Korean J. Math. 17 (2009), No. 1, pp. 77–81

ON LEFT Γ -FILTERS OF Γ -po-SEMIGROUPS

S. K. LEE* AND Y. I. KWON

ABSTRACT. We introduce the notions of a left(right) Γ -filter in a *po*- Γ -semigroups and give a characterization of a left(right) Γ -filter of a *po*- Γ -semigroups in term of right(left) prime Γ -ideals.

M. K. Sen and N. K. Saha([6]) introduced the notion of a Γ -semigroup. Y. I. Kwon and S. K. Lee([3]) introduced the notion of a *po*- Γ -semigroup which is a generalization of *po*-semigroups and Γ -semigroups. N. Kehayopulu([2]) gave the the characterization of the filter of S in term of the prime ideals. S. K. Lee and S. S. Lee([5]) introduced the notion of a left(right) filter in a *po*-semigroup and gave a characterization of the left(right)-filter of S in term of the right(left) prime ideals. Y. B. Jun([1]) introduce the notion of a Γ -filter in a *po*- Γ -semigroup and gave a characterization of a characterization of a Γ -filter of a *po*- Γ -semigroup and gave a characterization of a characterization of a C-filter in a *po*- Γ -semigroup and gave a characterization of a C-filter of a *po*- Γ -semigroup and gave a characterization of a C-filter of a *po*- Γ -semigroup and gave a characterization of a C-filter of a *po*- Γ -semigroup and gave a characterization of a C-filter of a *po*- Γ -semigroup and gave a characterization of a C-filter of a *po*- Γ -semigroup and gave a characterization of a C-filter of a *po*- Γ -semigroup and gave a characterization of a C-filter of a *po*- Γ -semigroup in terms of a prime Γ -ideal.

In this paper, we introduce the notion of a left(right) Γ -filter in a *po*- Γ -semigroup and gave a characterization of a left(right) Γ -filter of a *po*- Γ -semigroup in terms of a right(left) prime Γ -ideal.

A po-semigroup (: ordered semigroup) is an ordered set (S, \leq) at same time a semigroup such that :

$$a \leq b \Rightarrow ca \leq cb \text{ and } ac \leq bc$$

for all $a, b, c \in S$.

Let S and Γ be nonempty sets. S is called a Γ -semigroup([6]) if

Received February 10, 2009. Revised March 18, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 06F05, 20N02.

Key words and phrases: left (right) Γ -filter, left (right) prime Γ -ideal, Γ -filter, prime Γ -ideal.

This work was supported by the fund of Research Promotion Program(Rpp-2006-040), Gyeongsang National University.

^{*}Corresponding author.

S. K. Lee and Y. I. Kwon

1) $a\alpha b \in S$

2) $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

A nonempty subset T of a Γ -semigroup S is said to be a sub- Γ -semigroup of S if $T\Gamma T \subseteq T$.

A po- Γ -semigroup is an ordered set (S, \leq) at same time a Γ -semigroup such that :

$$a \leq b \Rightarrow ca \leq cb \text{ and } ac \leq bc$$

for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$ (see [3]).

In this paper, S shall mean a po- Γ -semigroup unless otherwise specified.

DEFINITION 1. [1]. A nonempty set A of S is called a *right* (resp. left) Γ -*ideal* of S if

(1.1) $A\Gamma S \subseteq A$ (resp. $S\Gamma A \subseteq A$)

(1.2) $a \in A, b \leq a$ for $b \in S$ imply $b \in A$.

If A is both a right and left Γ -ideal of S, we say that A is a Γ -ideal of S.

DEFINITION 2. [4]. A subset T of S is called *prime* if $AB \subseteq T$ implies $A \subseteq T$ or $B \subseteq T$ for subsets A, B of S.

T is called a *prime right* (resp. *left*) *ideal* if T is prime as a right (resp. left) ideal. T is called a prime ideal if T is prime as an ideal.

THEOREM 3. Let A be a right (resp. left) Γ -ideal of S and let T be a sub-po- Γ -semigroup of S. If $A \cap T \neq \emptyset$, then $A \cap T$ is a right (resp. left) Γ -ideal of T.

proof. Assume that A is a right Γ -ideal of S and $A \cap T \neq \emptyset$. Then we have

$$(A \cap T)\Gamma T \subseteq A\Gamma T \cap T\Gamma T \subseteq A \cap T$$

Let $a \in A \cap T$ and $b \in T$ be such that $b \leq a$. Since A is a right Γ -ideal of S and $a \in A$, we have $b \in A$. Thus $b \in A \cap T$. Therefore $A \cap T$ is a right Γ -ideal of T.

Now we introduce the notion of left(right) filter in po- Γ -semigroups.

DEFINITION 4.. A sub- Γ -semigroup F of S is called a *left* (resp. *right*) *filter* of S if

(4.1) $a\gamma b \in F$ for $a, b \in S \Rightarrow a \in F$ (resp. $b \in F$),

78

(4.2) $a \in F$ and $a \leq c$ for $c \in S \Rightarrow c \in F$.

A sub- Γ -semigroup F of S is called a *filter* of S if F is a left and right filter of S.

We denote by $F_l(x)$ (resp. $F_r(x), F$) the left Γ -filter (resp. right Γ -filter, filter) generated by $x \in S$. Let \mathcal{F}_l (resp. \mathcal{F}_r) and \mathcal{F} be the equivalence relations on S denoted by

$$\mathcal{F}_{l} = \{(x, y) | F_{l}(x) = F_{l}(y)\}, \quad \mathcal{F}_{r} = \{(x, y) | F_{r}(x) = F_{r}(y)\}$$

$$\mathcal{F} = \{(x, y) | F(x) = Fy\}.$$

THEOREM 5. If $a \leq b$ for $a, b \in S$, then $(a, a\gamma b) \in \mathcal{F}_l$ (resp. $(a, a\gamma b) \in \mathcal{F}_r$) for every $\gamma \in \Gamma$.

proof. Let $a, b \in S$ and $a \leq b$. Since $F_l(a)$ is a left Γ -filter generated by a. By (4.2), $b \in F_l(a)$. Since $F_l(a)$ is a sub- Γ -semigroup and $a, b \in$ $F_l(a)$, we have $a\gamma b \in F(a)$ for $\gamma \in \Gamma$. Hence $F_l(a\gamma b) \subseteq F_l(a)$. On the other hand, $a\gamma b \in F_l(a\gamma b)$ implies $a \in F_l(a\gamma b)$ by (4.1). Thus $F_l(a) \subseteq F_l(a\gamma b)$. Therefore $F_l(a\gamma b) = F_l(a)$, and so $(a, a\gamma b) \in \mathcal{F}_l$. \Box

COROLLARY 6. ([1]). If $a \leq b$ for $a, b \in S$, then $(a, a\gamma b) \in \mathcal{F}$ for every $\gamma \in \Gamma$.

Now we give a characterization of a left (resp. right) Γ -filter of a *po*- Γ -semigroup in term of right (resp. left) prime Γ -ideal.

THEOREM 7. Let S be a po- Γ -semigroup. Then the following conditions are equivalent.

(i) F is a left (resp. right) Γ -filter of S.

(ii) $S \setminus F = \emptyset$ of $S \setminus F$ is a prime right (resp. left) Γ -ideal of S.

proof. (i) \Rightarrow (ii). Assume that $S \setminus F \neq \emptyset$. Let $x \in S \setminus F$ and $y \in S, \gamma \in \Gamma$. Then $x\gamma y \in S \setminus F$. This means that $(S \setminus F)\Gamma S \subseteq S \setminus F$. Indeed: If $x\gamma y \notin S \setminus F$, then $x\gamma y \in F$. Since F is a left Γ -filter, $x \in F$. It is impossible. Thus $x\gamma y \in S \setminus F$.

Now let $x \in S \setminus F$ and $y \in S$ be such that $y \leq x$. Then $y \in S \setminus F$. Indeed: If $y \notin S \setminus F$ i.e., $y \in F$, then $x \in F$ by (4.2). It is impossible. Thus $y \in S \setminus F$. Therefore $S \setminus F$ is a right Γ -ideal of S. Next we shall prove that $S \setminus F$ is prime. Let $x\gamma y \in S \setminus F$ for $x, y \in S$ and every $\gamma \in \Gamma$. Suppose that $x \notin S \setminus F$ and $y \notin S \setminus F$. Then $x \in F$ and $y \in F$. Since F is a Γ -subsemigroup of $S, x\gamma y \in S$. It is impossible. Thus $x \in S \setminus F$ or $y \in S \setminus F$. Hence $S \setminus F$ is prime, and so $S \setminus F$ is a prime right γ -ideal.

(ii) \Rightarrow (i) If $S \setminus F = \emptyset$, then F = S. Thus F = S is a left filter of S.

Assume that $S \setminus F$ is a prime right ideal of S. Then F is a Γ -subsemigroup of S. Indeed : Suppose that $x\gamma y \notin F$ for $x, y \in F$ and every $\gamma \in \Gamma$. Then $xy \in S \setminus F$. Since $S \setminus F$ is prime, x and y are in $S \setminus F$. It is impossible. Thus $xy \in F$, and so F is a Γ -subsemigroup of S.

Let $x\gamma y \in F$ for $x, y \in F$ and every $\gamma \in \Gamma$. Then $x \in F$. Indeed : If $x \notin F$, then $x \in S \setminus F$ Since $S \setminus F$ is a prime right Γ -ideal of S, $x\gamma y \in (S \setminus F)\Gamma S \subseteq S \setminus F$. It is impossible. Thus $x \in F$.

Let $x \in F$ and $x \leq xy$ for $y \in S$. Then $y \in F$. Indeed : If $y \notin F$, then $y \in S \setminus F$. Since $S \setminus F$ is a right ideal of S, $x \in S \setminus F$. It is impossible. Thus $y \in F$. It follows that F is a left filter of s. \Box

COROLLARY 8.([1]). Let S be a po- Γ -semigroup. Then the following conditions are equivalent.

(i) F is a Γ -filter of S.

(ii) $S \setminus F = \emptyset$ of $S \setminus F$ is a prime Γ -ideal of S.

References

- Y. B. Jun, Γ-filters and semilattice Γ-congruences in po-Γ-semigroups, PU. M. A. No. 2-3-4 (1977), 275-280.
- N. Kehayopulu, On left regular ordered semigroups, Math. Japon., 35(6) (1990), 1057-1060.
- Y. I. Kwon and S. K. Lee, Some special elements in ordered Γ-semigroups, Kyungpook Math. J., 35(3) (1996), 679-685.
- S. K. Lee and Y. I. Kwon, A generalization of the thm of Giri and Wazalwar, Kyungpook Math. J., 37(1) (1997), 109-111.
- S. K. Lee and S. S. Lee, *Left(right) filters on po-semigroups*, Kangweon-Kyungki Math. J., 8(1) (2000), 43-45.
- M. K. Sen and N. K. Saha, On Γ-semigroup, Bull. Calcutta Math. Soc., 78 (1986), 180-186.

Department of Mathematics Education and RINS, Gyeongsang National University,

80

On Γ -po-semigroups

Jinju 660-701, Korea
 E-mail: sklee@gnu.ac.kr

Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 660-701, Korea *E-mail*: yikwon@gnu.ac.kr