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BOUNDARY VALUE PROBLEM FOR A CLASS OF THE

SYSTEMS OF THE NONLINEAR ELLIPTIC

EQUATIONS

Tacksun Jung and Q-Heung Choi∗

Abstract. We show the existence of at least two nontrivial solu-
tions for a class of the systems of the nonlinear elliptic equations
with Dirichlet boundary condition under some conditions for the
nonlinear term. We obtain this result by using the variational link-
ing theory in the critical point theory.

1. Introduction

In this paper we consider the multiplicity of solutions for a class of
the systems of the nonlinear elliptic equations with Dirichlet boundary
condition

−∆u1 = Fu1(u1, . . . , un) in Ω, (1.1)

−∆u2 = Fu2(u1, . . . , un) in Ω,
...

...
...

−∆un = Fun(u1, . . . , un) in Ω,

ui(x) = 0 on ∂Ω,

where Ω be a bounded subset of Rn with smooth boundary, ui(x) ∈
W 1,2

0 (Ω) and F : Rn → R be a C2 function such that F (0, . . . , 0) = 0.

Let u = (u1, . . . , un), Fui
(u1, . . . , un) = ∂F (u1,...,un)

∂ui
, Fu(u) = gradF (u) =

(Fu1(u1, . . . , un), . . . , Fun(u1, . . . , un)) and | · | denote the Euclidean norm
in Rn. We assume that F satisfies the following conditions:

(F1) lim(u1,...,un)→(0,...,0)
Fri (u)

|u1|+...+|un| = 0.

Received January 27, 2009. Revised March 2, 2009.
2000 Mathematics Subject Classification: 35J50, 35J55, 35J20, 35Q72.
Key words and phrases: system of nonlinear elliptic equations, variational linking

theorem, (P.S.) condition, critical point theory.
∗Corresponding author.



68 Tacksun Jung and Q-Heung Choi

(F2) lim|u1|+...+|un|→∞
Fri (u)

|u1|+...+|un| = ∞, i = 1, . . . , n.

(F3) u · Fu(u) ≥ µF (u) ∀u,
(F4) |Fr1(r1, . . . , rn)| + . . . + |Frn(r1, . . . , rn)| ≤ γ(|r1|ν + . . . + |rn|ν),
∀r1, . . . , rn, where γ ≥ 0, µ ∈]2, 2∗[, ν ≤ 2∗ − 1 − (2∗ − µ)(1 − 2∗′

2∗ ),
i = 1, . . . , n.
Some papers of Lee [13, 16, 17, 18] concerning the semilinear elliptic
system and some papers of the other several authors [10, 15] have treated
the system of this like nonlinear elliptic equations. System (1.1) can be
rewritten by

−∆u = ∇F (u), in Ω,

u = 0 on ∂Ω.

Let H be a cartesian product of the Sobolev spaces W 1,2
0 (Ω, R), i.e.,

H = W 1,2
0 (Ω, R)×· · ·×W 1,2

0 (Ω, R). We endow the Hilbert space H with
the norm

‖u‖2 =
n∑

i=1

‖ui‖2,

where ‖ui‖2 =
∫

Ω
|∇ui(x)|2dx. In this paper we are looking for the weak

solutions of system (1.1) in H, that is, u = (u1 . . . , un) ∈ H such that
∫

Ω

[−∆u · v]dx−
∫

Ω

Fu(u) · v = 0, for all v ∈ H,

where Fu(u) = ∇F (u) = (Fu1(u), . . . , Fun(u)).
Our main result is the following:

Theorem 1.1. Assume that F satisfies the conditions (F1) − (F4).
Then system (1.1) has at least two nontrivial solutions.

For the proof of Theorem 1.1 we approach the variational method.
We use the variational linking theorem and the critical point theory for
the definite functional. We study the topology and the geometry of the
sublevels of I and find some linking inequalities, hence by the variational
linking theorem we get the existence of at least two nontrivial solutions.

In section 2, we obtain some results on the operator −∆ on W 1,2
0 (Ω),

F and the functional I on H. n section 3, we recall the variation linking
theorem, which plays a crucial role to prove the multiplicity result. In
section 4, we prove Theorem 1.1.
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2. Some results on −∆, F , I

Let λ1 < λ2 ≤ . . . ≤ λk ≤ . . . be the eigenvalues of the eigenvalue
problem for a single elliptic equation −∆u = λu with Dirichlet boundary
condition and φk be the eigenfunction belonging to the eigenvalue λk,
k ≥ 1.

Since |λi| ≥ 1 for all i ≥ 1, we have the following lemma.

Lemma 2.1. Let u ∈ W 1,2
0 (Ω, R) and ‖ · ‖ is a Sobolev norm. Then

(i) ‖u‖ ≥ C‖u‖L2(Ω) for some constant C > 0.
(ii) ‖u‖ = 0 if and only if ‖u‖L2(Ω) = 0.

(iii) −∆u ∈ W 1,2
0 (Ω, R) implies u ∈ W 1,2

0 (Ω, R).

Proof. (i) and (ii) can be checked easily.
(iii) Let λn be an eigenvalue of the eigenvalue problem for a single elliptic
equation −∆u = λu in Ω with Dirichlet boundary condition. We note
that {λn : |λn| < |c|} is finite. Let us set f = −∆u ∈ W 1,2

0 (Ω, R). Let
f be expressed by

f =
∑

hnφn.

Then

(−∆)−1f =
∑ 1

λn

hnφn.

Hence we have the inequality

‖(−∆)−1f‖2 =
∑

λ2
n

1

λ2
n

h2
n ≤

∑
h2

n,

which means that
‖(−∆)−1f‖ ≤ ‖f‖L2(Ω).

From Lemma 2.1, we have:

Lemma 2.2. Let ∇F (u) ∈ H = W 1,2
0 (Ω, R)× · · · ×W 1,2

0 (Ω, R). Then
all the solutions of

−∆u = ∇F (u)

belong to H.

Now we return to the case of the system. We observe that by the
following Proposition 2.1, the weak solutions of system (1.1) coincide
with the critical points of the associated functional I

I ∈ C1,1(H, R),
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I(u) =

∫

Ω

[
1

2
|∇u|2 − F (x, u)]dx, (2.1)

where u = (u1, . . . , un) and |∇u|2 =
∑n

i=1 |∇ui|2, n ≥ 1.

Proposition 2.1. Assume that the conditions (F1)-(F4) hold. Then
the functional I(u) is continuous, Fréchet differentiable in H with Fréchet
derivative

∇I(u)v =

∫

Ω

[(−∆u) · v − Fu(u) · v]dx.

Moreover DI ∈ C. That is I ∈ C1.

Proof. For u, v ∈ H,

|I(u + v)− I(u)−∇I(u)v|
= |1

2

∫

Ω

(−∆u−∆v) · (u + v)dx−
∫

Ω

F (u + v)dx

−1

2

∫

Ω

(−∆u) · udx +

∫

Ω

F (u)dx−
∫

Ω

(−∆u− Fu(u)) · vdx|

= |1
2

∫

Ω

[−∆u · v −∆v · u−∆v · v]dx

−
∫

Ω

[F (u + v)− F (u)]dx−
∫

Ω

[(−∆u− Fu(u)) · v]dx|.
We have

|
∫

Ω

[F (u + v)− F (u)]dx| ≤ |
∫

Ω

[Fu(u) · v + o(|v|)]dx| = O(|v|). (2.2)

Thus we have

|I(u + v)− I(u)−∇I(u)v| = O(|v|2). (2.3)

Next we prove that I(u) is continuous. For u, v ∈ H,

|I(u + v)− I(u)| = |1
2

∫

Ω

(−∆u−∆v) · (u + v)dx−
∫

Ω

F (u + v)dx

−1

2

∫

Ω

(−∆u) · udx +

∫

Ω

F (u)dx|

= |1
2

∫

Ω

[(−∆u · v −∆v · u−∆v · v)dx

−
∫

Ω

(F (u + v)− F (u))dx|
= O(|v|).
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Similarly, it is easily checked that I ∈ C1.

Proposition 2.2. Assume that F satisfies the conditions (F1)-(F4).
Then there exist a0 > 0, b0 ∈ R and µ > 2 such that

F (u) ≥ a0|u|µ − b0, ∀u. (2.4)

Proof. Let u be such that |u|2 ≥ R2. Let us set ϕ(ξ) = F (ξu) for
ξ ≥ 1. Then

ϕ(ξ)′ = u · Fu(ξu) ≥ µ

ξ
ϕ(ξ).

Multiplying by ξ−µ, we get

(ξ−µϕ(ξ))′ ≥ 0,

hence ϕ(ξ) ≥ ϕ(1)ξµ for ξ ≥ 1. Thus we have

F (u) ≥ F
( R|u|√

|u|2
)(√

|u|2
R

)µ

≥ c0

(√
|u|2
R

)µ ≥ a0|u|µ − b0, for some a0, b0,

where c0 = inf{F (u)| |u|2 = R2}.
Proposition 2.3. Assume that F satisfies the conditions (F1)-(F4).

Then
if ‖un‖ → +∞ and∫

Ω
un · Fu(un)dx− 2

∫
Ω

F (un)dx

‖un‖ → 0,

then there exist (uhn)n and w ∈ H such that

grad(
∫

Ω
F (uhn)dx)

‖uhn‖
→ w and

uhn

‖uhn‖
⇀ (0, . . . , 0).

Proof. By (F3) and Proposition 2.2, for u ∈ H,∫

Ω

[u · Fu(u)]dx− 2

∫

Ω

F (u)dx ≥

(µ− 2)

∫

Ω

F (u)dx ≥ (µ− 2)(a0‖u‖µ
Lµ − b1).

By (F4),

‖grad(

∫

Ω

F (u)dx)‖ ≤ C ′‖|u|ν‖L2∗′
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for suitable constant C ′. To get the conclusion it suffices to estimate

‖ |u|ν‖u‖‖L2∗′ in terms of
‖u‖µ

Lµ

‖u‖ . If µ ≥ 2∗′ν, then this is an consequence

of Hölder inequality. Next we consider the case µ < 2∗′ν. By the
assumptions µ and ν,

ν ≤ 2∗ − 1− (2∗ − µ)(1− 2∗′

2∗
). (2.5)

By the standard interpolation arguments, it follows that ‖ |u|ν‖u‖‖L2∗′ ≤
C

(‖u‖µ
Lµ

‖u‖
) να

µ ‖u‖β, where α is such that α
µ

+ 1−α
2∗ = 1

2∗′ν (α > 0) and β =

(1− α)ν − 1− να
µ

. By (2.5), β ≤ 0. Thus we prove the proposition.

3. Recall of the variational linking theorem

Let H be an Hilbert space with a norm ‖ · ‖, X ⊂ H, r > 0, ρ > 0
and e ∈ H\X, e 6= 0. Set:

Br = {w ∈ X| ‖w‖ ≤ r},
Sr = {w ∈ X| ‖w‖ = r},

∆R(e,X) = {σe + w| σ ≥ 0, w ∈ X : ‖σe + w‖ ≤ R},
ΣR(e,X) = {σe+w| σ ≥ 0, w ∈ X : ‖σe+w‖ = R}∪{w| w ∈ X, ‖w‖ ≤ R}.
Now we recall the variation linking theorem in [21].

Theorem 3.1. (Variation linking theorem). Let H be an Hilbert
space, which is topological direct sum of the subspaces H1 and H2. Let
I ∈ C1(H,R). Moreover assume that
(a) dim H1 < +∞,
(b) there exist r > 0, R > 0 and e ∈ Br ⊂ H1, e 6= 0 such that r < R
and

sup
w∈Sr⊂H1

I(w) < inf
w∈ΣR(e,H2)

I(w),

(c) −∞ < a = infw∈∆R(e,H2) I(w),
(d) (P.S.)c condition holds for any c ∈ [a, b], which b = supw∈Br⊂H1

I(w).
Then there exist at least two critical levels c1 and c2 for the functional
I such that

inf
∆R(e,H2)

I ≤ c1 ≤ sup
Sr⊂H1

I < inf
ΣR(e,H2)

I ≤ c2 ≤ sup
Br⊂H1

I
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4. Proof of theorem 1.1

Assume that F satisfies the conditions (F1)-(F4). From now on we
shall show that −I satisfies the variation linking theorem.

We have the following inequalities:

Lemma 4.1. Assume that F satisfies the conditions (F1) − (F4).
Let Vi be the finite dimensional subspace of W 1,2

0 (Ω) spanned by eigen-
functions corresponding to the eigenvalues λ < λk, for some k ≥ 1,
i = 1, . . . , n. Let us set

V = V1 × · · · × Vn.

Then V is a subspace of H and H = V ⊕V ⊥. Let us set X = V ⊥. Then
(i) there exist r > 0 and a ball Br ⊂ V with radius r such that

sup
u∈∂Br⊂V

(−I)(u) < 0

and
(ii) there exist R > r and an element e ∈ B1 ⊂ V , e 6= 0 such that

inf
u∈ΣR(e,X)

(−I)(u) > 0, inf
u∈∆R(e,X)

(−I)(u) = a > −∞.

Proof. (i) By (F3) and (F4), F (u) ≤ a|u|β, a > 0 and β > 2. If
u ∈ V , then we have that

I(u) =
1

2
‖u‖2 −

∫

Ω

F (u)dx ≥ 1

2
‖u‖2 − a‖u‖β

L2(Ω).

Since β > 2, there exist a small number r > 0 such that if u ∈ ∂Br ⊂ V ,
then inf I(u) > 0. Thus we have supu∈∂Br

(−I)(u) < 0.
(ii) By Proposition 2.2, there exist a0 > 0, b0 ∈ R and µ > 2 such that
F (u) ≥ a0|u|µ − b0, ∀u. Let us choose an element e ∈ B1 ⊂ V and
w ∈ X. Then we have that

I(u) =
1

2
‖u‖2 −

∫

Ω

F (u)dx ≤ 1

2
σ2 +

1

2
‖w‖2 − a0σ

µ − a0‖w‖µ
L2(Ω) + b1

for some b1 ∈ R. Since µ > 2 and w ∈ X, there exists R > 0 such that
if u = σe + w ∈ ΣR(e,X), then sup I(u) < 0. Thus infΣR(e,X)(−I)(u) >
0. Moreover if u = σe + w ∈ ∆R(e,X), then sup I(u) < ∞. Thus
inf∆R(e,X)(−I)(u) = a > −∞

Lemma 4.2. Assume that F satisfies the conditions (F1)−(F4) hold.
Then I satisfies the (P.S.)c condition for every real number c ∈ R.
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Proof. Let c ∈ R and (hn) be a sequence in N such that hn → +∞,
(un)n be a sequence such that

un = (u1, . . . , un) ∈ H, ∀n, I(un) → c,∇I(un) → 0.

We claim that (un)n is bounded. By contradiction we suppose that
‖un‖ → +∞ and set ûn = un

‖un‖ . Then

〈∇I(un), ûn〉 = 〈∇I(un), ûn〉 = 2
I(un)

‖un‖ −∫
Ω

Fu(un) · undx− 2
∫

Ω
F (un)dx

‖un‖ −→ 0.

Hence ∫
Ω

Fu(un) · undx− 2
∫

Ω
F (un)dx

‖un‖ −→ 0.

By Proposition 2.3,

grad
∫
Ω

F (un)dx

‖un‖ converges

and ûn ⇀ 0. We get

∇I(un)

‖un‖ = −∆ûn −
grad(

∫
Ω

F (un)dx)

‖un‖ −→ 0,

so −∆ûn converges. Since (ûn)n is bounded and the inverse operator of
−∆ is a compact mapping, up to subsequence, (ûn)n has a limit. Since
ûn ⇀ (0, . . . , 0), we get ûn → (0, . . . , 0), which is a contradiction to the
fact that ‖ûn‖ = 1. Thus (un)n is bounded. We can now suppose that
un ⇀ u for some u ∈ H. Since the mapping u 7→ grad(

∫
Ω

F (u)dx) is a
compact mapping, grad(

∫
Ω

F (un)dx) −→ grad(
∫

Ω
F (u)dx). Thus −∆un

converges. Since the inverse operator of −∆ is a compact operator and
(un)n is bounded, we deduce that, up to a subsequence, (un)n converges
to some u strongly with ∇I(u) = lim∇I(un) = 0. Thus we prove the
lemma.

Proof of Theorem 1.1
By Proposition 2.1, I ∈ C1(H,R). Thus −I ∈ C1(H, R). We have
H = V ⊕ X with dimV < ∞. By Lemma 4.1, there exist r > 0,
R > r, a ball Br ⊂ V with radius r and an element e ∈ B1 ⊂ V ,
e 6= 0 such that supu∈∂Br⊂V (−I)(u) < 0, infu∈ΣR(e,X)(−I)(u) > 0 and
infu∈∆R(e,X)(−I)(u) = a > −∞. Thus the condition (b) and (c) of
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Theorem 3.1 for −I is satisfied. By Lemma 4.2, −I(u) satisfies the
(P.S.)c condition for any c ∈ R, so the condition (d) of Theorem 3.1
for −I is satisfied. By Theorem 3.1, there exist at least two nontrivial
critical levels c1 and c2 for the functional −I such that

inf
∆R(e,X)

(−I) ≤ c1 ≤ sup
∂Br⊂V

(−I) < inf
ΣR(e,X)

(−I) ≤ c2 ≤ sup
Br⊂V

(−I).

Thus I has at least two nontrivial critical levels c1 and c2 for the func-
tional I such that

inf
Br⊂V

I ≤ c2 ≤ sup
ΣR(e,X)

I < inf
∂Br⊂V

I ≤ c1 ≤ sup
∆R(e,X)

I.

Thus we prove theorem.
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