STABILITY OF THE CAUCHY FUNCTIONAL EQUATION IN BANACH ALGEBRAS

Jung Rye Lee* and Choonkil Park

Abstract

Using the fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in Banach algebras and of derivations on Banach algebras for the 3-variable Cauchy functional equation.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [40] concerning the stability of group homomorphisms. Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Th.M. Rassias [30] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th. M. Rassias). Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

[^0]exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies
$$
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$
for all $x \in E$. Also, if for each $x \in E$ the function $f(t x)$ is continuous in $t \in \mathbb{R}$, then L is \mathbb{R}-linear.

The above inequality (1.1) that was introduced for the first time by Th.M. Rassias [30] for the proof of the stability of the linear mapping between Banach spaces has provided a lot of influence in the development of what is now known as a generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equations. Beginning around the year 1980 the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was studied by a number of mathematicians. Găvruta [8] extended the Hyers-Ulam stability by proving the following theorem in the spirit of Th.M. Rassias' approach.

Theorem 1.2. [8] Let $f: E \rightarrow E^{\prime}$ be a mapping for which there exists a function $\varphi: E \times E^{\prime} \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
\widetilde{\varphi}(x, y): & =\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right)<\infty, \\
\|f(x+y)-f(x)-f(y)\| & \leq \varphi(x, y)
\end{aligned}
$$

for all $x, y \in E$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x)
$$

for all $x \in E$.
Theorem 1.3. [29] Let X be a real normed linear space and Y a real complete normed linear space. Assume that $f: X \rightarrow Y$ is an approximately additive mapping for which there exist constants $\theta \geq 0$ and $p \in \mathbb{R}-\{1\}$ such that f satisfies inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $L: X \rightarrow Y$ satisfying

$$
\|f(x)-L(x)\| \leq \frac{\theta}{\left|2^{p}-2\right|}\|x\|^{p}
$$

for all $x \in X$. If, in addition, $f: X \rightarrow Y$ is a mapping such that the transformation $t \rightarrow f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$, then L is an \mathbb{R}-linear mapping.

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [39] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [6] proved the generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [1], [2], [12], [14]-[27], [32]-[38]).

We recall a fundamental result in fixed point theory. The reader is referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias [10] for an extensive account of fixed point theory with several applications.

Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if d satisfies
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(3) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 1.4. [4, 7, 28] Let (X, d) be a complete generalized metric space and let $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty, \quad \forall n \geq n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $Y=\{y \in X \mid$ $\left.d\left(J^{n_{0}} x, y\right)<\infty\right\} ;$
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.
G. Isac and Th.M. Rassias [13] were the first to provide applications of stability theory of functional equations for the proof of new fixed point theorems with applications.

This paper is organized as follows: In Section 2, using the fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in Banach algebras for the 3-variable Cauchy functional equation.

In Section 3, using the fixed point method, we prove the generalized Hyers-Ulam stability of derivations on Banach algebras for the 3 -variable Cauchy functional equation.

Throughout this paper, assume that A is a complex Banach algebra with norm $\|\cdot\|_{A}$ and that B is a complex Banach algebra with norm $\|\cdot\|_{B}$.

2. Stability of homomorphisms in Banach algebras

For a given mapping $f: A \rightarrow B$, we define

$$
D_{\mu} f(x, y, z):=\mu f(x+y+z)-f(\mu x)-f(\mu y)-f(\mu z)
$$

for all $\mu \in \mathbb{T}^{1}:=\{\nu \in \mathbb{C}:|\nu|=1\}$ and all $x, y, z \in A$.
Note that a \mathbb{C}-linear mapping $H: A \rightarrow B$ is called a homomorphism in Banach algebras if H satisfies $H(x y)=H(x) H(y)$ for all $x, y \in A$.

We prove the generalized Hyers-Ulam stability of homomorphisms in Banach algebras for the functional equation $D_{\mu} f(x, y, z)=0$.

Theorem 2.1. Let $f: A \rightarrow B$ be a mapping for which there exists a function $\varphi: A^{3} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\left\|D_{\mu} f(x, y, z)\right\|_{B} & \leq \varphi(x, y, z), \tag{2.1}\\
\|f(x y)-f(x) f(y)\|_{B} & \leq \varphi(x, y, 0) \tag{2.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. If there exists an $L<1$ such that $\varphi(x, y, z) \leq 3 L \varphi\left(\frac{x}{3}, \frac{y}{3}, \frac{z}{3}\right)$ for all $x, y, z \in A$, then there exists a unique homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{1}{3-3 L} \varphi(x, x, x) \tag{2.3}
\end{equation*}
$$

for all $x \in A$.

Proof. Consider the set

$$
X:=\{g: A \rightarrow B\}
$$

and introduce the generalized metric on X :

$$
d(g, h)=\inf \left\{C \in \mathbb{R}_{+}:\|g(x)-h(x)\|_{B} \leq C \varphi(x, x, x), \quad \forall x \in A\right\} .
$$

It is easy to show that (X, d) is complete.
Now we consider the linear mapping $J: X \rightarrow X$ such that

$$
J g(x):=\frac{1}{3} g(3 x)
$$

for all $x \in A$.
By Theorem 3.1 of [3],

$$
d(J g, J h) \leq L d(g, h)
$$

for all $g, h \in X$.
Letting $\mu=1$ and $y=z=x$ in (2.1), we get

$$
\begin{equation*}
\|f(3 x)-3 f(x)\|_{B} \leq \varphi(x, x, x) \tag{2.4}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-\frac{1}{3} f(3 x)\right\|_{B} \leq \frac{1}{3} \varphi(x, x, x)
$$

for all $x \in A$. Hence $d(f, J f) \leq \frac{1}{3}$.
By Theorem 1.4, there exists a mapping $H: A \rightarrow B$ such that
(1) H is a fixed point of J, i.e.,

$$
\begin{equation*}
H(3 x)=3 H(x) \tag{2.5}
\end{equation*}
$$

for all $x \in A$. The mapping H is a unique fixed point of J in the set

$$
Y=\{g \in X: d(f, g)<\infty\}
$$

This implies that H is a unique mapping satisfying (2.5) such that there exists $C \in(0, \infty)$ satisfying

$$
\|H(x)-f(x)\|_{B} \leq C \varphi(x, x, x)
$$

for all $x \in A$.
(2) $d\left(J^{n} f, H\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(3^{n} x\right)}{3^{n}}=H(x) \tag{2.6}
\end{equation*}
$$

for all $x \in A$.
(3) $d(f, H) \leq \frac{1}{1-L} d(f, J f)$, which implies the inequality

$$
d(f, H) \leq \frac{1}{3-3 L} .
$$

This implies that the inequality (2.3) holds.
It follows from (2.1) and (2.6) that

$$
\begin{aligned}
& \|H(x+y+z)-H(x)-H(y)-H(z)\|_{B} \\
& =\lim _{n \rightarrow \infty} \frac{1}{3^{n}}\left\|f\left(3^{n}(x+y+z)\right)-f\left(3^{n} x\right)-f\left(3^{n} y\right)-f\left(3^{n} z\right)\right\|_{B} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{3^{n}} \varphi\left(3^{n} x, 3^{n} y, 3^{n} z\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
\begin{equation*}
H(x+y+z)=H(x)+H(y)+H(z) \tag{2.7}
\end{equation*}
$$

for all $x, y, z \in A$. Letting $z=0$ in (2.7), we get

$$
H(x+y)=H(x)+H(y)+H(0)=H(x)+H(y)
$$

for all $x, y \in A$.
Letting $y=z=x$ in (2.1), we get

$$
\|\mu f(3 x)-f(\mu 3 x)\| \leq \varphi(x, x, x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$. By a similar method to above, we get

$$
\mu H(3 x)=H(3 \mu x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$. Thus one can show that the mapping $H: A \rightarrow B$ is \mathbb{C}-linear.

It follows from (2.2) that

$$
\begin{aligned}
\|H(x y)-H(x) H(y)\|_{B} & =\lim _{n \rightarrow \infty} \frac{1}{9^{n}}\left\|f\left(9^{n} x y\right)-f\left(3^{n} x\right) f\left(3^{n} y\right)\right\|_{B} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{9^{n}} \varphi\left(3^{n} x, 3^{n} y, 0\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{3^{n}} \varphi\left(3^{n} x, 3^{n} y, 0\right)=0
\end{aligned}
$$

for all $x, y \in A$. So

$$
H(x y)=H(x) H(y)
$$

for all $x, y \in A$.
Thus $H: A \rightarrow B$ is a homomorphism satisfying (2.3), as desired.

Corollary 2.2. Let $0<r<1$ and θ be nonnegative real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{align*}
\left\|D_{\mu} f(x, y, z)\right\|_{B} & \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{2.8}\\
\|f(x y)-f(x) f(y)\|_{B} & \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}\right) \tag{2.9}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Then there exists a unique homomorphism $H: A \rightarrow B$ such that

$$
\|f(x)-H(x)\|_{B} \leq \frac{3 \theta}{3-3^{r}}\|x\|_{A}^{r}
$$

for all $x \in A$.
Proof. The proof follows from Theorem 2.1 by taking

$$
\varphi(x, y, z):=\theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)
$$

for all $x, y, z \in A$. Then $L=3^{r-1}$ and we get the desired result.
Theorem 2.3. Let $f: A \rightarrow B$ be a mapping for which there exists a function $\varphi: A^{3} \rightarrow[0, \infty)$ satisfying (2.2). If there exists an $L<1$ such that $\varphi(x, y, z) \leq \frac{1}{3} L \varphi(3 x, 3 y, 3 z)$ for all $x, y, z \in A$, then there exists a unique homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{L}{3-3 L} \varphi(x, x, x) \tag{2.10}
\end{equation*}
$$

for all $x \in A$.
Proof. We consider the linear mapping $J: X \rightarrow X$ such that

$$
J g(x):=3 g\left(\frac{x}{3}\right)
$$

for all $x \in A$.
It follows from (2.4) that

$$
\left\|f(x)-3 f\left(\frac{x}{3}\right)\right\|_{B} \leq \varphi\left(\frac{x}{3}, \frac{x}{3}, \frac{x}{3}\right) \leq \frac{L}{3} \varphi(x, x, x)
$$

for all $x \in A$. Hence $d(f, J f) \leq \frac{L}{3}$.
By Theorem 1.4, there exists a mapping $H: A \rightarrow B$ such that
(1) H is a fixed point of J, i.e.,

$$
\begin{equation*}
H(3 x)=3 H(x) \tag{2.11}
\end{equation*}
$$

for all $x \in A$. The mapping H is a unique fixed point of J in the set

$$
Y=\{g \in X: d(f, g)<\infty\} .
$$

This implies that H is a unique mapping satisfying (2.11) such that there exists $C \in(0, \infty)$ satisfying

$$
\|H(x)-f(x)\|_{B} \leq C \varphi(x, x, x)
$$

for all $x \in A$.
(2) $d\left(J^{n} f, H\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} 3^{n} f\left(\frac{x}{3^{n}}\right)=H(x)
$$

for all $x \in A$.
(3) $d(f, H) \leq \frac{1}{1-L} d(f, J f)$, which implies the inequality

$$
d(f, H) \leq \frac{L}{3-3 L},
$$

which implies that the inequality (2.10) holds.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 2.4. Let $r>2$ and θ be nonnegative real numbers, and let $f: A \rightarrow B$ be a mapping satisfying (2.8) and (2.9). Then there exists a unique homomorphism $H: A \rightarrow B$ such that

$$
\|f(x)-H(x)\|_{B} \leq \frac{3 \theta}{3^{r}-3}\|x\|_{A}^{r}
$$

for all $x \in A$.
Proof. The proof follows from Theorem 2.3 by taking

$$
\varphi(x, y, z):=\theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)
$$

for all $x, y, z \in A$. Then $L=3^{1-r}$ and we get the desired result.

3. Stability of derivations on Banach algebras

Note that a \mathbb{C}-linear mapping $\delta: A \rightarrow A$ is called a derivation on A if δ satisfies $\delta(x y)=\delta(x) y+x \delta(y)$ for all $x, y \in A$.

We prove the generalized Hyers-Ulam stability of derivations on Banach algebras for the functional equation $D_{\mu} f(x, y, z)=0$.

Theorem 3.1. Let $f: A \rightarrow A$ be a mapping for which there exists a function $\varphi: A^{3} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\left\|D_{\mu} f(x, y, z)\right\|_{A} & \leq \varphi(x, y, z), \tag{3.1}\\
\|f(x y)-f(x) y-x f(y)\|_{A} & \leq \varphi(x, y, 0) \tag{3.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. If there exists an $L<1$ such that $\varphi(x, y, z) \leq 3 L \varphi\left(\frac{x}{3}, \frac{y}{3}, \frac{z}{3}\right)$ for all $x \in A$. Then there exists a unique derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{1}{3-3 L} \varphi(x, x, x) \tag{3.3}
\end{equation*}
$$

for all $x \in A$.
Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique \mathbb{C}-linear mapping $\delta: A \rightarrow A$ satisfying (3.3). The mapping $\delta: A \rightarrow A$ is given by

$$
\delta(x)=\lim _{n \rightarrow \infty} \frac{f\left(3^{n} x\right)}{3^{n}}
$$

for all $x \in A$.
It follows from (3.2) that

$$
\begin{aligned}
& \|\delta(x y)-\delta(x) y-x \delta(y)\|_{A} \\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{9^{n}}\left\|f\left(9^{n} x y\right)-f\left(3^{n} x\right) \cdot 3^{n} y-3^{n} x f\left(3^{n} y\right)\right\|_{A} \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{1}{9^{n}} \varphi\left(3^{n} x, 3^{n} y, 0\right) \leq \lim _{n \rightarrow \infty} \frac{1}{3^{n}} \varphi\left(3^{n} x, 3^{n} y, 0\right)=0
\end{aligned}
$$

for all $x, y \in A$. So

$$
\delta(x y)=\delta(x) y+x \delta(y)
$$

for all $x, y \in A$. Thus $\delta: A \rightarrow A$ is a derivation satisfying (3.3).
Corollary 3.2. Let $0<r<1$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be a mapping such that

$$
\begin{align*}
\left\|D_{\mu} f(x, y, z)\right\|_{A} & \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{3.4}\\
\|f(x y)-f(x) y-x f(y)\|_{A} & \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}\right)
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Then there exists a unique derivation $\delta: A \rightarrow A$ such that

$$
\|f(x)-\delta(x)\|_{A} \leq \frac{3 \theta}{3-3^{r}}\|x\|_{A}^{r}
$$

for all $x \in A$.
Proof. The proof follows from Theorem 3.1 by taking

$$
\varphi(x, y, z):=\theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)
$$

for all $x, y, z \in A$. Then $L=3^{r-1}$ and we get the desired result.

Theorem 3.3. Let $f: A \rightarrow A$ be a mapping for which there exists a function $\varphi: A^{3} \rightarrow[0, \infty)$ satisfying (3.1) and (3.2). If there exists an $L<1$ such that $\varphi(x, y, z) \leq \frac{1}{3} L \varphi(3 x, 3 y, 3 z)$ for all $x, y, z \in A$, then there exists a unique derivation $\delta: A \rightarrow A$ such that

$$
\|f(x)-\delta(x)\|_{A} \leq \frac{L}{3-3 L} \varphi(x, x, x)
$$

for all $x \in A$.
Proof. The proof is similar to the proofs of Theorems 2.3 and 3.1.
Corollary 3.4. Let $r>2$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (3.4) and (3.5). Then there exists a unique derivation $\delta: A \rightarrow A$ such that

$$
\|f(x)-\delta(x)\|_{A} \leq \frac{3 \theta}{3^{r}-3}\|x\|_{A}^{r}
$$

for all $x \in A$.
Proof. The proof follows from Theorem 3.3 by taking

$$
\varphi(x, y, z):=\theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)
$$

for all $x, y, z \in A$. Then $L=3^{1-r}$ and we get the desired result.

References

[1] C. Baak, D. Boo and Th.M. Rassias, Generalized additive mapping in Banach modules and isomorphisms between C^{*}-algebras, J. Math. Anal. Appl. 314 (2006), 150-161.
[2] B. Belaid, E. Elhoucien and Th.M. Rassias, On the generalized Hyer-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Functional Analysis (to appear).
[3] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003).
[4] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
[5] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[6] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[7] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305309.
[8] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[10] D.H. Hyers, G. Isac and Th.M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publishing Co., Singapore, New Jersey, London, 1997.
[11] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[12] D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[13] G. Isac and Th.M. Rassias, Stability of ψ-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219-228.
[14] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Florida, 2001.
[15] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
[16] C. Park, On an approximate automorphism on a C^{*}-algebra, Proc. Amer. Math. Soc. 132 (2004), 1739-1745.
[17] C. Park, Lie *-homomorphisms between Lie C^{*}-algebras and Lie *-derivations on Lie C ${ }^{*}$-algebras, J. Math. Anal. Appl. 293 (2004), 419-434.
[18] C. Park, Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations, J. Lie Theory 15 (2005), 393-414.
[19] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
[20] C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between C^{*}-algebras, Bull. Belgian Math. Soc.Simon Stevin 13 (2006), 619-631.
[21] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications 2007, Art. ID 50175 (2007).
[22] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordanvon Neumann type additive functional equations, J. Inequal. Appl. 2007, Art. ID 41820 (2007).
[23] C. Park and J. Cui, Generalized stability of C^{*}-ternary quadratic mappings, Abstract Appl. Anal. 2007, Art. ID 23282 (2007).
[24] C. Park and J. Hou, Homomorphisms between C^{*}-algebras associated with the Trif functional equation and linear derivations on C^{*}-algebras, J. Korean Math. Soc. 41 (2004), 461-477.
[25] C. Park and A. Najati, Homomorphisms and derivations in C^{*}-algebras, Abstract Appl. Anal. 2007, Art. ID 80630 (2007).
[26] C. Park and J. Park, Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping, J. Difference Equ. Appl. 12 (2006), 1277-1288.
[27] C. Park and Th.M. Rassias, On a generalized Trif's mapping in Banach modules over a C^{*}-algebra, J. Korean Math. Soc. 43 (2006), 323-356.
[28] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
[29] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
[30] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[31] Th.M. Rassias, On modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106-113.
[32] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), 89-124.
[33] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[34] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[35] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[36] Th.M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[37] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[38] Th.M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[39] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[40] S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

Department of Mathematics
Daejin University
Kyeonggi 487-711, Republic of Korea
E-mail: jrlee@daejin.ac.kr
Department of Mathematics
Hanyang University
Seoul 133-791, Republic of Korea
E-mail: baak@hanyang.ac.kr

[^0]: Received February 25, 2009. Revised March 13, 2009.
 2000 Mathematics Subject Classification: Primary 39B72, 39A10; Secondary 47H10, 46B03.

 Key words and phrases: Cauchy functional equation, fixed point, homomorphism in Banach algebra, generalized Hyers-Ulam stability, derivation on Banach algebra.

 * Corresponding author.

