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ISOMORPHISMS AND DERIVATIONS IN C*-TERNARY
ALGEBRAS

JONG SU AN* AND CHUNKIL PARK

ABSTRACT. In this paper, we investigate isomorphisms between C*-
ternary algebras and derivations on C*-ternary algebras associated
with the Cauchy—Jensen functional equation
Tty
2TV 12 = fo)+ )+ 21 (),
which was introduced and investigated by Baak in [2].

1. Introduction and preliminaries

Ternary structures and their generalization, the so-called n-ary struc-
tures, raise certain hopes in view of their applications in physics (see
17, 18]).

A C*-ternary algebra is a complex Banach space A, equipped with a
ternary product (z,y, z) — [x,v, 2] of A% into A, which is C-linear in the
outer variables, conjugate C-linear in the middle variable, and associa-
tive in the sense that [z, y, [z, w,v]] = [z, [w, 2z, y],v] = [[z,y, 2], w, v], and
satisfies [|[z, y, 2]|| < [lz]| - lyll - [[2]| and [|[z, z, z][| = [|=[]* (see [1, 38)).
Every left Hilbert C*-module is a C*-ternary algebra via the ternary
product [z, vy, 2] := (z,y)z.

If a C*-ternary algebra (A, [+, ]) has an identity, i.e., an element
e € A such that z = [x,e,¢e] = [e,e, x| for all x € A, then it is routine
to verify that A, endowed with x oy := [z,e,y] and x* = [e,z, €], is
a unital C*-algebra. Conversely, if (A,o) is a unital C*-algebra, then
[,y, z] := x o y* o z makes A into a C*-ternary algebra.
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A C-linear mapping H : A — B is called a C*-ternary algebra homo-
morphism if
H([z,y,2]) = [H(x), H(y), H(2)]
for all x,y,z € A. If, in addition, the mapping H is bijective, then the
mapping H : A — B is called a C*-ternary algebra isomorphism. A
C-linear mapping 6 : A — A is called a C*-ternary derivation if

([, 2]) = [6(2),y, 2] + [2,0(y), 2] + [z, y,6(2)]

for all z,y,z € A (see [1, 4, 21]).

In 1940, S.M. Ulam [37] gave a talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of un-
solved problems. Among these was the following question concerning
the stability of homomorphisms.

We are given a group G and a metric group G' with metric p(-,-).
Given € > 0, does there exist a 6 > 0 such that if f : G — G’ satisfies
p(f(zy), f(z)f(y)) <6 for all x,y € G, then a homomorphism h : G —
G’ exists with p(f(x),h(x)) < € for allz € G¥

In 1941, D.H. Hyers [11] considered the case of approximately additive
mappings [ : £ — E’, where F and E’ are Banach spaces and f satisfies
Hyers inequality

1z +y) = flz) = fy)ll < e

for all x,y € E. It was shown that the limit
271
L(z) = lim —f(an>
exists for all z € F and that L : £ — E’ is the unique additive mapping
satisfying
[f(x) = L(z)]| < e
In 1978, Th. M. Rassias [28] provided a generalization of Hyers’
Theorem which allows the Cauchy difference to be unbounded.

THEOREM 1.1. (Th.M. Rassias) Let f : E'— E' be a mapping from a
normed vector space E into a Banach space E’ subject to the inequality

(1.1) 1z +y) = @) = F) < ell=]” + [ly]]")

for all x,y € E, where € and p are constants with e > 0 and p < 1. Then

the limit
271
L(x) = lim [(2')

n—o00 on
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exists for all x € E and L : E — FE’ is the unique additive mapping
which satisfies
2e

(1.2) I1£() - (@) < 5=

for all v € E. If p < 0 then inequality (1.1) holds for x,y # 0 and (1.2)
for x # 0.

(ki

In 1990, Th.M. Rassias [29] during the 27" International Symposium
on Functional Equations asked the question whether such a theorem
can also be proved for p > 1. In 1991, Z. Gajda [7] following the same
approach as in Th.M. Rassias [28], gave an affirmative solution to this
question for p > 1. It was shown by Z. Gajda [7], as well as by Th.M.
Rassias and P. Semrl [34] that one cannot prove a Th.M. Rassias’ type
theorem when p = 1. The counterexamples of Z. Gajda [7], as well as of
Th.M. Rassias and P. Semrl [34] have stimulated several mathematicians
to invent new definitions of approximately additive or approximately lin-
ear mappings, cf. P. Gavruta [8], S. Jung [15], who among others studied
the Hyers—Ulam stability of functional equations. The inequality (1.1)
that was introduced for the first time by Th.M. Rassias [28] provided a
lot of influence in the development of a generalization of the Hyers—Ulam
stability concept. This new concept is known as generalized Hyers—Ulam
stability of functional equations (cf. the books of P. Czerwik [5], D.H.
Hyers, G. Isac and Th.M. Rassias [12]).

P. Gavruta [8] provided a further generalization of Th.M. Rassias’
Theorem. In 1996, G. Isac and Th.M. Rassias [14] applied the gener-
alized Hyers-Ulam stability theory to prove fixed point theorems and
study some new applications in Nonlinear Analysis. In [13], D.H. Hyers,
G. Isac and Th.M. Rassias studied the asymptoticity aspect of Hyers—
Ulam stability of mappings. During the several papers have been pub-
lished on various generalizations and applications of Hyers—Ulam stabil-
ity and generalized Hyers—Ulam stability to a number of functional equa-
tions and mappings, for example : quadratic functional equation, invari-
ant means, multiplicative mappings - superstability, bounded nth differ-
ences, convex functions, generalized orthogonality functional equation,
Euler-Lagrange functional equation, Navier-Stokes equations. Several
mathematician have contributed works on these subjects; we mention
a few: S. Jung and B. Chung [16], M. Mirzavaziri and M.S. Moslehian
[20], C. Park [22]-[27], Th.M. Rassias [30]-[33], F. Skof [36].
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In [9], Gilanyi showed that if f satisfies the functional inequality
(1.3) 12f(x) +2f(y) — flay I < [ f (@)

then f satisfies the Jordan—von Neumann functional equality

2f(x) +2f(y) = flzy) + flay™).

See also [35]. Gildnyi [10] and Fechner [6] proved the generalized Hyers—
Ulam stability of the functional inequality (1.3). In [3], the author proved
the generalized Hyers—Ulam stability of functional inequalities associated
with Jordan—von Neumann type additive functional equations.

Throughout this paper, assume that A is a C*-ternary algebra with
norm || - |4, and that B is a C*-ternary algebra with norm || - || .

In Section 2, we investigate isomorphisms between C*-ternary alge-
bras associated with the Cauchy—-Jensen functional equation.

In Section 3, we investigate derivations on C*-ternary algebras asso-
ciated with the Cauchy—Jensen functional equation.

2. Isomorphisms between C*-ternary algebras
In this section, we investigate isomorphisms between C*-ternary al-
gebras associated with the Cauchy-Jensen functional equation.

LeEmMMA 2.1. ([3]) Let f : A — B be a mapping such that

r+y
If @)+ ) +2f ()l < [12f(—5= +2)]s
for all x,y,z € A. Then f is Cauchy additive.

THEOREM 2.2. Let r > 3 and 6 be nonnegative real numbers, and let
f A — B be a bijective mapping such that

@1 )+ a2 Gl < R+ )]s

Q2 f [z y, 2]) = [f (@), fy), fEs < Ozl + lylla + 1Iz1%)
for all p € T' := {\ € C | |\ =1} and all z,y,2 € A. Then the
mapping f : A — B is a C*-ternary algebra isomorphism.

Proof. Let ;1 =1 1in (2.1). By Lemma 2.1, the mapping f: A — B is
Cauchy additive.
Letting y = —x and 2z = 0, we get

1f (px) + pf (=2)|[s < [12f(0)]5 =0
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for all z € A and all u € T!. So

f(px) — pf(x) = f(p) + pf(—2) =0

for all z € A and all y € T'. Hence f(uz) = pf(x) for all x € A and all
p € T'. By the same reasoning as in the proof of Theorem 2.1 of [24],
the mapping f : A — B is C-linear.

It follows from (2.2) that

1 ([, 21) = [f(2), f(y), f(2)]ll

= lim 917 L) - () (), s
8"0
< Jim S el + ol + 1) = 0

~ n—oo 2nT

for all x,y,z € A. Thus

flzyy, 2]) = [f (@), f(y), f(2)]

for all z,y,z € A. Hence the bijective mapping f : A — B is a C*-
ternary algebra isomorphism. O]

THEOREM 2.3. Let r < 3 and 0 be positive real numbers, and let
f + A — B be a bijective mapping satisfying (2.1) and (2.2). Then the
mapping f : A — B is a C*-ternary algebra isomorphism.

Proof. The proof is similar to the proof of Theorem 2.2. n

3. Derivations on C*-ternary algebras

In this section, we investigate derivations on C*-ternary algebras as-
sociated with the Cauchy—Jensen functional equation.

THEOREM 3.1. Let r > 3 and 6 be nonnegative real numbers, and let
f: A— A be a mapping satisfying (2.1) such that

1wy, 21) = [f(2),y, 2] = 2, fy), 2] = [y, f(2)]]] 4
(3.1) < OUl=lla + Nyl +11=11%)

for all x,y,z € A. Then the mapping f : A — A is a C*-ternary
derivation.
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Proof. By the same reasoning as in the proof of Theorem 2.2, the

mapping f : A — A is C-linear.

for

for

It follows from (3.1) that
1y, 21) = [f (@), y, 2] = [, F (), 2] = [, y, f(2)]] 4

= m s () ) L

T Y. Z Ty z
[2n7f(2n)’ Qn] [271,7 2n7f(2n)]||A
< Tim ([l + vl + [12[[4) =0

n—oo 2m“

all x,y,z € A. So

flzyy,2]) = [f (@) y, 2] + [z, f(y), 2] + [, y, f(2)]
all x,y,z € A. Thus the mapping f : A — A is a C*-ternary

derivation. O

f:
f:

[1]

THEOREM 3.2. Let r < 3 and 6 be positive real numbers, and let
A — A be a mapping satisfying (2.2) and (3.1). Then the mapping
A — A is a C*-ternary derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.1. [
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