RELATIVE ISOPERIMETRIC INEQUALITY FOR MINIMAL SUBMANIFOLDS IN SPACE FORMS

Keomkyo Seo

Abstract. Let C be a closed convex set in \mathbb{S}^m or \mathbb{H}^m. Assume that Σ is an n-dimensional compact minimal submanifold outside C such that Σ is orthogonal to ∂C along $\partial\Sigma \cap \partial C$ and $\partial\Sigma$ lies on a geodesic sphere centered at a fixed point $p \in \partial\Sigma \cap \partial C$ and that r is the distance in \mathbb{S}^m or \mathbb{H}^m from p. We make use of a modified volume $M_p(\Sigma)$ of Σ and obtain a sharp relative isoperimetric inequality

$$\frac{1}{2}n^2 \omega_n M_p(\Sigma)^{n-1} \leq \text{Vol}(\partial\Sigma \sim \partial C)^n,$$

where ω_n is the volume of a unit ball in \mathbb{R}^n. Equality holds if and only if Σ is a totally geodesic half ball centered at p.

1. Introduction

Let Σ be a domain in a complete simply connected surface with constant Gaussian curvature K. The classical isoperimetric inequality says that

$$4\pi \text{Area}(\Sigma) - K \text{Area}(\Sigma)^2 \leq \text{Length}(\partial\Sigma)^2,$$

where equality holds if and only if Σ is a geodesic disk. One natural way to extend this optimal inequality is to find the corresponding relative isoperimetric inequality. Let C be a closed convex set in a complete simply connected surface S with constant Gaussian curvature $K \leq 0$. It has been known that if Σ is a relatively compact subset in $S \sim C$, then

$$(1.1) \quad 2\pi \text{Area}(\Sigma) - K \text{Area}(\Sigma)^2 \leq \text{Length}(\partial\Sigma \sim \partial C)^2,$$

where equality holds if and only if Σ is a geodesic half disk [1]. Here \sim denotes the set minus operator. The inequality (1.1) is called the
relative isoperimetric inequality for Σ. Recently this inequality has been generalized to various directions. (See [2, 3, 4, 6, 7, 8, 9].)

In this paper we study relative isoperimetric inequalities for an n-dimensional minimal submanifold Σ outside a closed convex set C in space forms. Under the assumption that the relative boundary $\partial \Sigma \sim \partial C$ lies on a geodesic sphere centered at $p \in \partial \Sigma \cap \partial C$, we prove a sharp relative isoperimetric inequality. More precisely our main theorem is stated as follows.

Theorem. Let C be a closed convex set in S^m or H^m. Assume that Σ is an n-dimensional compact minimal submanifold outside C such that Σ is orthogonal to ∂C along $\partial \Sigma \cap \partial C$ and $\partial \Sigma$ lies on a geodesic sphere centered at a fixed point $p \in \partial \Sigma \cap \partial C$ and that r is the distance in S^m or H^m from p. Furthermore, in case of $\Sigma \subset S^m$, assume $r \leq \frac{\pi}{2}$. Then

$$\frac{1}{2} n^\ast \omega_n M_p(\Sigma)^{n-1} \leq \text{Vol}(\partial \Sigma \sim \partial C)^n,$$

where ω_n is the volume of a unit ball in R^n. Equality holds if and only if Σ is a totally geodesic half ball centered at p.

2. Proof of main theorem

Let p be a point in the m-dimensional sphere $S^m \subset R^{m+1}$ and let $r(x)$ be the distance from p to x in S^m. Choe and Gulliver [5] defined the modified volume $M_p(\Sigma)$ of Σ with center at p as

$$M_p(\Sigma) = \int_\Sigma \cos r.$$

Similarly for Σ in the m-dimensional hyperbolic space H^m, they defined the modified volume of Σ by

$$M_p(\Sigma) = \int_\Sigma \cosh r.$$

Using the concept of the modified volume, they were able to prove the isoperimetric inequalities for minimal submanifolds in S^m or H^m. In order to prove our main theorem, we need the following monotonicity property which holds for minimal submanifolds outside a closed convex set in space forms.
Relative isoperimetric inequality for minimal submanifolds

Lemma 1. Let C be a closed convex set in \mathbb{S}^m or \mathbb{H}^m. Assume that Σ is an n-dimensional compact minimal submanifold outside C such that Σ is orthogonal to ∂C along $\partial \Sigma \cap \partial C$. Suppose that $r(\cdot) = \text{dist}(p, \cdot)$ in \mathbb{S}^m or \mathbb{H}^m for any $p \in \partial \Sigma \cap \partial C$. Denote by $B(p, r)$ the geodesic ball of radius r centered at p.

(a) In case of Σ in \mathbb{S}^m, for $0 < r < \min\{\frac{\pi}{2}, \text{dist}(p, \partial \Sigma \sim \partial C)\}$

$$\frac{M_p(\Sigma \cap B(p, r))}{\sin^n r}$$

is monotonically nondecreasing function of r.

(b) In case of Σ in \mathbb{H}^m, for $0 < r < \text{dist}(p, \partial \Sigma \sim \partial C)$

$$\frac{M_p(\Sigma \cap B(p, r))}{\sinh^n r}$$

is monotonically nondecreasing function of r.

Proof. For (a), define $\Sigma_r = \Sigma \cap B(p, r)$. Then

$$M_p(\Sigma_r) = \int_{\Sigma_r} \cos r \leq -\frac{1}{n} \int_{\Sigma_r} \Delta \cos r$$

$$= \frac{1}{n} \int_{\partial \Sigma_r \sim \partial C} \sin r \frac{\partial r}{\partial \nu} + \frac{1}{n} \int_{\partial \Sigma_r \cap \partial C} \sin r \frac{\partial r}{\partial \nu}.$$

Since $\frac{\partial r}{\partial \nu} = \langle \nabla r, \nu \rangle \leq 0$ on $\partial \Sigma_r \cap \partial C$ by the orthogonality condition, one sees that

$$M_p(\Sigma_r) \leq \frac{1}{n} \int_{\partial \Sigma_r \sim \partial C} \sin r \frac{\partial r}{\partial \nu} = \frac{\sin r}{n} \int_{\partial \Sigma_r \sim \partial C} |\nabla r|.$$

Denote the volume forms on Σ and $\partial \Sigma_r$ by dv and $d\Sigma_r$, respectively. Then

$$dv = \frac{1}{|\nabla r|} d\Sigma_r dr.$$

Thus

$$\frac{d}{dr} \int_{\Sigma_r} \cos r |\nabla r|^2 dv = \frac{d}{dr} \int_0^r \int_{\partial \Sigma_r} \cos r |\nabla r| d\Sigma_r dr = \cos r \int_{\partial \Sigma_r} |\nabla r|.$$
Using the fact that \(r \leq \frac{\pi}{2} \) and \(|\nabla r| \leq 1 \) on \(\Sigma \), we get

\[
M_p(\Sigma_r) \leq \frac{1}{n} \sin r \cos r \int_{\Sigma_r} |\nabla r| \leq \frac{1}{n} \sin r \cos r \frac{d}{dr} \int_{\Sigma_r} \cos r |\nabla r|^2
\leq \frac{1}{n} \sin r \frac{d}{dr} \int_{\Sigma_r} \cos r
\leq \frac{1}{n} \sin r \frac{d}{dr} M_p(\Sigma_r).
\]

Therefore

\[
\frac{d}{dr} \log \left(\frac{M_p(\Sigma_r)}{\sin^n r} \right) \geq 0,
\]

which implies that the function \(\frac{M_p(\Sigma_r)}{\sin^n r} \) is monotonically nondecreasing. A similar proof holds for (b).

From the above monotonicity property, we can prove our main result about relative isoperimetric inequality for minimal submanifolds outside a convex set satisfying that the relative boundary \(\partial \Sigma \sim \partial C \) lies on a geodesic sphere.

Theorem 2. Let \(C \) be a closed convex set in \(S^m \) or \(\mathbb{H}^m \). Assume that \(\Sigma \) is an \(n \)-dimensional compact minimal submanifold outside \(C \) such that \(\Sigma \) is orthogonal to \(\partial C \) along \(\partial \Sigma \cap \partial C \) and \(\partial \Sigma \) lies on a geodesic sphere centered at a fixed point \(p \in \partial \Sigma \cap \partial C \) and that \(r \) is the distance in \(S^m \) or \(\mathbb{H}^m \) from \(p \). Furthermore, in case of \(\Sigma \subset S^m \), assume \(r \leq \frac{\pi}{2} \). Then

\[
\frac{1}{2} n \omega_n M_p(\Sigma)^{n-1} \leq \text{Vol}(\partial \Sigma \sim \partial C)^n,
\]

where \(\omega_n \) is the volume of a unit ball in \(\mathbb{R}^n \). Equality holds if and only if \(\Sigma \) is a totally geodesic half ball centered at \(p \).
Proof. Assume that $\Sigma \subset S^m$. Let $r(\cdot) = \text{dist}(p, \cdot)$ in M. Let R be the radius of the geodesic sphere on which $\partial \Sigma \sim \partial C$ lies. It follows that

$$M_p(\Sigma) \leq -\frac{1}{n} \int_{\Sigma} \Delta \cos r$$

$$= \frac{1}{n} \int_{\partial \Sigma \sim \partial C} \sin r \frac{\partial r}{\partial \nu} + \frac{1}{n} \int_{\partial \Sigma \sim \partial C} \sin r \frac{\partial r}{\partial \nu}$$

$$\leq \frac{1}{n} \int_{\partial \Sigma \sim \partial C} \sin r \frac{\partial r}{\partial \nu}$$

$$= \frac{\sin R}{n} \int_{\partial \Sigma \sim \partial C} \frac{\partial r}{\partial \nu}$$

$$\leq \frac{\sin R}{n} \text{Vol}(\partial \Sigma \sim \partial C).$$

Since

$$\lim_{r \to 0} \frac{M_p(\Sigma \cap B(p, r))}{\sin^n r} = \frac{\omega_n}{2},$$

we see from Lemma 1 that

$$\frac{\omega_n}{2} \leq \frac{M_p(\Sigma)}{\sin^n R}.$$

Thus we have

$$M_p(\Sigma) \leq \left(\frac{2}{\omega_n} \right)^{\frac{1}{n}} (M_p(\Sigma))^\frac{1}{n} \frac{1}{n} \text{Vol}(\partial \Sigma \sim \partial C),$$

which gives the desired inequality. Moreover, equality holds if and only if Σ is a cone with density at p equal to 1 with constant sectional curvature 1 and $\partial \Sigma \cap \partial C$ is totally geodesic, or equivalently Σ is a totally geodesic half ball.

Similarly one can prove the above theorem in case of $\Sigma \subset \mathbb{H}^m$. \qed

References

Department of Mathematics
Sookmyung Women’s University
Hyochangwongil 52, Yongsan-ku
Seoul, 140-742, Korea
E-mail: kseo@sookmyung.ac.kr