $y M$ for some element $y \in M$, then x and y are comparable and we denote this by $y \leq x$. This relation makes M a pre-ordered semigroup.

If M is abelian, M can be equipped with the algebraic order $y \leq x$ if and only if $x=y+z$ for some $z \in M$. An element $x \in M$ is called positive if $y \leq y+x$ for all $y \in M$, and M is positive if all elements in M are positive. If M has a zero element 0 , then M is positive if and only if $0 \leq x$ for all $x \in M$.

A positive ordered abelian semigroup W is said to be almost unperforated if for all $x, y \in M$ and all $n, m \in M$, with $n x \leq m y$ and $n>m$, one has $x \leq y$. A partially ordered abelian group G with the positive cone M is said to be almost unperforated if the statement that $x \in G$ and $n \in \mathbb{N}$ with $n x,(n+1) x \in M$ implies that $x \in M$. It is known that G is almost unperforated if and only if the positive semigroup M is almost unperforated for a partially ordered abelian group (G, M) [17].

If the condition that $n \in \mathbb{N}$ and $x \in G$ with $n x \in M$ implies that $x \in M$, then the partially ordered abelian group (G, M) is weakly unperforated. Any weakly unperforated group is almost unperforated, but the converse is not true. The negation of almost unperforated property is strongly perforated.

The semigroup $P=\{0,2,3,4,5,6, \cdots\}$ is strongly perforated. In [8] we show that the reduced semigroup C^{*}-algebra $C_{r e d}^{*}(P)$ of the semigroup P is isomorphic to the classical Toeplitz algebra and $C_{r e d}^{*}(P)$ is not isomorphic to the semigroup C^{*}-algebra $C^{*}(P)$.

Let $A \in B(H)$ be any bounded linear operator on a Hilbert space H. We write $\sigma(A), \sigma_{p}(A)$, and $\sigma_{a p}(A)$ for the spectrum, point spectrum, and approximate point spectrum of A.

Theorem 3.1. Let \mathcal{L}_{2} be a left regular isometry on $l^{2}(P)$ and \mathcal{L}_{2}^{*} be the adjoint operator of \mathcal{L}_{2}. Then we have the following results on the spectrums:

1. $\sigma\left(\mathcal{L}_{2}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\} ;$
2. $\sigma_{a p}\left(\mathcal{L}_{2}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$;
3. $\sigma_{p}\left(\mathcal{L}_{2}\right)=\emptyset$;
4. $\sigma\left(\mathcal{L}_{2}^{*}\right)=\sigma_{a p}\left(\mathcal{L}_{2}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$;
5. $\sigma_{p}\left(\mathcal{L}_{2}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\}$.

Proof. We consider a non-zero element $\mathbf{x}_{\lambda}=\left(x_{n}\right)_{n \in P}$ such that $\mathcal{L}_{2} \mathbf{x}_{\lambda}=$ $\lambda \mathbf{x}_{\lambda}$. Then we have

$$
\mathcal{L}_{2}\left(\mathbf{x}_{\lambda}\right)=\left(0, x_{0}, 0, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(\lambda x_{0}, \lambda x_{2}, \lambda x_{3}, \lambda x_{4} \cdots\right) .
$$

So we have $0=\lambda x_{0}, x_{0}=\lambda x_{2}, 0=\lambda x_{3}, \cdots$. If $0 \neq \lambda, x_{0}=x_{2}=x_{3}=$ $\cdots=0$. This contradicts to the fact \mathbf{x}_{λ} is non-zero vector. Since \mathcal{L}_{2} is isometry, $\operatorname{Ker} \mathcal{L}_{2}=\{\mathbf{0}\}$. Hence $\lambda=0 \notin \sigma_{p}\left(\mathcal{L}_{2}\right)$. Therefore $\sigma_{p}\left(\mathcal{L}_{2}\right)=\emptyset$.

Next, we will show that $\sigma_{p}\left(\mathcal{L}_{2}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\}$. We assume that $|\lambda|<1$. We consider a non-zero element $\mathbf{x}_{\lambda}=\left(x_{n}\right)$ such that $\mathcal{L}_{2}^{*} \mathbf{x}_{\lambda}=\lambda \mathbf{x}_{\lambda}$. Then we have

$$
\mathcal{L}_{2}^{*}\left(\mathbf{x}_{\lambda}\right)=\left(x_{2}, x_{4}, x_{5}, x_{6}, x_{7} \cdots\right)=\left(\lambda x_{0}, \lambda x_{2}, \lambda x_{3}, \lambda x_{4}, \lambda x_{5} \cdots\right) .
$$

So we have $x_{2}=\lambda x_{0}, x_{4}=\lambda x_{2}=\lambda^{2} x_{0}, x_{5}=\lambda x_{3}, x_{6}=\lambda x_{4}=\lambda^{3} x_{0}, x_{7}=$ $\lambda x_{5}=\lambda^{2} x_{3} \cdots$. Since $|\lambda|<1$,

$$
\mathbf{x}_{\lambda}=\left(x_{n}\right)=\left(x_{0}, \lambda x_{0}, x_{3}, \lambda^{2} x_{0}, \lambda x_{3}, \lambda^{3} x_{0}, \lambda^{2} x_{3}, \cdots\right) \in l^{2}(P) .
$$

Hence $\mathbf{x}_{\lambda}=\left(x_{n}\right)=\left(x_{0}, \lambda x_{0}, x_{3}, \lambda^{2} x_{0}, \lambda x_{3}, \lambda^{3} x_{0}, \lambda^{2} x_{3}, \cdots\right)$ is an eigenvector of \mathcal{L}_{2}^{*}. So we have that $\sigma_{p}\left(\mathcal{L}_{2}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\}$.

Since $\left\{\lambda \in \mathbb{C}||\lambda|<1\}=\sigma_{p}\left(\mathcal{L}_{2}^{*}\right) \subset \sigma_{a p}\left(\mathcal{L}_{2}^{*}\right) \subset \sigma\left(\mathcal{L}_{2}^{*}\right), \| \mathcal{L}_{2}| |=1\right.$, and both $\sigma_{a p}\left(\mathcal{L}_{2}^{*}\right)$ and $\sigma\left(\mathcal{L}_{2}^{*}\right)$ are closed, $\sigma\left(\mathcal{L}_{2}^{*}\right)=\sigma_{a p}\left(\mathcal{L}_{2}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$. And furthermore since $\sigma\left(\mathcal{L}_{2}^{*}\right)=\sigma\left(\mathcal{L}_{2}\right)^{*}=\left\{\bar{\lambda} \mid \lambda \in \sigma\left(\mathcal{L}_{2}^{*}\right)\right\}$, we have $\sigma\left(\mathcal{L}_{2}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$.

Assume that $|\lambda|<1$.

$$
\left\|\left(\mathcal{L}_{2}-\lambda I\right)(\mathbf{x})\right\| \geq\left\|\mathcal{L}_{2}(\mathbf{x})\right\|-|\lambda|\|\mathbf{x}\| \geq(1-|\lambda|)\|\mathbf{x}\|>0
$$

for any $\mathbf{x} \in l^{2}(P)$. So if $|\lambda|<1$, then $\lambda \notin \sigma_{a p}\left(\mathcal{L}_{2}\right)$. Therefore $\sigma_{a p}\left(\mathcal{L}_{2}\right)=$ $\{\lambda \in \mathbb{C}||\lambda|=1\}$.

Corollary 3.2. Let \mathcal{L}_{3} be a left regular isometry on $l^{2}(P)$ and \mathcal{L}_{3}^{*} be the adjoint operator of \mathcal{L}_{3}. Then we have the following results on the spectrums:

1. $\sigma\left(\mathcal{L}_{3}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$;
2. $\sigma_{a p}\left(\mathcal{L}_{3}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$;
3. $\sigma_{p}\left(\mathcal{L}_{3}\right)=\emptyset$;
4. $\sigma\left(\mathcal{L}_{3}^{*}\right)=\sigma_{a p}\left(\mathcal{L}_{3}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$;
5. $\sigma_{p}\left(\mathcal{L}_{3}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\}$.

Proof. First, we will show that $\sigma_{p}\left(\mathcal{L}_{3}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\}$. We assume that $|\lambda|<1$. We consider a non-zero elemenet $\mathbf{x}_{\lambda}=\left(x_{n}\right)$ such that $\mathcal{L}_{3}^{*} \mathbf{x}_{\lambda}=\lambda \mathbf{x}_{\lambda}$. Then we have

$$
\mathcal{L}_{3}^{*}\left(\mathbf{x}_{\lambda}\right)=\left(x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, \cdots\right)=\left(\lambda x_{0}, \lambda x_{2}, \lambda x_{3}, \lambda x_{4}, \lambda x_{5}, \cdots\right) .
$$

So we have $x_{3}=\lambda x_{0}, x_{5}=\lambda x_{2}, x_{6}=\lambda^{2} x_{0}, x_{7}=\lambda x_{4}, x_{8}=\lambda x_{5}=$ $\lambda^{2} x_{2} \cdots$. Since $|\lambda|<1,\left(x_{0}, x_{2}, \lambda x_{0}, x_{4}, \lambda x_{2}, \lambda^{2} x_{0}, \lambda x_{4}, \lambda^{2} x_{2}, \cdots\right) \in l^{2}(P)$. Hence $\mathbf{x}_{\lambda}=\left(x_{n}\right)=\left(x_{0}, x_{2}, \lambda x_{0}, x_{4}, \lambda x_{2}, \lambda^{2} x_{0}, \lambda x_{4}, \lambda^{2} x_{2}, \cdots\right)$ is an eigenvector of \mathcal{L}_{3}^{*}. So we have that $\sigma_{p}\left(\mathcal{L}_{3}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\}$.

Since $\left\{\lambda \in \mathbb{C}||\lambda|<1\}=\sigma_{p}\left(\mathcal{L}_{3}^{*}\right) \subset \sigma_{a p}\left(\mathcal{L}_{3}^{*}\right) \subset \sigma\left(\mathcal{L}_{3}^{*}\right), \| \mathcal{L}_{2}| |=1\right.$, and both $\sigma_{a p}\left(\mathcal{L}_{3}^{*}\right)$ and $\sigma\left(\mathcal{L}_{3}^{*}\right)$ are closed, $\sigma\left(\mathcal{L}_{3}^{*}\right)=\sigma_{a p}\left(\mathcal{L}_{3}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$. And furthermore since $\sigma\left(\mathcal{L}_{3}^{*}\right)=\sigma\left(\mathcal{L}_{3}\right)^{*}$, we have $\sigma\left(\mathcal{L}_{3}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq$ $1\}$.

We consider a non-zero elemenet $\mathbf{x}_{\lambda}=\left(x_{n}\right)$ such that $\mathcal{L}_{3} \mathbf{x}_{\lambda}=\lambda \mathbf{x}_{\lambda}$. Then we have

$$
\mathcal{L}_{3}\left(\mathbf{x}_{\lambda}\right)=\left(0,0, x_{0}, 0, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(\lambda x_{0}, \lambda x_{2}, \lambda x_{3}, \lambda x_{4} \cdots\right) .
$$

If $0 \neq \lambda, x_{0}=x_{2}=x_{3}=\cdots=0$. This contradicts to the fact $\mathbf{x}_{\lambda} \neq \mathbf{0}$. Since $\operatorname{ker} \mathcal{L}_{3}=\{\mathbf{0}\}, 0 \notin \sigma_{p}\left(\mathcal{L}_{3}\right)$ So, we have that $\sigma_{p}\left(\mathcal{L}_{3}\right)=\emptyset$. By the similar computation of the proof of the Theorem 3.1 we will see that if $|\lambda|<1$, then $\lambda \notin \sigma_{a p}\left(\mathcal{L}_{2}\right)$. Therefore $\sigma_{a p}\left(\mathcal{L}_{2}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$.

Theorem 3.3. Suppose that $0<\left|\alpha_{0}\right| \leq\left|\alpha_{1}\right| \leq\left|\alpha_{2}\right| \leq \cdots$ and $r=\sup \left|\alpha_{n}\right|<\infty$. Let $W_{2}^{\alpha}=\mathcal{L}_{2} M_{\alpha}$ be a weighted left regular isometry on $l^{2}(P)$ and $W_{2}^{\alpha^{*}}$ be the adjoint operator of W_{2}^{α}. Then we have the following results on the spectrums:

1. $\sigma\left(W_{2}^{\alpha}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq r\}$;
2. $\sigma_{a p}\left(W_{2}^{\alpha}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=r\}$;
3. $\sigma_{p}\left(W_{2}^{\alpha}\right)=\emptyset$;
4. $\sigma\left(W_{2}^{\alpha^{*}}\right)=\sigma_{a p}\left(W_{2}^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq r\}$;
5. $\sigma_{p}\left(W_{2}^{\alpha^{*}}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<r\}$.

Proof. First, we will show that $\sigma_{p}\left(W_{2}^{\alpha *}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<r\}$. We assume that $|\lambda|<r$. We consider a non-zero elemenet $\mathbf{x}_{\lambda}=\left(x_{n}\right)$ such that $W_{2}^{\alpha *} \mathbf{x}_{\lambda}=\lambda \mathbf{x}_{\lambda}$. Then we have

$$
W_{2}^{\alpha}\left(\mathbf{x}_{\lambda}\right)=\left(\alpha_{0} x_{2}, \alpha_{2} x_{4}, \alpha_{3} x_{5}, \alpha_{4} x_{6}, \cdots\right)=\left(\lambda x_{0}, \lambda x_{2}, \lambda x_{3}, \lambda x_{4} \cdots\right) .
$$

So

$$
\mathbf{x}_{\lambda}=\left(x_{0}, \frac{\lambda}{\alpha_{0}} x_{0}, x_{3}, \frac{\lambda^{2}}{\alpha_{0} \alpha_{2}} x_{0}, \frac{\lambda}{\alpha_{3}} x_{3}, \frac{\lambda^{3}}{\alpha_{0} \alpha_{2} \alpha_{4}} x_{0}, \frac{\lambda^{2}}{\alpha_{3} \alpha_{5}} x_{3}, \cdots\right) .
$$

Since $|\lambda|<r=\operatorname{sup\alpha }_{n}$, we can see that $\mathbf{x}_{\lambda}=\left(x_{n}\right) \in l^{2}(P)$. Hence $\sigma_{p}\left(W_{2}^{\alpha^{*}}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<r\}$. Since $\left\{\lambda \in \mathbb{C}||\lambda|<r\}=\sigma_{p}\left(W_{2}^{\alpha^{*}}\right) \subset\right.$ $\sigma_{a p}\left(W_{2}^{\alpha^{*}}\right) \subset \sigma\left(W_{2}^{\alpha^{*}}\right)$, and both $\sigma_{a p}\left(W_{2}^{\alpha^{*}}\right)$ and $\sigma\left(W_{2}^{\alpha^{*}}\right)$ are closed, $\sigma\left(W_{2}^{\alpha^{*}}\right)=$ $\sigma_{a p}\left(W_{2}^{\alpha^{*}}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq r\}$. And furthermore since $\sigma\left(W_{2}^{\alpha^{*}}\right)=$ $\sigma\left(W_{2}\right)^{*}$, we have $\sigma\left(W_{2}^{\alpha}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq r\}$.

Suppose that $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}, \cdots\right) \in l^{2}(P)$ and $\lambda \neq 0$. Assume that $W_{2} \mathbf{x}=\lambda \mathbf{x}$. Then

$$
\left(\lambda x_{0}, \lambda x_{2}, \lambda x_{3}, \cdots\right)=\left(0, \alpha_{0} x_{0}, 0,0, \alpha_{2} x_{2}, \alpha_{3} x_{3} \cdots\right) .
$$

So $0=\lambda x_{0}, x_{0}=\lambda x_{2}, \cdots$. Hence $0=x_{0}=x_{2}=x_{3}=\cdots$. Therefore $\lambda \notin \sigma_{p}\left(W_{2}^{\alpha}\right)$. Since W_{2}^{α} is isometry, $\operatorname{Ker} W_{2}^{\alpha}=\{\mathbf{0}\}$. Hence $\lambda=0 \notin$ $\sigma_{p}\left(W_{2}^{\alpha}\right)$. Hence $\sigma_{p}\left(W_{2}^{\alpha}\right)=\emptyset$.

Suppose that $|\lambda|<r$. Then there exists a real number q such that $|\lambda|<q<r$. Since $r=\sup \left|\alpha_{n}\right|<\infty$, there exists a integer number n_{0} such that $\alpha_{n} \geq q$ for all $n \geq n_{0}$. Thus for any $\mathbf{x} \in l^{2}(P)$

$$
\begin{aligned}
& \left\|W_{2}^{\alpha}(\mathbf{x})\right\| \\
& =\left|\alpha_{0}\right|^{2}\left|x_{0}\right|^{2}+\left|\alpha_{2}\right|^{2}\left|x_{2}\right|^{2}+\cdots+\left|\alpha_{n_{0}}\right|^{2}\left|x_{n_{0}}\right|^{2}+\left|\alpha_{n_{0}+1}\right|^{2}\left|x_{n_{0}+1}\right|^{2}+\cdots \\
& >\left|\alpha_{0}\right|^{2}\left|x_{0}\right|^{2}+\left|\alpha_{2}\right|^{2}\left|x_{2}\right|^{2}+\cdots+|q|^{2}\left|x_{n_{0}}\right|^{2}+|q|^{2}\left|x_{n_{0}+1}\right|^{2}+\cdots .
\end{aligned}
$$

Hence we can say that $\left\|W_{2}^{\alpha}(\mathbf{x})\right\| \geq \mathbf{q}\|\mathbf{x}\|$ essentially. Thus $\|\left(W_{2}^{\alpha}-\right.$ $\lambda I)\left(\mathbf{x}_{n}\right) \|$ dose not converge to 0 for any sequence $\left\{\mathbf{x}_{n}\right\}$ with $\left\|\mathbf{x}_{n}\right\|=1$. So if $|\lambda|<r$, then $\lambda \notin \sigma_{a p}\left(W_{2}^{\alpha}\right)$. Therefore $\sigma_{a p}\left(W_{2}^{\alpha}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=$ $r\}$.

Corollary 3.4. Suppose that $\alpha=\left(\alpha_{0}, \alpha_{2}, \cdots\right)$ and $0<\left|\alpha_{0}\right| \leq$ $\left|\alpha_{2}\right| \leq\left|\alpha_{3}\right| \leq \cdots$, and $r=\sup \left|\alpha_{n}\right|<\infty$. Let $W_{3}^{\alpha}=\mathcal{L}_{3} M_{\alpha}$ be a weighted left regular isometry on $l^{2}(P)$ and $W_{3}^{\alpha^{*}}$ be the adjoint operator of W_{3}^{α} on $l^{2}(P)$. Then we have the following results on the spectrums:

1. $\sigma\left(W_{3}^{\alpha}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq r\}$;
2. $\sigma_{\text {ap }}\left(W_{3}^{\alpha}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=r\}$;
3. $\sigma_{p}\left(W_{3}^{\alpha}\right)=\emptyset$;
4. $\sigma\left(W_{3}^{\alpha^{*}}\right)=\sigma_{a p}\left(W_{3}^{\alpha^{*}}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq r\}$;
5. $\sigma_{p}\left(W_{3}^{\alpha^{*}}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<r\}$.

Proof. We assume that $|\lambda|<r$. We consider a non-zero elemenet $\mathbf{x}_{\lambda}=\left(x_{n}\right)$ such that $W_{3}^{\alpha^{*}} \mathbf{x}_{\lambda}=\lambda \mathbf{x}_{\lambda}$. Then we have

$$
W_{3}^{\alpha}\left(\mathbf{x}_{\lambda}\right)=\left(\alpha_{0} x_{3}, \alpha_{2} x_{5}, \alpha_{3} x_{6}, \alpha_{4} x_{7}, \cdots\right)=\left(\lambda x_{0}, \lambda x_{2}, \lambda x_{3}, \lambda x_{4} \cdots\right) .
$$

So we get $\lambda x_{0}=\alpha_{0} x_{3}, \lambda x_{2}=\alpha_{2} x_{5}, \lambda x_{3}=\alpha_{3} x_{6}, \lambda x_{4}=\alpha_{4} x_{7} \cdots$ and

$$
\begin{aligned}
& \mathbf{x}_{\lambda} \\
& =\left(x_{0}, x_{2}, \frac{\lambda}{\alpha_{0}} x_{0}, \frac{\lambda}{\alpha_{2}} x_{2}, \frac{\lambda^{2}}{\alpha_{0} \alpha_{3}} x_{0}, \frac{\lambda}{\alpha_{4}} x_{4}, \frac{\lambda^{2}}{\alpha_{2} \alpha_{5}} x_{2}, \frac{\lambda^{3}}{\alpha_{0} \alpha_{3} \alpha_{6}} x_{0}, \frac{\lambda^{2}}{\alpha_{4} \alpha_{7}} x_{4},\right. \\
& \left.\frac{\lambda^{3}}{\alpha_{2} \alpha_{5} \alpha_{8}} x_{2}, \cdots\right) .
\end{aligned}
$$

Since $|\lambda|<r=\sup \alpha_{n}$, we can see that $\mathbf{x}_{\lambda}=\left(x_{n}\right) \in l^{2}(P)$. Hence $\sigma_{p}\left(W_{3}^{\alpha^{*}}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<r\}$. Since $\left\{\lambda \in \mathbb{C}||\lambda|<r\}=\sigma_{p}\left(W_{3}^{\alpha^{*}}\right) \subset\right.$ $\sigma_{a p}\left(W_{3}^{\alpha^{*}}\right) \subset \sigma\left(W_{3}^{\alpha^{*}}\right)$ and $\sigma_{a p}\left(W_{3}^{\alpha^{*}}\right), \sigma\left(W_{3}^{\alpha^{*}}\right)$ are closed, $\sigma\left(W_{3}^{\alpha^{*}}\right)=$ $\sigma_{a p}\left(W_{3}^{\alpha^{*}}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq r\}$. And furthermore since $\sigma\left(W_{3}^{\alpha^{*}}\right)=$ $\sigma\left(W_{3}^{\alpha}\right)^{*}$, we have $\sigma\left(W_{3}^{\alpha}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq r\}$.

Suppose that $\mathbf{x}=\left(x_{0}, x_{2}, x_{3}, \cdots\right) \in l^{2}(P)$ and $\lambda \neq 0$. Assume that $W_{3}^{\alpha} \mathbf{x}=\lambda \mathbf{x}$. Then

$$
\left(\lambda x_{0}, \lambda x_{2}, \lambda x_{3}, \cdots\right)=\left(0,0, \alpha_{0} x_{0}, 0, \alpha_{2} x_{2}, \alpha_{3} x_{3} \cdots\right) .
$$

So $0=\lambda x_{0}, 0=\lambda x_{2}, \cdots$. Hence $0=x_{0}=x_{2}=x_{3}=\cdots$. Since \mathbf{x}_{λ} is not zero-vector, $\lambda \notin \sigma_{p}\left(W_{3}^{\alpha}\right)$. Furthermore the fact $\operatorname{Ker} W_{3}^{\alpha}=\{\mathbf{0}\}$ implies that $\lambda=0 \notin \sigma_{p}\left(W_{3}^{\alpha}\right)$. Hence $\sigma_{p}\left(W_{3}^{\alpha}\right)=\emptyset$.

Suppose that $|\lambda|<r$. Then there exists a real number q such that $|\lambda|<q<r$. Since $r=\sup \left|\alpha_{n}\right|<\infty$, there exists a integer number n_{0} such that $\alpha_{n} \geq q$ for all $n \geq n_{0}$. Thus for any $\mathbf{x} \in l^{2}(P)$

$$
\begin{aligned}
& \left\|W_{2}^{\alpha}(\mathbf{x})\right\| \\
& =\left|\alpha_{0}\right|^{2}\left|x_{0}\right|^{2}+\left|\alpha_{2}\right|^{2}\left|x_{2}\right|^{2}+\cdots+\left|\alpha_{n_{0}}\right|^{2}\left|x_{n_{0}}\right|^{2}+\left|\alpha_{n_{0}+1}\right|^{2}\left|x_{n_{0}+1}\right|^{2}+\cdots \\
& >\left|\alpha_{0}\right|^{2}\left|x_{0}\right|^{2}+\left|\alpha_{2}\right|^{2}\left|x_{2}\right|^{2}+\cdots+|q|^{2}\left|x_{n_{0}}\right|^{2}+|q|^{2}\left|x_{n_{0}+1}\right|^{2}+\cdots .
\end{aligned}
$$

Hence we can say that $\left\|W_{3}^{\alpha}(\mathbf{x})\right\| \geq q\|\mathbf{x}\|$ essentially. Thus $\|\left(W_{3}^{\alpha}-\right.$ $\lambda I)\left(\mathbf{x}_{n}\right) \|$ does not converge to 0 for any sequence $\left\{\mathbf{x}_{n}\right\}$ with $\left\|\mathbf{x}_{n}\right\|=1$. So if $|\lambda|<r$, then $\lambda \notin \sigma_{a p}\left(W_{3}^{\alpha}\right)$. Therefore $\sigma_{a p}\left(W_{3}^{\alpha}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=$ $r\}$.

The semigroup $P=\{0,2,3, \cdots\}$ is generated by 2 and 3 . Next we are going to consider a C^{*}-algebra $C^{*}\left(\mathcal{L}_{P}\right)$, which is generated by $\left\{\mathcal{L}_{x} \mid x \in P\right\}$. Then the C^{*}-algebra $C^{*}\left(\mathcal{L}_{P}\right)$ is generated by \mathcal{L}_{2} and \mathcal{L}_{3} because every element in P is generated by 2 and 3 . For any $n, m \in P$,

$$
\mathcal{L}_{n}\left(\delta_{m}\right)=\delta_{n+m}
$$

where $\left\{\delta_{m} \mid m \in P\right\}$ is the canonical orthonormal basis of $l^{2}(M)$ defined by

$$
\delta_{m}(l)=\left\{\begin{array}{lc}
1, & \text { if } m=l \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
\mathcal{L}^{*}{ }_{n}\left(\delta_{m}\right)= \begin{cases}\delta_{m-n}, & \text { if } m \in P+n, \\ 0, & \text { otherwise }\end{cases}
$$

If we consider an operator $\mathcal{L}_{3} \mathcal{L}_{2}^{*}$, then we have

$$
\mathcal{L}_{3} \mathcal{L}^{*}{ }_{2}\left(\delta_{m}\right)= \begin{cases}\delta_{m+1}, & \text { if } m \in P+2 \\ 0, & \text { otherwise }\end{cases}
$$

Hence $\mathcal{L}_{3} \mathcal{L}^{*}{ }_{2}\left(\delta_{0}\right)=0$ and $\mathcal{L}_{3} \mathcal{L}^{*}{ }_{2}\left(\delta_{m}\right)=\delta_{m+1}$ for all $m \in P-\{0\}$. That is, $\mathcal{L}_{3} \mathcal{L}^{*}{ }_{2}$ acts like a unilateral shift on the Hilbert $l^{2}(P)$ except δ_{0} with respect to the canonical basis $\left\{\delta_{m} \mid m \in P\right\}$. To exclude the gap of δ_{0} we consider a rank one operator K_{0} defined by

$$
K_{0}\left(\delta_{n}\right)=\left\{\begin{array}{lc}
\delta_{2}, & \text { if } n=0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $\left(\mathcal{L}_{3} \mathcal{L}^{*}{ }_{2}+K_{0}\right)\left(\delta_{m}\right)=\delta_{m+1}$ for all $m \in P$. Put $\mathcal{S}=\mathcal{L}_{3} \mathcal{L}^{*}{ }_{2}+K_{0}$. Then \mathcal{S} acts like a unilateral shift on the Hilbert $l^{2}(P)$ with respect to the canonical basis $\left\{\delta_{m} \mid m \in P\right\}$.

And $\mathcal{L}_{2} \mathcal{L}_{2}^{*}$ is an orthogonal projection on the sub-Hilbert generated by $\left\{\delta_{2}, \delta_{4}, \delta_{5} \cdots\right\}$, so $I-\mathcal{L}_{2} \mathcal{L}_{2}^{*}$ is the orthogonal projection on the subspace generated by $\left\{\delta_{0}, \delta_{2}\right\}$. We denote $\mathcal{L}_{n} \mathcal{L}_{n}^{*}$ and $I-\mathcal{L}_{n} \mathcal{L}_{n}^{*}$ by P_{n} and Q_{n}, respectively. Since by [8] the C^{*}-algebra $C^{*}\left(\mathcal{L}_{2}, \mathcal{L}_{3}\right)$ acts irreducibly on $l^{2}(P)$ and Q_{2} is the compact operator of rank two, the compact operator algebra $\mathcal{K}\left(l^{2}(H)\right)$ is contained in the C^{*}-algebra $C^{*}\left(\mathcal{L}_{3}, \mathcal{L}_{2}\right)$ Hence $K_{0} \in C^{*}\left(\mathcal{L}_{3}, \mathcal{L}_{2}\right)$ and $\mathcal{S} \in C^{*}\left(\mathcal{L}_{3}, \mathcal{L}_{2}\right)$. And we can see that \mathcal{L}_{2} and \mathcal{L}_{3} can be made by $\mathcal{L}_{3} \mathcal{L}_{2}^{*}$ and some compact operators[8].

Theorem 3.5. [8] The C^{*}-algebra $C^{*}\left(\mathcal{L}_{P}\right)$ is generated by \mathcal{S}.

Since Coburn proved [1] that the C^{*}-algebra generated by single nonunitary isometry is isomorphic to the Toeplitz algebra, the C^{*}-algebra $C^{*}\left(\mathcal{L}_{3}, \mathcal{L}_{2}\right)=C^{*}\left(\mathcal{L}_{P}\right)$ is isomorphic to the Toeplitz algebra.

Theorem 3.6. The operator \mathcal{S} in $\mathcal{B}\left(l^{2}(P)\right)$ is $G C R$.
Proof. Since $C^{*}(\mathcal{S})=C^{*}\left(\mathcal{L}_{3}, \mathcal{L}_{2}^{*}\right)=C^{*}\left(\mathcal{L}_{P}\right)$ is isomorphic to the Toeplitz algebra, \mathcal{S} is GCR.

References

[1] L. A. Coburn, The C^{*}-algebra generated by an isometry, II, Trans. Amer. Math. Soc. 137 (1969), 211-217.
[2] J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57(1977), 173-185.
[3] K. R. Davidson, Elias Katsoulis and David R. Pitts, The structure of free semigroup algebras J. Reine Angew. Math. 533(2001), 99-125.
[4] Jacques Diximier, Les C^{*}-algebres et Leurs Representations, Gauthier-Villars, Paris, 1964.
[5] R. G. Douglas, On the C^{*}-algebra of a one-parameter semigroup of isometries, Acta Math. 128(1972), 143-152.
[6] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
[7] S. Y. Jang, Reduced crossed products by semigroups of automorphisms J. Korean Math. 36 (1999), 97-107.
[8] S. Y, Jang, Generalized Toeplitz algebras of a certain non-amenable semigroup Bull. Korean Math. Soc. 43(2006),333-341.
[9] J. M. Fell, Weak containment and induced representations of groups, Can. J. Math. 14(1962), 237-268.
[10] M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139(1996), 415-446.
[11] P. Muhly and J. Renault, C^{*}-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274(1982), 1-44.
[12] G. J. Murphy, Crossed products of C^{*}-algebras by semigroups of automorphisms, Proc. London Math. Soc. (3) 68(1994), 423-448.
[13] A. Nica, C^{*}-algebras generated by isometries and Wiener-Hoff operators, J. Operator Theory 27(1992), 17-52.
[14] C. Pearcy, A complete set of unitary invariants for operators generating finite W^{*}-algebras of type I, Pacific J. Math. 12 (1962), 1405-1416.
[15] G. K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, New York, 1979.
[16] S. Saksi, On a characterization of type $I C^{*}$-algebras, Bull. Amer. Math. Soc. 72 (1966), 508-512.
[17] Mikael Rørdam, Structure and classification of C^{*}-algebras, Proceedings of the ICM, Madrid, Spain, European Mathematical Society, 2006.

Department of Mathematics
University of Ulsan
Ulsan 680-749, Republic of Korea
E-mail: jsym@uou.ulsan.ac.kr
Byeong Jun Kim,
Ulsan Science High School
Tae Woo Lee,
Ulsan Science High School
Yeong Joon Kang,
Ulsan Science High School
Seong Hoon Jeon,
Ulsan Science High School

