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ISOMORPHISMS AND DERIVATIONS IN C∗-TERNARY

ALGEBRAS

Jong Su An∗ and Chunkil Park

Abstract. In this paper, we investigate isomorphisms between C∗-
ternary algebras and derivations on C∗-ternary algebras associated
with the Cauchy–Jensen functional equation

2f(
x + y

2
+ z) = f(x) + f(y) + 2f(z),

which was introduced and investigated by Baak in [2].

1. Introduction and preliminaries

Ternary structures and their generalization, the so-called n-ary struc-
tures, raise certain hopes in view of their applications in physics (see
[17, 18]).

A C∗-ternary algebra is a complex Banach space A, equipped with a
ternary product (x, y, z) 7→ [x, y, z] of A3 into A, which is C-linear in the
outer variables, conjugate C-linear in the middle variable, and associa-
tive in the sense that [x, y, [z, w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v], and
satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [1, 38]).
Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary
product [x, y, z] := 〈x, y〉z.

If a C∗-ternary algebra (A, [·, ·, ·]) has an identity, i.e., an element
e ∈ A such that x = [x, e, e] = [e, e, x] for all x ∈ A, then it is routine
to verify that A, endowed with x ◦ y := [x, e, y] and x∗ := [e, x, e], is
a unital C∗-algebra. Conversely, if (A, ◦) is a unital C∗-algebra, then
[x, y, z] := x ◦ y∗ ◦ z makes A into a C∗-ternary algebra.
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A C-linear mapping H : A → B is called a C∗-ternary algebra homo-
morphism if

H([x, y, z]) = [H(x), H(y), H(z)]

for all x, y, z ∈ A. If, in addition, the mapping H is bijective, then the
mapping H : A → B is called a C∗-ternary algebra isomorphism. A
C-linear mapping δ : A → A is called a C∗-ternary derivation if

δ([x, y, z]) = [δ(x), y, z] + [x, δ(y), z] + [x, y, δ(z)]

for all x, y, z ∈ A (see [1, 4, 21]).
In 1940, S.M. Ulam [37] gave a talk before the Mathematics Club

of the University of Wisconsin in which he discussed a number of un-
solved problems. Among these was the following question concerning
the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·).
Given ε > 0, does there exist a δ > 0 such that if f : G → G′ satisfies
ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a homomorphism h : G →
G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?

In 1941, D.H. Hyers [11] considered the case of approximately additive
mappings f : E → E ′, where E and E ′ are Banach spaces and f satisfies
Hyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and that L : E → E ′ is the unique additive mapping
satisfying

‖f(x)− L(x)‖ ≤ ε.

In 1978, Th. M. Rassias [28] provided a generalization of Hyers’
Theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias) Let f : E → E ′ be a mapping from a
normed vector space E into a Banach space E ′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then
the limit

L(x) = lim
n→∞

f(2nx)

2n
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exists for all x ∈ E and L : E → E ′ is the unique additive mapping
which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p(1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2)
for x 6= 0.

In 1990, Th.M. Rassias [29] during the 27th International Symposium
on Functional Equations asked the question whether such a theorem
can also be proved for p ≥ 1. In 1991, Z. Gajda [7] following the same
approach as in Th.M. Rassias [28], gave an affirmative solution to this
question for p > 1. It was shown by Z. Gajda [7], as well as by Th.M.
Rassias and P. Šemrl [34] that one cannot prove a Th.M. Rassias’ type
theorem when p = 1. The counterexamples of Z. Gajda [7], as well as of
Th.M. Rassias and P. Šemrl [34] have stimulated several mathematicians
to invent new definitions of approximately additive or approximately lin-
ear mappings, cf. P. Găvruta [8], S. Jung [15], who among others studied
the Hyers–Ulam stability of functional equations. The inequality (1.1)
that was introduced for the first time by Th.M. Rassias [28] provided a
lot of influence in the development of a generalization of the Hyers–Ulam
stability concept. This new concept is known as generalized Hyers–Ulam
stability of functional equations (cf. the books of P. Czerwik [5], D.H.
Hyers, G. Isac and Th.M. Rassias [12]).

P. Găvruta [8] provided a further generalization of Th.M. Rassias’
Theorem. In 1996, G. Isac and Th.M. Rassias [14] applied the gener-
alized Hyers–Ulam stability theory to prove fixed point theorems and
study some new applications in Nonlinear Analysis. In [13], D.H. Hyers,
G. Isac and Th.M. Rassias studied the asymptoticity aspect of Hyers–
Ulam stability of mappings. During the several papers have been pub-
lished on various generalizations and applications of Hyers–Ulam stabil-
ity and generalized Hyers–Ulam stability to a number of functional equa-
tions and mappings, for example : quadratic functional equation, invari-
ant means, multiplicative mappings - superstability, bounded nth differ-
ences, convex functions, generalized orthogonality functional equation,
Euler–Lagrange functional equation, Navier–Stokes equations. Several
mathematician have contributed works on these subjects; we mention
a few: S. Jung and B. Chung [16], M. Mirzavaziri and M.S. Moslehian
[20], C. Park [22]–[27], Th.M. Rassias [30]–[33], F. Skof [36].
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In [9], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖(1.3)

then f satisfies the Jordan–von Neumann functional equality

2f(x) + 2f(y) = f(xy) + f(xy−1).

See also [35]. Gilányi [10] and Fechner [6] proved the generalized Hyers–
Ulam stability of the functional inequality (1.3). In [3], the author proved
the generalized Hyers–Ulam stability of functional inequalities associated
with Jordan–von Neumann type additive functional equations.

Throughout this paper, assume that A is a C∗-ternary algebra with
norm ‖ · ‖A, and that B is a C∗-ternary algebra with norm ‖ · ‖B.

In Section 2, we investigate isomorphisms between C∗-ternary alge-
bras associated with the Cauchy–Jensen functional equation.

In Section 3, we investigate derivations on C∗-ternary algebras asso-
ciated with the Cauchy–Jensen functional equation.

2. Isomorphisms between C∗-ternary algebras

In this section, we investigate isomorphisms between C∗-ternary al-
gebras associated with the Cauchy–Jensen functional equation.

Lemma 2.1. ([3]) Let f : A → B be a mapping such that

‖f(x) + f(y) + 2f(z)‖B ≤ ‖2f(
x + y

2
+ z)‖B

for all x, y, z ∈ A. Then f is Cauchy additive.

Theorem 2.2. Let r > 3 and θ be nonnegative real numbers, and let
f : A → B be a bijective mapping such that

‖f(µx) + µf(y) + 2f(z)‖B ≤ ‖2f(
x + y

2
+ z)‖B,(2.1)

‖f([x, y, z])− [f(x), f(y), f(z)]‖B ≤ θ(‖x‖r
A + ‖y‖r

A + ‖z‖r
A)(2.2)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1} and all x, y, z ∈ A. Then the
mapping f : A → B is a C∗-ternary algebra isomorphism.

Proof. Let µ = 1 in (2.1). By Lemma 2.1, the mapping f : A → B is
Cauchy additive.

Letting y = −x and z = 0, we get

‖f(µx) + µf(−x)‖B ≤ ‖2f(0)‖B = 0
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for all x ∈ A and all µ ∈ T1. So

f(µx)− µf(x) = f(µx) + µf(−x) = 0

for all x ∈ A and all µ ∈ T1. Hence f(µx) = µf(x) for all x ∈ A and all
µ ∈ T1. By the same reasoning as in the proof of Theorem 2.1 of [24],
the mapping f : A → B is C-linear.

It follows from (2.2) that

‖f([x, y, z])− [f(x), f(y), f(z)]‖B

= lim
n→∞

8n‖f(
[x, y, z]

2n · 2n · 2n
)− [f(

x

2n
), f(

y

2n
), f(

z

2n
)]‖B

≤ lim
n→∞

8nθ

2nr
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A) = 0

for all x, y, z ∈ A. Thus

f([x, y, z]) = [f(x), f(y), f(z)]

for all x, y, z ∈ A. Hence the bijective mapping f : A → B is a C∗-
ternary algebra isomorphism.

Theorem 2.3. Let r < 3 and θ be positive real numbers, and let
f : A → B be a bijective mapping satisfying (2.1) and (2.2). Then the
mapping f : A → B is a C∗-ternary algebra isomorphism.

Proof. The proof is similar to the proof of Theorem 2.2.

3. Derivations on C∗-ternary algebras

In this section, we investigate derivations on C∗-ternary algebras as-
sociated with the Cauchy–Jensen functional equation.

Theorem 3.1. Let r > 3 and θ be nonnegative real numbers, and let
f : A → A be a mapping satisfying (2.1) such that

‖f([x, y, z]) − [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]‖A

≤ θ(‖x‖r
A + ‖y‖r

A + ‖z‖r
A)(3.1)

for all x, y, z ∈ A. Then the mapping f : A → A is a C∗-ternary
derivation.
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Proof. By the same reasoning as in the proof of Theorem 2.2, the
mapping f : A → A is C-linear.

It follows from (3.1) that

‖f([x, y, z])− [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]‖A

= lim
n→∞

8n‖f(
[x, y, z]

8n
)− [f(

x

2n
),

y

2n
,

z

2n
]

−[
x

2n
, f(

y

2n
),

z

2n
]− [

x

2n
,

y

2n
, f(

z

2n
)]‖A

≤ lim
n→∞

8nθ

2nr
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A) = 0

for all x, y, z ∈ A. So

f([x, y, z]) = [f(x), y, z] + [x, f(y), z] + [x, y, f(z)]

for all x, y, z ∈ A. Thus the mapping f : A → A is a C∗-ternary
derivation.

Theorem 3.2. Let r < 3 and θ be positive real numbers, and let
f : A → A be a mapping satisfying (2.2) and (3.1). Then the mapping
f : A → A is a C∗-ternary derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.1.
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