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A CRITERION FOR VERTEX EXTREMAL LENGTH

PARABOLIC GRAPHS AND ITS APPLICATION

Byung-Geun Oh

Abstract. We give a criterion for vertex extremal length parabol-
icity of locally finite planar graphs, and use it to show that a disk
triangulation graph is circle packing parabolic if and only if its im-
mediate finer graphs are circle packing parabolic.

1. Introduction

In 1985, Thurston gave a fascinating conjecture [12] that some ‘nice’
circle packing in a simply connected domain would approximate the Rie-
mann map, which was later turned out to be true by Rodin and Sullivan
[8]. Since then, together with the rapid growth of computer technol-
ogy and computer related theory such as discrete mathematics, circle
packings have become one of the hottest topics in the discrete version of
conformal function theory, and also in other branches of mathematics.

Among all the interesting topics about circle packings, however, the
one which has interested us most is the study of combinatorial structure
of circle packings. A typical problem in this area is to determine the
properties of circle packings that are completely, or at least partially,
explained by their combinatorics. For example, let us ask the following
question: “could there be two different circle packings, one of them
packs the whole plane and the other packs the unit disk, with the same
combinatorics?” The answer for this question is negative—it was proved
by He and Schramm in [4], and we will see it in Section 2.
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Since the combinatorics of circle packings are mostly described by
graphs, we first introduce some notations and terminologies for graphs.
A graph G = (V, E) is a pair of the vertex set V and the edge set E, as
usual. The vertex set V could be either finite or infinite, but it has to be
at most countable. The edge set E is definitely the set of edges, where
each edge e ∈ E corresponds to two different vertices v, w in V . In this
case we use the notation e = [v, w] and say that e connects the vertices
v and w, or equivalently we say that the vertices v, w are the endpoints
of e. Note that we do not allow more than one edge corresponding to a
pair of vertices, nor an edge of the form [v, v]. In other words, there is
no multiple edge nor a self loop. Since we do not distinguish [v, w] from
[w, v], each edge can be considered an unordered pair in V × V .

For each v ∈ V , the neighbor of v is defined by N(v) = {w ∈ V :
[v, w] ∈ E}, and the degree, or valence, of v ∈ V is deg(v) = |N(v)|,
the number of elements in N(v). The graph is called locally finite if
deg(v) < ∞ for every v ∈ V , and called uniformly bounded or of finite
valence if there exists C ∈ R such that deg(v) ≤ C for all v ∈ V .

A finite path γ in G is a finite sequence of vertices γ = [v0, v1, . . . , vn]
such that [vj, vj+1] ∈ E, j = 0, . . . n − 1. In this case we say that the
path γ connects v0 and vn. An infinite path can be defined similarly. A
path is called simple if it visits every vertex at most once, and an infinite
path is called transient if it visits every vertex at most finitely many.
A graph is called connected if every two vertices can be connected by a
finite path in the graph.

The following definition is due to Cannon [2].

Definition 1. Suppose G = (V, E) is a connected graph. We say
that G is Vertex Extremal Length parabolic, or VEL-parabolic, if there
exists a function m : V → R+ ∪ {0} such that

(a)
∑
v∈V

m(v)2 < ∞,

(b)
∑

v∈V (γ)

m(v) = ∞ for any transient path γ.

Here V (γ) denotes the vertices which γ visits. A function m satisfying
these properties will be called a parabolic v-metric. If no parabolic v-
metric can be defined on V , we say that G is VEL-hyperbolic.

Of course the definition of VEL-parabolicity/hyperbolicty is related
to the so-called vertex extremal length between a point v ∈ V and ∞.
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Vertex extremal length, and ‘Edge Extremal Length’ defined by Duffin
[3], are the discrete analogs of classical extremal length [1, Chap. 4].
However, edge extremal length is closely related to the random walk on
graphs, while vertex extremal length is related to circle packings [5].

To describe our result, let us introduce some more definitions. A
graph G is called planar if it can be continuously embedded into the
plane C = R2, and a planar graph is called locally finite if it can be
embedded locally finitely. Finally, a measurable set A ⊂ C is called
τ -fat if for every x ∈ A and r > 0 such that D(x, r) := {z : |z − x| < r}
does not contain A, the following inequality holds:

(1.1) area(A ∩D(x, r)) ≥ τ · area(D(x, r)).

Now we are ready to describe our main result.

Theorem 2. Suppose G = (V,E) is a connected infinite planar graph
which is locally finite in C, and Q = (Qv : v ∈ V ) is a collection of τ -fat
sets satisfying the following properties:

(1) for every v ∈ V , Qv is a compact connected set in C;
(2) Q is locally finite in C; that is, for every compact set K ⊂ C, there

are only finitely many v ∈ V such that Qv ∩K 6= ∅. Also we assume
that every x ∈ C is included in Qv for at most M < ∞ vertices
v ∈ V , where M does not depend on x;

(3) if [v, w] ∈ E, then Qv ∩Qw 6= ∅.
Then G is a VEL-parabolic graph.

The concept of fat sets was introduced by Schramm [9]. It means
that the set is nowhere thin. For example, let us show that every disk
D = D(z, R) is 1/4-fat. This means that for every x ∈ D and 0 < r <
R + |x− z|, we need to show that area(D∩D(x, r)) ≥ (1/4)areaD(x, r).
But we may assume without loss of generality that D = D(0, 1), 0 ≤
x < 1, and 0 < r < 1 + x. Then because D(x− r/2, r/2) ⊂ D ∩D(x, r),
we have

area(D ∩D(x, r)) ≥ area(D(x− r/2, r/2)) =
1

4
· area(D(x, r)),

as desired.
Perhaps one has noticed that the collection Q in Theorem 2 resembles

the definition of (circle) packings. Actually in [5] He and Schramm
proved Theorem 2 for the case when Q is a packing, hence our result
should be accepted as an extension of their result.
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2. Circle packing and tangency graph

Let V be an index set. With an indexed circle packing P = (Pv :
v ∈ V ), we mean a collection of closed geometric disks in the plane
C = R2 with disjoint interiors. An interstice of a circle packing P is a
connected component of C \ (

⋃
v∈V Pv), and the carrier is the union of

the packed disks and the finite(bounded) interstices. In Figure 1, the
region enclosed by the bold curve is the carrier, and each component of
the gray part is a finite interstice. Note that when the cardinality of V
is finite, the carrier is nothing but the complement of the unbounded
interstice.

An interstice

Figure 1. Carrier of a finite circle packing

Every circle packing P is associated to a graph G(P) = (V (P), E(P)),
called the tangency graph or the nerve of the circle packing P , which
is defined as follows: the vertex set V (P) is nothing but the index set
V , and the elements of the edge set E(P) are exactly the pairs [v, w],
v, w ∈ V (P), such that Pv ∩ Pw 6= ∅. Clearly the tangency graph de-
scribes the combinatorial pattern of the packing, hence it inherits a lot
of important properties from the associated circle packing. For example,
one can easily see that G(P) is connected if and only if the set

⋃
v∈V Pv

is connected in C.
Now suppose G is a disk triangulation graph. This means that G

is the 1-skeleton of a topological triangulation of an open disk, thus G
must be an infinite planar graph such that every face of G is a topolog-
ical triangle (with three vertices on its boundary). Then there exists a
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Figure 2. Tangency graph of the packing in Figure 1

circle packing P whose tangency graph is combinatorially equivalent to
G and whose carrier is a simply connected domain in C, and the simply
connected domain (i.e., carrier) can be chosen as either the whole plane
C or the unit disk D, but not both [4]. In other words, the combina-
torial property of a circle packing (i.e., the tangency graph) completely
determines whether it can pack the whole complex plane or not, as we
mentioned in the introduction. We say that a disk triangulation graph G
is circle packing parabolic (cp-parabolic) if the carrier of the associated
circle packing is the whole plane, and we say that G is circle packing
hyperbolic (cp-hyperbolic) otherwise.

Now we know that there are two classes of disk triangulation graphs,
cp-parabolic and cp-hyperbolic, but how can we determine its circle
packing type? This is where VEL-type, either parabolic or hyperbolic,
is involved.

Theorem 3. A disk triangulation graph is cp-parabolic if and only
if it is VEL-parabolic. Equivalently, a disk triangulation graph is cp-
hyperbolic if and only if it is VEL-hyperbolic.

The above theorem is due to He and Schramm [5]. In fact, Theorem 3
says that VEL-type is an extension of cp-type, since cp-type can be
defined only for disk triangulation graphs while VEL-type can be defined
for every infinite connected graph.

Now we can read Theorem 2 more accurately. It says that if we have a
disk triangulation graph and a collection of compact sets satisfying some
properties similar to parabolic circle packings, then the triangulation
graph in consideration is really associated to a parabolic circle packing.
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This flexibility could save some efforts to show that a triangulation graph
is cp-parabolic, as we will do in Section 4.

For those who want to study the theory of circle packings, we recom-
mend [10] for a brief summary, and [11] for more detailed introduction.

3. Fat sets and a proof of Theorem 2

We begin this section with the following lemma.

Lemma 4. Suppose A and B are τ -fat sets for some τ > 0. If A∩B 6=
∅, then A ∪B is τ/4-fat.

Proof. Suppose x ∈ A ∪ B. Without loss of generality, we assume
that x ∈ A. If D(x, r/2) does not contain A, then

area((A ∪B)∩D(x, r)) ≥ area(A ∩D(x, r)) ≥ area(A ∩D(x, r/2))

≥ τ · area(D(x, r/2)) = (τ/4)area(D(x, r))

as desired.
If D(x, r/2) contains A but D(x, r) does not contain A∪B, we choose

y ∈ A∩B ⊂ B such that |x− y| < r/2. Then since D(y, r/2) ⊂ D(x, r),
A ⊂ D(x, r/2), and A ∪ B * D(x, r), one can easily see that D(y, r/2)
does not contain B. Therefore,

area((A ∪B)∩D(x, r)) ≥ area(B ∩D(x, r)) ≥ area(B ∩D(y, r/2))

≥ τ · area(D(y, r/2)) = (τ/4)area(D(x, r)),

which completes the proof.

Suppose A is a bounded τ -fat set in C. Then for any z ∈ C and r > 0,
the square of the diameter of D(z, r)∩A is bounded by a constant times
the area of D(z, 3r) ∩ A. To see this, suppose x, y ∈ D(z, r) ∩ A. Then
because D(x, |x− y|) ⊂ D(z, 3r), the τ -fatness of A implies that

area(D(z, 3r) ∩ A) ≥ area(D(x, |x− y|) ∩ A)

≥ τ · area(D(x, |x− y|)) = τπ · |x− y|2.
Since this inequality holds for every x, y ∈ D(z, r) ∩ A, we have

(3.1) τπ · diam(D(z, r) ∩ A)2 ≤ area(D(z, 3r) ∩ A).

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. Suppose that G = (V, E) is a connected infinite
planar graph that is locally finite in C, and Q = (Qv : v ∈ V ) is a
collection of τ -fat sets satisfying the properties (1) ∼ (3) in Theorem 2.
Let V0 = {v ∈ V : Qv 3 0}, the subcollection of V such that for each
v ∈ V0, the corresponding Qv contains the origin. Note that V0 is a finite
set since Q is locally finite. Thus there exists a positive number r1 such
that D(0, r1) ⊃ Qv for all v ∈ V0.

Next, let V1 = {v ∈ V : Qv ∩ D(0, 2r1) 6= ∅ and v /∈ V0}, and note
that V1 is also finite since Q is locally finite. Thus there exists r2 > 2r1

such that D(0, r2) ⊃ Qv for all v ∈ V1. Inductively, for every n ≥ 2 we
define

Vn = {v ∈ V : Qv ∩D(0, 2rn) 6= ∅ and v /∈ V0 ∪ V1 ∪ · · · ∪ Vn−1},
and choose rn+1 > 2rn such that D(0, rn+1) ⊃ Qv for all v ∈ Vn.

Now we define

m(v) :=





diam(Qv ∩D(0, 2rn))

nrn

, if v ∈ Vn for some n ≥ 1;

0, if v ∈ V0.

We claim that the function m is a parabolic v-metric. But the equation
(3.1) implies that for n ≥ 1,

∑
v∈Vn

m(v)2 =
∑
v∈Vn

diam(Qv ∩D(0, 2rn))2

n2r2
n

≤ 1

τπn2r2
n

∑
v∈Vn

area(Qv ∩D(0, 6rn))

≤ M · area(D(0, 6rn))

τπn2r2
n

=
36M

τn2
,

since the property (2) of Theorem 2 implies that there are at most M
overlaps of Qv in D(0, 6rn). Thus

∑
v∈V

m(v)2 =
∞∑

n=0

∑
v∈Vn

m(v)2 ≤
∞∑

n=1

36M

τn2
< ∞,

showing that m is square summable.
Next, we fix n ∈ N and assume that [w1, w2, . . . , ws] is a finite path

in G such that N(w1) ∩ Vn−1 6= ∅, N(ws) ∩ Vn+1 6= ∅, and wj ∈ Vn for
all j = 1, . . . , s. Then we have Qws ∩ {z ∈ C : |z| = 2rn} 6= ∅ because
otherwise either ws does not belong to Vn or N(ws) would not contain
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a vertex in Vn+1. Also note that Qwj
∩ {z ∈ C : |z| = rn} 6= ∅ for

some j ∈ {1, 2, . . . , s} because we chose rn so that Qv ⊂ D(0, rn) for
all v ∈ V1 ∪ · · · ∪ Vn−1. Moreover, Qw1 ∪ Qw2 ∪ · · · ∪ Qws is a compact
connected set. Therefore, we must have

s∑
j=1

diam(Qwj
∩D(0, 2rn)) ≥ 2rn − rn = rn,

hence
s∑

j=1

m(wj) =
s∑

j=1

diam(Qwj
∩D(0, 2rn))

nrn

≥ 1

n
.

This means that if γ is a transient path in G, then there exists k such
that ∑

v∈V (γ)∩Vn

m(v) ≥ 1

n

for all n ≥ k. Thus

∑

v∈V (γ)

m(v) =
∞∑

n=0


 ∑

v∈V (γ)∩Vn

m(v)


 ≥

∞∑

n=k

1

n
= ∞,

as desired. Thus m is a parabolic v-metric defined on V , hence G =
(V, E) is VEL-parabolic. This completes the proof of Theorem 2.

4. An application

Suppose G = (V,E) is a disk triangulation graph. Then we divide
each face of G into four triangles by connecting the midpoints of the
edges (Figure 3), and get a new disk triangulation graph G1 which we
call the first immediate finer graph of G. Formally, the vertex set of G1

Figure 3. First immediate finer graph
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is V t E, the disjoint union of V and E, and an edge [v, w] appears in
G1 if and only if (i) v, w are two different edges of G which are partially
bounding the same face; or (ii) v ∈ V , w ∈ E, and v is an end point of
w; or (iii) v ∈ E, w ∈ V , and w is an end point of v. We repeat this
process and get G2, the first immediate finer graph of G1, or the second
immediate finer graph of G, and so on. If G′ is an n-th immediate finer
graph of G for some n ∈ N, then we just say that G′ is an immediate
finer graph of G.

In fact, there could be two natural types of “immediate” finer graphs
of a disk triangulation graph G; one is what we have just defined above,
and the other is obtained by connecting each vertices of a triangle to its
barycenter—we will call it the barycentric finer graph (Figure 4). Then

Figure 4. Barycentric finer graph

the question is, do the cp-types of G and its immediate finer graphs
coincide? For the barycentric finer graph, the answer is positive and
very easy to prove. Suppose P is a circle packing whose tangency graph
is combinatorially the same as G. Then by inscribing a circle in each
of the triangular interstice of P (Figure 5), we could get a new circle
packing P ′ whose tangency graph is the barycentric finer graph of G.
Definitely the carrier of P ′ is the same as that of P , and this proves that
the cp-types of G and its barycentric finer graph must coincide.

It is, however, not so straightforward for the first immediate finer
graph we defined above, although it is very tempting to believe. Now
we give a positive answer for this question as an application of our main
theorem.

Theorem 5. Suppose G = (V,E) is a disk triangulation graph and
G′ = (V ′, E ′) is an immediate finer graph of G. Then the cp-types of G
and G′ are the same.
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Figure 5. Circle packing related to the barycentric finer graph

Proof. Without loss of generality, we may assume that G′ is the first
immediate finer graph of G. First, we prove that the cp-parabolicity of
G′ implies the cp-parabolicity of G. Thus suppose G′ is cp-parabolic,
or VEL-parabolic. Then there exists a parabolic v-metric m′ defined
on the vertex set V ′. Moreover, we can treat V as a subset of V ′ since
there is a natural injection V ↪→ V ′. Thus for each v ∈ V we can define
N(v) ⊂ V ′, the set of neighbors of v in V ′. Note that N(v) consists
of exactly three vertices of V ′ for every v ∈ V , and every w ∈ V ′ can
belong to N(v) for at most two vertices v ∈ V . Now we define

m(v) := 2 ·max{m′(w) : w ∈ {v} ∪N(v)}.
Then we have∑

v∈V

m(v)2 =
∑
v∈V

4 ·max{m′(w)2 : w ∈ {v} ∪N(v)}

≤ 4
∑
v∈V


 ∑

w∈{v}∪N(v)

m′(w)2


 ≤ 8

∑

w∈V ′
m′(w)2 < ∞,

as desired.
Now suppose γ = [v0, v1, v2, . . .] is a transient path in G. Then it can

be realized as a transient path in G′; that is, there exists a sequence of
vertices wi ∈ V ′\V for i = 0, 1, 2, . . ., such that γ′ = [v0, w0, v1, w1, v2, . . .]
becomes a transient path in G′. Then because

m′(vi) + m′(wi) ≤ 2 ·max{m′(vi),m
′(wi)} ≤ m(vi)

for all i, we have

∞ =
∞∑
i=0

(m′(vi) + m′(wi)) ≤
∞∑
i=0

m(vi),
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and this shows that m is a parabolic v-metric of G. We conclude that
G is VEL-parabolic, hence cp-parabolic.

The converse is nontrivial, but we can prove it using Theorem 2. Sup-
pose G is cp-parabolic. Then by Corollary 0.5 of [4] and Theorem 1.2 of
[5], there exists a circle packing P = (Pv : v ∈ V ) whose tangency graph
is combinatorially equivalent to G and whose carrier is C. Therefore G
can be embedded in C so that each v ∈ V is the center of Pv and each
[v, w] ∈ E is a straight line segment connecting the centers of Pv and
Pw.

Pu

Pv

Pw

Pu ∩ Pwu

wv

Figure 6. The inscribe circle and packed disks

In this embedding, each face of G is a Euclidean triangle, and one
can easily check that if f is a face of G with vertices u, v, w, then the
inscribed circle of f passes through the points Pu ∩ Pv, Pv ∩ Pw, and
Pw∩Pu (Figure 6). Therefore, if e = [v, w] is an edge of G and f1 and f2

are two faces of G sharing the edge e, the union of the closed inscribed
disks of f1 and f2 is a connected compact set in C, because these two
disks meet at Pv ∩ Pw. We denote by Pe this union of two disks.

Now let Q = (Pw : w ∈ V ′ = V t E); i.e., for w ∈ V we assign the
disk Pw of the circle packing P , and for w ∈ V ′ \ V = E we assign the
union of the inscribed disks tangent to w. Then because each disk is
1/4-fat, every Pw is (1/16)-fat by Lemma 4. Moreover, Q is definitely
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locally finite, and for every x ∈ C there are at most 7 vertices w ∈ V ′

such that x ∈ Pw. The number 7 actually occurs when {x} = Pu ∩ Pv

for some [u, v] ∈ E. It is also trivial to check that if [w,w′] ∈ E ′ then
Pw ∩ Pw′ 6= ∅. Now by Theorem 2, we conclude G′ is VEL-parabolic, or
cp-parabolic.

Theorem 5 finds its application in the author’s incoming paper [6],
where we study the relation between circle packings and Riemann sur-
faces of class S (cf. [7], Chap. XI). In fact, in [6] Theorem 5 plays an
important role to study the relation between a disk triangulation graph
and its (arbitrary) finer graphs.
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