Korean J. Math. 18 (2010), No. 2, pp. 141-148

SOME RESULTS IN FUZZY ALMOST *r-M* CONTINUOUS FUNCTIONS ON FUZZY *r*-MINIMAL STRUCTURES

WON KEUN MIN* AND MYEONG HWAN KIM

ABSTRACT. We introduce the concept of fuzzy almost r-M continuous function on fuzzy r-minimal structures and investigate characterizations and properties for such a function.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [7]. Chang [1] defined fuzzy topological spaces using fuzzy sets. In [2], Chattopadhyay, Hazra and Samanta introduced a smooth fuzzy topological space which is a generalization of fuzzy topological space. In [4], Yoo et al. introduced the concept of fuzzy r-minimal space which is an extension of the smooth fuzzy topological space. The concept of fuzzy r-M continuity was also introduced and investigated in [4]. They [4,5] studied the concepts of fuzzy r-minimal compactness, almost fuzzy r-minimal compactness and nearly fuzzy r-minimal compactness. In [6], Min introduced and studied the concept of fuzzy almost r-M continuity which is a generalization of fuzzy r-M continuity. In this paper, we investigate the relationships between fuzzy almostr-M continuous functions and several types of fuzzy r-minimal compactness.

Received March 24, 2010. Revised April 20, 2010. Accepted April 25, 2010. 2000 Mathematics Subject Classification: 54A40, 54C08.

Key words and phrases: r-minimal structure, fuzzy r-M continuous, fuzzy r-M open function, fuzzy weakly r-M continuous, fuzzy almost r-M continuous.

^{*}Corresponding author.

2. Preliminaries

Let I be the unit interval [0, 1] of the real line. A member A of I^X is called a fuzzy set of X. By $\tilde{\mathbf{0}}$ and $\tilde{\mathbf{1}}$ we denote constant maps on X with value 0 and 1, respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{\mathbf{1}} - A$. All other notations are standard notations of fuzzy set theory.

An fuzzy point x_{α} in X is a fuzzy set x_{α} defined as follows

$$x_{\alpha}(y) = \begin{cases} \alpha \text{ if } y = x\\ 0 \text{ if } y \neq x. \end{cases}$$

A fuzzy point x_{α} is said to belong to a fuzzy set A in X, denoted by $x_{\alpha} \in A$, if $\alpha \leq A(x)$ for $x \in X$.

A fuzzy set A in X is the union of all fuzzy points which belong to A. Let $f: X \to Y$ be a function and $A \in I^X$ and $B \in I^Y$. Then f(A) is a fuzzy set in Y, defined by

$$f(A)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} A(z), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$

for $y \in Y$ and $f^{-1}(B)$ is a fuzzy set in X, defined by $f^{-1}(B)(x) = B(f(x)), x \in X$.

A smooth topology [2,3] on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties:

(1) $\mathcal{T}(\tilde{\mathbf{0}}) = \mathcal{T}(\tilde{\mathbf{1}}) = 1.$

(2)
$$\mathcal{T}(A_1 \cap A_2) \ge \mathcal{T}(A_1) \wedge \mathcal{T}(A_2).$$

(3) $\mathcal{T}(\cup A_i) \ge \wedge \mathcal{T}(A_i).$

The pair (X, \mathcal{T}) is called a smooth topological space.

DEFINITION 2.1. ([4]) Let X be a nonempty set and $r \in (0, 1] = I_0$. A fuzzy family $\mathcal{M} : I^X \to I$ on X is said to have a *fuzzy r-minimal* structure if the family

$$\mathcal{M}_r = \{ A \in I^X \mid \mathcal{M}(A) \ge r \}$$

contains $\tilde{\mathbf{0}}$ and $\tilde{\mathbf{1}}$.

Then the (X, \mathcal{M}) is called a *fuzzy r-minimal space* (simply *r*-FMS) if \mathcal{M} has a fuzzy *r*-minimal structure. Every member of \mathcal{M}_r is called a *fuzzy r-minimal open* set. A fuzzy set A is called a *fuzzy r-minimal closed* set if the complement of A (simply, A^c) is a fuzzy *r*-minimal open set.

Let (X, \mathcal{M}) be an *r*-FMS and $r \in I_0$. The fuzzy *r*-minimal closure and the fuzzy *r*-minimal interior of A [4], denoted by mC(A, r) and mI(A, r), respectively, are defined as

$$mC(A, r) = \cap \{B \in I^X : B^c \in \mathcal{M}_r \text{ and } A \subseteq B\},\$$

$$mI(A,r) = \bigcup \{ B \in I^X : B \in \mathcal{M}_r \text{ and } B \subseteq A \}.$$

THEOREM 2.2. ([4]) Let (X, \mathcal{M}) be an *r*-FMS and A, B in I^X .

- (1) $mI(A, r) \subseteq A$ and if A is a fuzzy r-minimal open set, then mI(A, r) = A.
- (2) $A \subseteq mC(A, r)$ and if A is a fuzzy r-minimal closed set, then mC(A, r) = A.
- (3) If $A \subseteq B$, then $mI(A, r) \subseteq mI(B, r)$ and $mC(A, r) \subseteq mC(B, r)$.
- (4) $mI(A,r) \cap mI(B,r) \supseteq mI(A \cap B,r)$ and $mC(A,r) \cup mC(B,r) \subseteq mC(A \cup B,r)$.
- (5) mI(mI(A, r), r) = mI(A, r) and mC(mC(A, r), r) = mC(A, r).
- (6) $\mathbf{\tilde{1}} mC(A, r) = mI(\mathbf{\tilde{1}} A, r)$ and $\mathbf{\tilde{1}} mI(A, r) = mC(\mathbf{\tilde{1}} A, r)$.

Let (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) be two *r*-FMS's. Then a function $f : X \to Y$ is said to be

- (1) fuzzy r-M continuous [4] if for every fuzzy r-minimal open set A in $Y, f^{-1}(A)$ is fuzzy r-minimal open in X,
- (2) fuzzy r-M open [4] if for every fuzzy r-minimal open set G in X, f(G) is fuzzy r-minimal open in Y.
- (3) fuzzy almost r-M continuous [7] if for fuzzy point x_{α} in X and each fuzzy r-minimal open set V containing $f(x_{\alpha})$, there is a fuzzy r-minimal open set U containing x_{α} such that $f(U) \subseteq mI(mC(V,r),r)$.

THEOREM 2.3. ([7]) Let $f : X \to Y$ be a function between *r*-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . Then the following statements are equivalent: (1) f is fuzzy almost $r \cdot M$ continuous.

(2) $f^{-1}(B) \subseteq mI(f^{-1}(mI(mC(B, r), r)), r)$ for each fuzzy *r*-minimal open set *B* of *Y*.

(3) $mC(f^{-1}(mC(mI(F,r),r)),r) \subseteq f^{-1}(F)$ for each fuzzy r-minimal closed set F in Y.

Let X be a nonempty set and $\mathcal{M} : I^X \to I$ a fuzzy family on X. The fuzzy family \mathcal{M} is said to have the property (\mathcal{U}) [4] if for $A_i \in \mathcal{M}$ $(i \in J)$,

$$\mathcal{M}(\cup A_i) \geq \wedge \mathcal{M}(A_i).$$

THEOREM 2.4. ([4]) Let (X, \mathcal{M}) be an *r*-FMS with the property (\mathcal{U}) . Then

(1) mI(A, r) = A if and only if A is a fuzzy r-minimal open set for $A \in I^X$.

(2) mC(A, r) = A if and only if A is a fuzzy r-minimal closed set for $A \in I^X$.

COROLLARY 2.5. ([7]) Let $f : X \to Y$ be a function between *r*-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If \mathcal{M}_Y has property (\mathcal{U}) , then the following statements are equivalent:

- (1) f is fuzzy almost r-M continuous.
- (2) $f^{-1}(B) \subseteq mI(f^{-1}(mI(mC(B,r),r)),r)$ for each fuzzy *r*-minimal open set *B* of *Y*.
- (3) $f^{-1}(mI(B,r)) \subseteq mI(f^{-1}(mI(mC(mI(B,r),r),r)),r)$ for each $B \subseteq Y$.
- (4) $mCl(f^{-1}(mC(mI(mC(B,r),r),r)),r) \subseteq f^{-1}(mC(B,r))$ for each $B \subseteq Y$.

3. Fuzzy almost *r*-*M* continuous functions and fuzzy *r*-minimal compactness

We recall that the following notions introduced in [5]: Let (X, \mathcal{M}) be an *r*-FMS and $\mathcal{A} = \{A_i \in I^X : i \in J\}$. \mathcal{A} is called a *fuzzy r-minimal cover* if $\cup \{A_i : i \in J\} = \mathbf{\tilde{1}}$. It is a *fuzzy r-minimal open cover* if each A_i is a fuzzy *r*-minimal open set. A subcover of a fuzzy *r*-minimal cover \mathcal{A} is a subfamily of it which also is a fuzzy *r*-minimal cover. A fuzzy set A in X is said to be *fuzzy r-minimal compact* (resp. *almost fuzzy r-minimal compact, nearly fuzzy r-minimal compact*) if every fuzzy *r*minimal open cover $\mathcal{A} = \{A_i \in \mathcal{M}_r : i \in J\}$ of A, there exists $J_0 =$ $\{j_1, j_2, \cdots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{i \in J_0} A_i$ (resp. $A \subseteq \bigcup_{i \in J_0} mC(A_i, r),$ $A \subseteq \bigcup_{i \in J_0} mI(mC(A_i, r), r))$.

THEOREM 3.1. Let $f : X \to Y$ be a fuzzy almost r-M continuous function between r-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If A is a fuzzy rminimal compact set in X and \mathcal{M}_X has property (\mathcal{U}) , then f(A) is a nearly fuzzy r-minimal compact set.

Proof. Let $\{B_i \in I^Y : i \in J\}$ be a fuzzy r-minimal open cover of f(A) in Y. Then from fuzzy almost r-M continuity, we have $f^{-1}(B_i) \subseteq$

 $mI(f^{-1}(mI(mC(B_i, r), r)), r)$ for each $i \in J$. And since \mathcal{M}_X has property (\mathcal{U}) , by Theorem 2.3 and Theorem 2.4, $\{mI(f^{-1}(mI(mC(B_i, r), r)), r) : i \in J\}$ is a fuzzy *r*-minimal open cover of A in X. By the fuzzy *r*-minimal compactness, there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that

$$A \subseteq \bigcup_{i \in J_0} mI(f^{-1}(mI(mC(B_i, r), r)), r) \subseteq f^{-1}(mI(mC(B_i, r), r)).$$

Hence $f(A) \subseteq \bigcup_{i \in J_0} mI(mC(B_i, r), r).$

COROLLARY 3.2. Let $f: X \to Y$ be a fuzzy r-M continuous function between r-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If A is a fuzzy r-minimal compact set in X and \mathcal{M}_X has property (\mathcal{U}) , then f(A) is a nearly fuzzy r-minimal compact set.

Proof. Since every fuzzy r-M continuous function is fuzzy almost r-M continuous function, it is obtained by Theorem 3.1.

THEOREM 3.3. ([4]) Let $f : X \to Y$ be a function on two r-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . Then

(1) f is fuzzy r-M open. (2) $f(mI(A), r) \subseteq mI(f(A), r)$ for $A \in I^X$. (3) $mI(f^{-1}(B), r) \subseteq f^{-1}(mI(B), r)$ for $B \in I^Y$. Then (1) \Rightarrow (2) \Leftrightarrow (3).

THEOREM 3.4. Let $f : X \to Y$ be a function on two r-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If \mathcal{M}_X and \mathcal{M}_Y have the property (\mathcal{U}) , then the following are equivalent:

(1) f is fuzzy r-M open. (2) $f(mI(A), r) \subseteq mI(f(A), r)$ for $A \in I^X$. (3) $mI(f^{-1}(B), r) \subseteq f^{-1}(mI(B), r)$ for $B \in I^Y$.

Proof. It follows from Theorem 2.4 and Theorem 3.3.

THEOREM 3.5. Let $f : X \to Y$ be a fuzzy almost $r \cdot M$ continuous and fuzzy $r \cdot M$ open function between $r \cdot \text{FMS's}(X, \mathcal{M}_X)$ and (Y, \mathcal{M}_Y) . If Ais an almost fuzzy r-minimal compact set and if \mathcal{M}_X has the property (\mathcal{U}) , then f(A) is almost fuzzy r-minimal compact set.

Proof. Let $\{B_i \in I^Y : i \in J\}$ be a fuzzy r-minimal open cover of f(A) in Y. Then by the property $(\mathcal{U}), \{mI(f^{-1}(mI(mC(B_i, r), r)), r) : i \in J\}$ is a fuzzy r-minimal open cover of A in X. So there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that

$$A \subseteq \bigcup_{i \in J_0} mC(mI(f^{-1}(mI(mC(B_i, r), r)), r), r))$$

From Theorem 3.3, it follows

$$A \subseteq \bigcup_{i \in J_0} mC(mI(f^{-1}(mI(mC(B_i, r), r)), r), r)$$
$$\subseteq \bigcup_{i \in J_0} mC(f^{-1}(mI(mC(B_i, r), r)), r)$$
$$\subseteq \bigcup_{i \in J_0} f^{-1}(mC(mI(mC(B_i, r), r), r))$$
$$\subseteq \bigcup_{i \in J_0} f^{-1}(mC(B_i, r)).$$

Hence $f(A) \subseteq \bigcup_{i \in J_0} mC(B_i, r)$.

COROLLARY 3.6. Let $f : X \to Y$ be a fuzzy r-M continuous and fuzzy r-M open function between r-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If Ais an almost fuzzy r-minimal compact set and if \mathcal{M}_X has the property (\mathcal{U}) , then f(A) is almost fuzzy r-minimal compact.

THEOREM 3.7. Let $f : X \to Y$ be a fuzzy almost r-M continuous function between r-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If A is an almost fuzzy r-minimal compact set and if \mathcal{M}_X and \mathcal{M}_Y have the property (\mathcal{U}) , then f(A) is almost fuzzy r-minimal compact set.

Proof. Let $\{B_i \in I^Y : i \in J\}$ be a fuzzy r-minimal open cover of f(A) in Y. Then by the property $(\mathcal{U}), \{mI(f^{-1}(mI(mC(B_i, r), r)), r) : i \in J\}$ is a fuzzy r-minimal open cover of A in X. So there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that

$$A \subseteq \bigcup_{i \in J_0} mC(mI(f^{-1}(mI(mC(B_i, r), r)), r), r)).$$

From Corollary 2.5, it follows

$$A \subseteq \bigcup_{i \in J_0} mC(mI(f^{-1}(mI(mC(B_i, r), r)), r), r)$$

$$\subseteq \bigcup_{i \in J_0} mC(f^{-1}(mI(mC(B_i, r), r)), r)$$

$$\subseteq \bigcup_{i \in J_0} mC(f^{-1}(mC(mI(mC(B_i, r), r), r)), r)$$

$$\subseteq \bigcup_{i \in J_0} f^{-1}(mC(B_i, r)).$$

Hence $f(A) \subseteq \bigcup_{i \in J_0} mC(B_i, r)$.

COROLLARY 3.8. Let $f: X \to Y$ be a fuzzy r-M continuous function between r-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If A is an almost fuzzy rminimal compact set and if \mathcal{M}_X and \mathcal{M}_Y have the property (\mathcal{U}) , then f(A) is almost fuzzy r-minimal compact.

THEOREM 3.9. Let $f : X \to Y$ be a fuzzy almost $r \cdot M$ continuous and fuzzy $r \cdot M$ open function between $r \cdot \text{FMS's}(X, \mathcal{M}_X)$ and (Y, \mathcal{M}_Y) .

146

If A is a nearly fuzzy r-minimal compact set and if \mathcal{M}_X has the property (\mathcal{U}) , then f(A) is a nearly fuzzy r-minimal compact set.

Proof. Let $\{B_i \in I^Y : i \in J\}$ be a fuzzy r-minimal open cover of f(A) in Y. Then $\{mI(f^{-1}(mI(mC(B_i, r), r)), r) : i \in J\}$ is a fuzzy r-minimal open cover of A in X. So there exists $J_0 = \{j_1, j_2, \dots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{i \in J_0} mI(mC(mI(f^{-1}(mI(mC(B_i, r), r)), r), r), r))$ by the nearly fuzzy r-minimal compactness. From Theorem 3.3, it follows,

$$A \subseteq \bigcup_{i \in J_0} mI(mC(mI(f^{-1}(mI(mC(B_i, r), r)), r), r), r))$$

$$\subseteq \bigcup_{i \in J_0} mI(mC(f^{-1}(mI(mI(mC(B_i, r), r), r)), r), r))$$

$$\subseteq \bigcup_{i \in J_0} mI(f^{-1}(mC(mI(mC(B_i, r), r), r)), r))$$

$$\subseteq \bigcup_{i \in J_0} mI(f^{-1}(mC(B_i, r)), r))$$

$$\subseteq \bigcup_{i \in J_0} f^{-1}(mI(mC(B_i, r), r))).$$

Hence $f(A) \subseteq \bigcup_{i \in J_0} mI(mC(B_i, r), r)$.

COROLLARY 3.10. Let $f : X \to Y$ be a fuzzy almost r-M continuous and fuzzy r-M open function between r-FMS's (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If A is a nearly fuzzy r-minimal compact set and if \mathcal{M}_X has the property (\mathcal{U}) , then f(A) is a nearly fuzzy r-minimal compact set.

References

- [1] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl., **24**(1968), 182–190.
- [2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness : Fuzzy topology, Fuzzy Sets and Systems, 49(1992), 237–242.
- [3] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems, 48(1992), 371–375.
- [4] Y. H. Yoo, W. K. Min and J. I. Kim. Fuzzy r-Minimal Structures and Fuzzy r-Minimal Spaces, Far East J. Math. Sci., 33(2)(2009), 193-205.
- [5] ——, Fuzzy r-compactness on fuzzy r-minimal spaces, Int. J. Fuzzy Logic and Intelligent Systems, accepted.
- [6] W. K. Min, Fuzzy almost r-M continuity on fuzzy r-minimal structures, submitted.
- [7] L. A. Zadeh, *Fuzzy sets*, Information and Control, **8**(1965), 338–353.

Won Keun Min and Myeong Hwan Kim

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea *E-mail*: wkmin@kangwon.ac.kr

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea *E-mail*: kimmw@kangwon.ac.kr