# STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN RANDOM NORMED SPACES 

Seung Won Schin, DoHyeong Ki, JaeWon Chang, Min June Kim and Choonkil Park*

Abstract. In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations

$$
\begin{aligned}
& c f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=2}^{n} f\left(\sum_{i=1}^{n} x_{i}-(n+c-1) x_{j}\right) \\
= & (n+c-1)\left(f\left(x_{1}\right)+c \sum_{i=2}^{n} f\left(x_{i}\right)+\sum_{i<j, j=3}^{n}\left(\sum_{i=2}^{n-1} f\left(x_{i}-x_{j}\right)\right)\right), \\
& Q\left(\sum_{i=1}^{n} d_{i} x_{i}\right)+\sum_{1 \leq i<j \leq n} d_{i} d_{j} Q\left(x_{i}-x_{j}\right)=\left(\sum_{i=1}^{n} d_{i}\right)\left(\sum_{i=1}^{n} d_{i} Q\left(x_{i}\right)\right)
\end{aligned}
$$

in random normed spaces.

## 1. Introduction

The stability problem of functional equations was originated from a question of Ulam [29] in 1940, concerning the stability of group homomorphisms. Let $\left(G_{1},.\right)$ be a group and let $\left(G_{2}, *, d\right)$ be a metric group with the metric $d(.,$.$) . Given \epsilon>0$, does there exist a $\delta>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x . y), h(x) * h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$ ? In the other words, under what

Received October 25, 2010. Revised November 15, 2010. Accepted November 19, 2010.

2000 Mathematics Subject Classification: 46S50, 46C05, 39B52.
Key words and phrases: random Banach space, quadratic functional equation, generalized Hyers-Ulam stability, quadratic mapping.

This work was supported by the R\&E program in 2010.

* Corresponding author.
condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Hyers [13] gave a first affirmative answer to the question of Ulam for Banach spaces. Let $f: E \rightarrow E^{\prime}$ be a mapping between Banach spaces such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in E$ and some $\delta>0$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \delta
$$

for all $x \in E$. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in$ $E$, then $T$ is $\mathbb{R}$-linear. Th.M. Rassias [23] provided a generalization of the Hyers' theorem which allows the Cauchy difference to be unbounded. Gajda [8] answered the question for the case $p>1$, which was raised by Th.M. Rassias. This new concept is known as generalized Hyers-Ulam stability of functional equations (see [1]-[3], [6, 9], [14]-[16], [24, 25]).

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation (1.1) is said to be a quadratic mapping. The generalized Hyers-Ulam stability problem for the quadratic functional equation (1.1) was proved by Skof for mappings $f: A \rightarrow B$, where $A$ is a normed space and $B$ is a Banach space (see [28]). Cholewa [5] noticed that the theorem of Skof is still true if relevant domain $A$ is replaced by an abelian group. In [7], Czerwik proved the generalized Hyers-Ulam stability of the functional equation (1.1). Grabiec [10] has generalized these results mentioned above.

The generalized Hyers-Ulam stability of different functional equations in random normed and fuzzy normed spaces has been recently studied in [17] and [20]-[22]. It should be noticed that in all these papers the triangle inequality is expressed by using the strongest triangular norm $T_{M}$.

The aim of this paper is to investigate the generalized Hyers-Ulam stability of the following quadratic functional equations

$$
\begin{align*}
& \text { 1.2) } c f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=2}^{n} f\left(\sum_{i=1}^{n} x_{i}-(n+c-1) x_{j}\right)  \tag{1.2}\\
& =(n+c-1)\left(f\left(x_{1}\right)+c \sum_{i=2}^{n} f\left(x_{i}\right)+\sum_{i<j, j=3}^{n}\left(\sum_{i=2}^{n-1} f\left(x_{i}-x_{j}\right)\right)\right), \\
& \text { 1.3) } Q\left(\sum_{i=1}^{n} d_{i} x_{i}\right)+\sum_{1 \leq i<j \leq n} d_{i} d_{j} Q\left(x_{i}-x_{j}\right)=\left(\sum_{i=1}^{n} d_{i}\right)\left(\sum_{i=1}^{n} d_{i} Q\left(x_{i}\right)\right) \tag{1.3}
\end{align*}
$$

in random normed spaces in the sense of Sherstnev under arbitrary continuous $t$-norms.

In the sequel, we adopt the usual terminology, notations and conventions of the theory of random normed spaces, as in $[4,18,19,26,27]$. Throughout this paper, $\Delta^{+}$is the space of distribution functions, that is, the space of all mappings $F: \mathbb{R} \cup\{-\infty, \infty\} \rightarrow[0,1]$ such that $F$ is left-continuous and non-decreasing on $\mathbb{R}, F(0)=0$ and $F(+\infty)=1$. $D^{+}$is a subset of $\Delta^{+}$consisting of all functions $F \in \Delta^{+}$for which $l^{-} F(+\infty)=1$, where $l^{-} f(x)$ denotes the left limit of the function $f$ at the point $x$, that is, $l^{-} f(x)=\lim _{t \rightarrow x^{-}} f(t)$. The space $\Delta^{+}$is partially ordered by the usual point-wise ordering of functions, i.e., $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t$ in $\mathbb{R}$. The maximal element for $\Delta^{+}$in this order is the distribution function $\varepsilon_{0}$ given by

$$
\varepsilon_{0}(t)= \begin{cases}0, & \text { if } t \leq 0 \\ 1, & \text { if } t>0\end{cases}
$$

Definition 1.1. ([26]) A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous triangular norm (briefly, a continuous $t$-norm) if $T$ satisfies the following conditions:
(a) $T$ is commutative and associative;
(b) $T$ is continuous;
(c) $T(a, 1)=a$ for all $a \in[0,1]$;
(d) $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$.

Typical examples of continuous $t$-norms are $T_{P}(a, b)=a b, T_{M}(a, b)=$ $\min (a, b)$ and $T_{L}(a, b)=\max (a+b-1,0)$ (the Lukasiewicz $t$-norm). Recall (see [11, 12]) that if $T$ is a $t$-norm and $\left\{x_{n}\right\}$ is a given sequence of
numbers in $[0,1]$, then $T_{i=1}^{n} x_{i}$ is defined recurrently by $T_{i=1}^{1} x_{i}=x_{1}$ and $T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)$ for $n \geq 2 . T_{i=n}^{\infty} x_{i}$ is defined as $T_{i=1}^{\infty} x_{n+i-1}$. It is known ([12]) that for the Lukasiewicz $t$-norm the following implication holds:

$$
\lim _{n \rightarrow \infty}\left(T_{L}\right)_{i=1}^{\infty} x_{n+i-1}=1 \Longleftrightarrow \sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty .
$$

Definition 1.2. ([27]) A random normed space (briefly, $R N$-space) is a triple $(X, \mu, T)$, where $X$ is a vector space, $T$ is a continuous $t$-norm and $\mu$ is a mapping from $X$ into $D^{+}$such that the following conditions hold:
$\left(R N_{1}\right) \mu_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$;
$\left(R N_{2}\right) \mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in X, \alpha \neq 0$;
$\left(R N_{3}\right) \mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and all $t, s \geq 0$.
Every normed space $(X,\|\|$.$) defines a random normed space \left(X, \mu, T_{M}\right)$, where

$$
\mu_{x}(t)=\frac{t}{t+\|x\|}
$$

for all $t>0$, and $T_{M}$ is the minimum $t$-norm. This space is called the induced random normed space.

Definition 1.3. Let $(X, \mu, T)$ be an $R N$-space.
(1) A sequence $\left\{x_{n}\right\}$ in $X$ is said to be convergent to $x$ in $X$ if, for every $\epsilon>0$ and $\lambda>0$, there exists a positive integer $N$ such that $\mu_{x_{n}-x}(\epsilon)>1-\lambda$ whenever $n \geq N$.
(2) $A$ sequence $\left\{x_{n}\right\}$ in $X$ is called a Cauchy sequence if, for every $\epsilon>0$ and $\lambda>0$, there exists a positive integer $N$ such that $\mu_{x_{n}-x_{m}}(\epsilon)>1-\lambda$ whenever $n \geq m \geq N$.
(3) An RN-space $(X, \mu, T)$ is said to be complete if and only if every Cauchy sequence in $X$ is convergent to a point in $X$.

Theorem 1.4. ([26]) If $(X, \mu, T)$ is an $R N$-space and $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} \mu_{x_{n}}(t)=\mu_{x}(t)$ almost everywhere.

This paper is organized as follows: In Section 2, we prove the generalized Hyers-Ulam stability of the quadratic functional equation (1.2) in RN-spaces. In Section 3, we prove the generalized Hyers-Ulam stability of the quadratic functional equation (1.3) in RN -spaces.

Throughout this paper, assume that $X$ is a real vector space and that $(Y, \mu, T)$ is a complete RN-space.

## 2. Generalized Hyers-Ulam stability of the quadratic functional equation (1.2) in random normed spaces

For a given mapping $f: X \rightarrow Y$, consider the mapping $P f: X^{n} \rightarrow Y$, defined by

$$
\begin{array}{r}
P f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=c f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=2}^{n} f\left(\sum_{i=1}^{n} x_{i}-(n+c-1) x_{j}\right) \\
-(n+c-1)\left(f\left(x_{1}\right)+c \sum_{i=2}^{n} f\left(x_{i}\right)+\sum_{i<j, j=3}^{n}\left(\sum_{i=2}^{n-1} f\left(x_{i}-x_{j}\right)\right)\right)
\end{array}
$$

for all $x_{1}, \cdots, x_{n} \in X$.
In this section, we prove the generalized Hyers-Ulam stability of the functional equation $\operatorname{Pf}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0$ in complete RN-spaces.

Theorem 2.1. Let $f: X \rightarrow Y$ be an even mapping for which there is a $\rho: X^{n} \rightarrow D^{+}$ $\left(\rho\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right.$ is denoted by $\left.\rho_{x_{1}, x_{2}, \cdots, x_{n}}\right)$ such that

$$
\begin{equation*}
\mu_{P f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}(t) \geq \rho_{x_{1}, x_{2}, \cdots, x_{n}}(t) \tag{2.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and all $t>0$. Let $v=2-c-n>1$. If

$$
\begin{gather*}
\lim _{n \rightarrow \infty} T_{k=1}^{\infty}\left(\rho_{0, v^{n+k-1} x, 0,0, \cdots, 0}\left(v^{2 n+k}(v-1) t\right)\right)=1,  \tag{2.2}\\
\lim _{n \rightarrow \infty} \rho_{v^{n} x_{1}, v^{n} x_{2}, \cdots, v^{n} x_{n}}\left(v^{2 n} t\right)=1 \tag{2.3}
\end{gather*}
$$

hold for all $x, y \in X$ and all $t>0$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{f(x)-Q(x)}(t) \geq T_{k=1}^{\infty}\left(\rho_{0, v^{k-1} x, 0,0, \cdots, 0}\left(v^{k}(v-1) t\right)\right) \tag{2.4}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.
Proof. Putting $x_{2}=x$ and $x_{1}=x_{3}=x_{4}=\cdots=x_{n}=0$ in (2.1), we get

$$
\begin{equation*}
\mu_{f((2-c-n) x)-(2-c-n)^{2} f(x)}(t) \geq \rho_{0, x, 0,0, \cdots, 0}(t) \tag{2.5}
\end{equation*}
$$

for all $y \in X$ and all $t>0$. Replacing $2-c-n$ by $v$ in (2.5), we get

$$
\begin{equation*}
\mu_{f(v x)-v^{2} f(x)}(t) \geq \rho_{0, x, 0,0, \cdots, 0}(t) \tag{2.6}
\end{equation*}
$$

for all $y \in X$ and all $t>0$. Thus we have

$$
\mu_{\frac{f(v x)}{v^{2}}-f(x)}(t) \geq \rho_{0, x, 0,0, \cdots, 0}\left(v^{2} t\right)
$$

for all $x \in X$ and all $t>0$. Hence

$$
\mu_{\frac{f\left(v^{k+1} x\right)}{v^{2(k+1)}-}-\frac{f\left(v^{k} x\right)}{v^{2 k}}}(t) \geq \rho_{0, v^{k} x, 0,0, \cdots, 0}\left(v^{2(k+1)} t\right)
$$

for all $x \in X$, all $t>0$ and all $k \in \mathbb{N}$. From $\frac{1}{v-1}>\frac{1}{v}+\frac{1}{v^{2}}+\cdots+\frac{1}{v^{n}}$ ( $v>1$ ), it follows that

$$
\begin{align*}
\mu_{\frac{f\left(v^{n} x\right)}{v^{2 n}}-f(x)}(t) & \geq T_{k=1}^{n}\left(\mu_{\frac{f\left(v^{k} x\right)}{v^{2 k}}-\frac{f\left(v^{(k-1)} x\right)}{v^{2(k-1)}}}\left(\frac{(v-1) t}{v^{k}}\right)\right)  \tag{2.7}\\
& \geq T_{k=1}^{n}\left(\rho_{0, v^{k-1} x, 0,0, \cdots, 0}\left(v^{k}(v-1) t\right)\right)
\end{align*}
$$

for all $x \in X$ and all $t>0$. In order to prove the convergence of the sequence $\left\{\frac{f\left(v^{n} x\right)}{v^{2 n}}\right\}$, replacing $x$ with $v^{m} x$ in (2.7), we obtain that

$$
\begin{align*}
& \mu_{\frac{f\left(v^{n+m_{x}}\right.}{v^{2}(n+m)}}-\frac{f\left(v^{m} m_{x}\right.}{v^{2 m}}(t)  \tag{2.8}\\
& \geq T_{k=1}^{n}\left(\rho_{0, v^{k+m-1} x, 0,0, \cdots, 0}\left(v^{k+2 m}(v-1) t\right)\right) .
\end{align*}
$$

Since the right hand side of the inequality (2.8) tends to 1 as $m$ and $n$ tend to infinity, the sequence $\left\{\frac{f\left(v^{n} x\right)}{v^{2 n}}\right\}$ is a Cauchy sequence. Thus we may define $Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(v^{n} x\right)}{v^{2 n}}$ for all $x \in X$.

Now we show that $Q$ is an quadratic mapping. Replacing $x_{i}$ with $v^{n} x_{i}$ ( $i=1,2, \cdots, n$ ) in (2.1), respectively, we get

$$
\begin{equation*}
\mu_{\frac{P f\left(v^{n} x_{1}, v^{n} x_{2}, \cdots, v^{n} x_{n}\right)}{v^{n} n}}(t) \geq \rho_{v^{n} x_{1}, v^{n} x_{2}, \cdots, v^{n} x_{n}}\left(v^{2 n} t\right) . \tag{2.9}
\end{equation*}
$$

Taking the limit as $n \rightarrow \infty$, we find that $\frac{P f\left(v^{n} x_{1}, v^{n} x_{2}, \cdots, v^{n} x_{n}\right)}{v^{2} n}(t)$ tends to 0 , which implies that the mapping $Q: X \rightarrow Y$ is quadratic. Letting the limit as $n \rightarrow \infty$ in (2.8), we get (2.4).

Next, we prove the uniqueness of the quadratic mapping $Q: X \rightarrow Y$ subject to (2.4). Let us assume that there exists another quadratic mapping $R: X \rightarrow Y$ which satisfies (2.4). Since $Q\left(v^{n} x\right)=v^{2 n} Q(x)$, $R\left(v^{n} x\right)=v^{2 n} R(x)$ for all $x \in X$ and all $n \in \mathbb{N}$, from (2.4), it follows that
$(2.10) \mu_{Q(x)-R(x)}(v t)=\mu_{Q\left(v^{n} x\right)-R\left(v^{n} x\right)}\left(v^{2 n+1} t\right)$

$$
\begin{gathered}
\geq T\left(\mu_{Q\left(v^{n} x\right)-f\left(v^{n} x\right)}\left(v^{2 n} t\right), \mu_{f\left(v^{n} x\right)-R\left(v^{n} x\right)}\left(v^{2 n} t\right)\right) \\
\geq T\left(T_{k=1}^{\infty}\left(\rho_{0, v^{n+k-1} x, 0,0, \cdots, 0}\left(v^{2 n+k}(v-1) t\right)\right),\right. \\
\left.\quad T_{k=1}^{\infty}\left(\rho_{0, v^{n+k-1} x, 0,0, \cdots, 0}\left(v^{2 n+k}(v-1) t\right)\right)\right)
\end{gathered}
$$

for all $x \in X$ and all $t>0$. Letting $n \rightarrow \infty$ in (2.10), we conclude that $Q=R$.

Theorem 2.2. Let $f: X \rightarrow Y$ be an even mapping for which there is a $\rho: X^{n} \rightarrow D^{+}$
( $\rho_{\left(x_{1}, x_{2}, \cdots, x_{n}\right)}$ is denoted by $\rho_{x_{1}, x_{2}, \cdots, x_{n}}$ ) such that

$$
\begin{equation*}
\mu_{P f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}(t) \geq \rho_{x_{1}, x_{2}, \cdots, x_{n}}(t) \tag{2.11}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and all $t>0$. (Let $v=2-c-n, 0<v<1$ ) If

$$
\begin{gather*}
\lim _{n \rightarrow \infty} T_{k=1}^{\infty}\left(\rho_{0, \frac{x}{v^{n+k}}, 0,0, \cdots, 0}\left(\frac{(v-1) t}{v^{2 n+k-1}}\right)\right)=1,  \tag{2.12}\\
\lim _{n \rightarrow \infty} \rho_{\frac{x_{1}}{v^{n}}, \frac{x_{2}}{v^{n}}, \cdots, \frac{x_{n}}{v^{n}}}\left(\frac{t}{v^{2 n}}\right)=1 \tag{2.13}
\end{gather*}
$$

hold for all $x \in X$ and all $t>0$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{f(x)-Q(x)}(t) \geq T_{k=1}^{\infty}\left(\rho_{0, \frac{x}{v^{k}}, 0,0, \cdots, 0}\left(\frac{(v-1) t}{v^{k-1}}\right)\right) \tag{2.14}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.

Proof. Putting $x_{2}=x$ and $x_{1}=x_{3}=x_{4}=\cdots=x_{n}=0$ in (2.11), we get

$$
\begin{equation*}
\mu_{f((2-c-n) x)-(2-c-n)^{2} f(x)}(t) \geq \rho_{0, x, 0,0, \cdots, 0}(t) \tag{2.15}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Replacing $2-c-n$ by $v$ and $x$ by $\frac{x}{v}$ in (2.15), we get

$$
\begin{equation*}
\mu_{f(x)-v^{2} f\left(\frac{x}{v}\right)}(t) \geq \rho_{0, \frac{x}{v}, 0,0, \cdots, 0}(t) \tag{2.16}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Hence

$$
\mu_{v^{2 k} f\left(\frac{x}{v^{k}}\right)-v^{2(k+1)} f\left(\frac{x}{v^{k+1}}\right)}(t) \geq \rho_{0, \frac{x}{v^{k+1}}, 0,0, \cdots, 0}\left(\frac{t}{v^{2 k}}\right)
$$

for all $x \in X$, all $t>0$ and all $k \in \mathbb{N}$. From $\frac{1}{1-v}>1+v+\cdots+v^{n-1}$ ( $0<v<1$ ), it follows that

$$
\begin{align*}
& \mu_{f(x)-v^{2 n} f\left(\frac{x}{v^{n}}\right)}(t)  \tag{2.17}\\
& \quad \geq T_{k=1}^{n}\left(\mu_{v^{2(k-1)} f\left(\frac{x}{v^{k-1}}\right)-v^{2 k} f\left(\frac{x}{v^{k}}\right)}\left(v^{k-1}(1-v) t\right)\right) \\
& \quad \geq T_{k=1}^{n}\left(\rho_{0, \frac{x}{v^{k}}, 0,0, \cdots, 0}\left(\frac{(v-1) t}{v^{k-1}}\right)\right)
\end{align*}
$$

for all $x \in X$ and all $t>0$. In order to prove the convergence of the sequence $\left\{v^{2 n} f\left(\frac{x}{v^{n}}\right)\right\}$, replacing $x$ with $\frac{x}{v^{m}}$ in (2.17), we obtain that

$$
\begin{align*}
& \mu_{v^{2 m} f\left(\frac{x}{v^{m}}\right)-v^{2(m+n)} f\left(\frac{x}{v^{m+n}}\right)}(t) \geq T_{k=1}^{n} \\
& \quad\left(\rho_{0, \frac{x}{v^{k+m}}, 0,0, \cdots, 0}\left(\frac{(v-1) t}{v^{k+2 m-1}}\right)\right) . \tag{2.18}
\end{align*}
$$

Since the right hand side of the inequality (2.18) tends to 1 as $m$ and $n$ tend to infinity, the sequence $\left\{v^{2 n} f\left(\frac{x}{v^{n}}\right)\right\}$ is a Cauchy sequence. Thus we may define $Q(x)=\lim _{n \rightarrow \infty} v^{2 n} f\left(\frac{x}{v^{n}}\right)$ for all $x \in X$.

Now we show that $Q$ is a quadratic mapping. Replacing $x_{i}$ with $\frac{x_{i}}{v^{n}}$ ( $i=1,2, \cdots, n$ ) in (4.1), respectively, we get

$$
\begin{equation*}
\mu_{v^{2 n} P f\left(\frac{x_{1}}{v^{n}}, \frac{x_{2}}{v^{n}}, \cdots, \frac{x_{n}}{v^{n}}\right)}(t) \geq \rho_{\frac{x_{1}}{v^{n}}, \frac{x_{2}}{v^{n}}, \cdots, \frac{x_{n}}{v^{n}}}\left(\frac{t}{v^{2 n}}\right) . \tag{2.19}
\end{equation*}
$$

Taking the limit as $n \rightarrow \infty$, we find that $v^{2 n} \operatorname{Pf}\left(\frac{x_{1}}{v^{n}}, \frac{x_{1}}{v^{n}}, \cdots, \frac{x_{1}}{v^{n}}\right)$ tends to 0 , which implies that the mapping $Q: X \rightarrow Y$ is quadratic. Letting the limit as $n \rightarrow \infty$ in (2.18), we get (2.14).

The rest of the proof is similar to the proof of Theorem 2.1.

## 3. Generalized Hyers-Ulam stability of the quadratic functional equation (1.3) in random normed spaces

For a given mapping $Q: X \rightarrow Y$, consider the mapping $D Q: X^{n} \rightarrow$ $Y$, defined by

$$
\begin{aligned}
D Q\left(x_{1}, x_{2}, \cdots, x_{n}\right):=Q\left(\sum_{i=1}^{n} d_{i} x_{i}\right) & +\sum_{1 \leq i<j \leq n} d_{i} d_{j} Q\left(x_{i}-x_{j}\right) \\
& -\left(\sum_{i=1}^{n} d_{i}\right)\left(\sum_{i=1}^{n} d_{i} Q\left(x_{i}\right)\right)
\end{aligned}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and let $d=\sum_{i=1}^{n} d_{i}$
In this section, we prove the generalized Hyers-Ulam stability of the functional equation $D Q\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0$ in complete RN-spaces.

Theorem 3.1. Let $Q: X \rightarrow Y$ be an even mapping for which there is a $\rho: X^{n} \rightarrow D^{+}\left(\rho\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right.$ is denoted by $\left.\rho_{x_{1}, x_{2}, \cdots, x_{n}}\right)$ satisfying $Q(0)=0$ and $d>1$. If

$$
\begin{equation*}
\mu_{D Q\left(x_{1}, x_{2}, \cdots, x_{n}\right)} \geq \rho_{x_{1}, x_{2}, \cdots, x_{n}}(t) \tag{3.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and all $t>0$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \rho_{d^{(n-1)} x, \cdots, d^{(n-1)} x}\left(\left(d^{2}-1\right) t\right)=1 \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$, then there exists a unique quadratic mapping $R: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{R(x)-Q(x)}(t)=T_{k=1}^{\infty}\left(\rho_{d^{k-1} x, d^{k-1} x, \cdots, d^{k-1} x}\left(d^{2}-1\right)\right) \tag{3.3}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.
Proof. Putting $x_{1}=x_{2}=\cdots=x_{n}=x$ in (3.1), we get

$$
\begin{equation*}
\mu_{Q(d x)-d^{2} Q(x)}(t) \geq \rho_{x, x, \cdots, x}(t) \tag{3.4}
\end{equation*}
$$

and so

$$
\begin{equation*}
\mu_{Q(d x) / d^{2}-Q(x)}\left(\frac{t}{d^{2}}\right) \geq \rho_{x, x, \cdots, x}(t) \tag{3.5}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Let

$$
\psi_{x}(t)=\rho_{x, x, \cdots, x}(t)
$$

Replacing $x$ by $d^{n} x$ and $t$ by $d^{2(n+1)} t$ in (3.5), we get

$$
\begin{align*}
\mu_{Q\left(d^{n+1} x\right) / d^{2}-Q\left(d^{n} x\right)}\left(d^{2 n} t\right) & \geq \psi_{x}\left(d^{2(n+1)} t\right), \\
\mu_{Q\left(d^{n+1} x\right) / d^{2(n+1)}-Q\left(d^{n} x\right) / d^{2 n}}(t) & \geq \psi_{x}\left(d^{2(n+1)} t\right) \tag{3.6}
\end{align*}
$$

for all $n \in N, x \in X$ and all $t>0$. It follows from (3.6) and $1 \geq$ $\left(d^{2}-1\right)\left(\frac{1}{d^{2}}+\frac{1}{d^{4}}+\cdots+\frac{1}{d^{2 n}}\right)$ that
$\mu_{Q\left(d^{n} x\right) / d^{2 n}-Q(x)}(t)=\mu_{\left(Q\left(d^{n} x\right) / d^{2 n}-Q\left(d^{(n-1)} x\right) / d^{2(n-1)}+\cdots+Q(d x) / d^{2}-Q(x)\right)}(t)$

$$
\begin{align*}
& \geq T_{k=1}^{n}\left(\mu_{\left(Q\left(d^{k} x\right) / d^{2 k}-Q\left(d^{(k-1)} x\right) / d^{2(k-1)}\right.}\left(\frac{\left(d^{2}-1\right) t}{d^{2 k}}\right)\right)  \tag{3.7}\\
& \geq T_{k=1}^{n}\left(\psi_{d^{(k-1)} x}\left(\left(d^{2}-1\right) t\right)\right) \\
& =T_{k=1}^{n}\left(\rho_{d^{(k-1)} x, d^{(k-1)} x, \cdots, d^{(k-1)} x}\left(\left(d^{2}-1\right) t\right)\right)
\end{align*}
$$

for all $x \in X$ and all $n \in N$. Thus we have

$$
\begin{align*}
& \mu_{Q\left(d^{n} x\right) / d^{2 n}-Q\left(d^{m}\right) x / d^{2 m}(t)}  \tag{3.8}\\
& \quad \geq T_{k=m}^{n}\left(\rho_{d^{(k-1)} x, d^{(k-1)} x, \cdots, d^{(k-1)} x}\left(\left(d^{2}-1\right) t\right)\right) .
\end{align*}
$$

Since the right hand side of the inequality (3.8) tends to 1 as $m, n$ tend to infinity, the sequence $\left(\frac{Q\left(d^{n} x\right)}{d^{2 n}}\right)$ is a Cauchy sequence. Thus we may define $R(x)=\lim _{n \rightarrow \infty} \frac{Q\left(d^{n} x\right)}{d^{2 n}}$ for all $x \in X$. Then

$$
\begin{equation*}
\mu_{R(x)-Q(x)}(t)=T_{k=1}^{\infty}\left(\rho_{d^{(k-1)} x, d^{(k-1)} x, \cdots, d^{(k-1)} x}\left(\left(d^{2}-1\right) t\right)\right) \tag{3.9}
\end{equation*}
$$

Now we show that $R$ is a quadratic mapping. Putting $x_{1}=x_{2}=\cdots=$ $x_{n}=d^{n} x$ in (3.1), we get

$$
\mu_{\frac{D Q\left(d^{n} x, d^{n} x, \cdots, d^{n} x\right)}{d^{2 n}}}(t) \geq \rho_{d^{n} x, d^{n} x, \cdots, d^{n} x}(t) .
$$

Taking the limit as $n \rightarrow \infty$, we find that $R: X \rightarrow Y$ satisfies (3.1) for all $x, y \in X$. Since $Q: X \rightarrow Y$ is even, $R: X \rightarrow Y$ is even. So the mapping $R: X \rightarrow Y$ is quadratic. Letting the limit as $n \rightarrow \infty$ in (3.9), we get (3.3).

Next, we prove the uniqueness of the quadratic mapping $R: X \rightarrow Y$ subject to (3.3). Let us assume that there exists another quadratic mapping $L: X \rightarrow Y$ which satisfies (3.3). Since $R\left(d^{n} x\right)=d^{2 n} R(x)$, $L\left(d^{n} x\right)=d^{2 n} L(x)$ for all $x \in X$ and all $n \in \mathbb{N}$, from (3.8), it follows that

$$
\begin{align*}
& \mu_{R(x)-L(x)}(2 t)=\mu_{R\left(d^{n} x\right)-L\left(d^{n} x\right)}\left(2 \cdot d^{2 n} t\right)  \tag{3.10}\\
& \geq T\left(\mu_{R\left(d^{n} x\right)-Q\left(d^{n} x\right)}\left(d^{2 n} t\right), \mu_{Q\left(d^{n} x\right)-L\left(d^{n} x\right)}\left(d^{2 n} t\right)\right) \\
& \geq T\left(T_{k=1}^{\infty}\left(\rho_{d^{n+(k-1)} x, d^{n+(k-1)} x, \cdots, d^{n+(k-1)} x}\left(d^{2}-1\right) d^{2 n} t\right)\right), \\
& \quad \quad\left(T_{k=1}^{\infty}\left(\rho_{d^{n+(k-1)} x, d^{n+(k-1)} x, \cdots, d^{n+(k-1)} x}\left(\left(d^{2}-1\right) d^{2 n} t\right)\right)\right.
\end{align*}
$$

for all $x \in X$ and all $t>0$. Letting $n \rightarrow \infty$ in (3.10), we conclude that $R=L$.

Theorem 3.2. Let $Q: X \rightarrow Y$ be an even mapping for which there is a $\rho: X^{n} \rightarrow D^{+}\left(\rho\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right.$ is denoted by $\left.\rho_{x_{1}, x_{2}, \cdots, x_{n}}\right)$ satisfying $Q(0)=0$ and $0<d<1$. If

$$
\begin{equation*}
\mu_{D Q\left(x_{1}, x_{2}, \cdots, x_{n}\right)} \geq \rho_{x_{1}, x_{2}, \cdots, x_{n}}(t) \tag{3.11}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and all $t>0$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \rho_{\frac{x}{d^{n}}, \frac{x}{d^{n}}, \cdots, \frac{x}{d^{n}}}\left(\left(1-d^{2}\right) t\right)=1 \tag{3.12}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$, then there exists a unique quadratic mapping $R: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{R(x)-Q(x)}(t)=T_{k=1}^{\infty}\left(\rho_{\frac{x}{d^{k}}, \frac{x}{d^{k}}, \cdots, \frac{x}{d^{k}}}\left(\left(1-d^{2}\right) t\right)\right) \tag{3.13}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.
Proof. Putting $x_{1}=x_{2}=\cdots=x_{n}=x$ in (3.11), we get

$$
\begin{equation*}
\mu_{Q(d x)-d^{2} Q(x)}(t) \geq \rho_{x, x, \cdots, x}(t) \tag{3.14}
\end{equation*}
$$

Replacing $x$ with $\frac{x}{d}$ in (3.14)

$$
\begin{equation*}
\mu_{Q(x)-d^{2} Q\left(\frac{x}{d}\right)}(t) \geq \rho_{\frac{x}{d}, \frac{x}{d}, \cdots, \frac{x}{d}}(t) \tag{3.15}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Let

$$
\psi_{x}(t)=\rho_{x, x, \cdots, x}(t)
$$

Replacing $x$ by $\frac{x}{d^{n}}$ and $t$ with $\frac{t}{d^{2 n}}$ in (3.15), we get

$$
\begin{align*}
& \mu_{Q\left(\frac{x}{d^{n}}\right)-Q\left(\frac{x}{d^{n+1}}\right) d^{2}}\left(\frac{t}{d^{2 n}}\right) \geq \psi_{\frac{x}{d^{n+1}}}\left(\frac{t}{d^{2 n}}\right), \\
& \mu_{Q\left(\frac{x}{d^{n}}\right) d^{2 n}-Q\left(\frac{x}{d^{n+1}}\right) d^{2 n+2}(t)} \geq \psi_{\frac{x}{d^{n+1}}}\left(\frac{t}{d^{2 n}}\right) \tag{3.16}
\end{align*}
$$

for all $n \in N, x \in X$ and all $t>0$. It follows from (3.16) and $1 \geq$ $\left(\frac{1}{d^{2}}-1\right)\left(d^{2}+d^{4}+\cdots+d^{2 n}\right)$ that
$\mu_{Q\left(\frac{x}{d^{n}}\right) d^{2 n}-Q(x)}(t)=\mu_{\left(Q\left(\frac{x}{d^{n}}\right) d^{2 n}-Q\left(\frac{x}{d^{(n-1)}}\right) d^{2(n-1)}+\cdots+Q\left(\frac{x}{d}\right) d^{2}-Q(x)\right)}(t)$

$$
\begin{align*}
& \geq T_{k=1}^{n}\left(\mu_{\left(Q\left(\frac{x}{d^{k}}\right) d^{2 k}-Q\left(\frac{x}{d^{(k-1)}}\right) d^{2(k-1)}\right.}\left(\left(\frac{1}{d^{2}}-1\right) d^{2 k} t\right)\right)  \tag{3.17}\\
& \geq T_{k=1}^{n}\left(\psi_{\frac{x}{d^{k}}}\left(\left(1-d^{2}\right) t\right)\right) \\
& =T_{k=1}^{n}\left(\rho_{\frac{x}{d^{k}}, \frac{x}{d^{k}}, \cdots, \frac{x}{d^{k}}}\left(\left(1-d^{2}\right) t\right)\right)
\end{align*}
$$

for all $x \in X$ and all $n \in N$. Thus we have

$$
\begin{equation*}
\mu_{Q\left(\frac{x}{d^{n}}\right) d^{2 n}-Q\left(\frac{x}{d^{m}}\right) d^{2 m}}(t) \geq T_{k=m}^{n}\left(\rho_{\frac{x}{d^{k}}, \frac{x}{d^{k}}, \cdots, \frac{x}{d^{k}}}\left(\left(1-d^{2}\right) t\right)\right) . \tag{3.18}
\end{equation*}
$$

Since the right hand side of the inequality (3.18) tends to 1 as $m, n$ tend to infinity, the sequence $\left(Q\left(\frac{x}{d^{n}}\right) d^{2 n}\right)$ is a Cauchy sequence. Thus we may define $R(x)=\lim _{n \rightarrow \infty} Q\left(\frac{x}{d^{n}}\right) d^{2 n}$ for all $x \in X$. Then

$$
\begin{equation*}
\mu_{R(x)-Q(x)}(t)=T_{k=1}^{\infty}\left(\rho_{\frac{x}{d^{k}}, \frac{x}{d^{k}}, \cdots, \frac{x}{d^{k}}}\left(\left(1-d^{2}\right) t\right)\right) \tag{3.19}
\end{equation*}
$$

Now we show that $R$ is a quadratic mapping. Putting $x_{1}=x_{2}=\cdots=$ $x_{n}=\frac{x}{d^{n}}$ in (3.11), we get

$$
\mu_{D Q\left(\frac{x}{d^{n}}, \frac{x}{d^{n}}, \cdots, \frac{x}{d^{n}}\right) d^{2 n}}(t) \geq \rho_{\frac{x}{d^{n}}, \frac{x}{d^{n}}, \cdots, \frac{x}{d^{n}}}(t) .
$$

Taking the limit as $n \rightarrow \infty$, we find that $R: X \rightarrow Y$ satisfies (3.13) for all $x, y \in X$. So the mapping $R: X \rightarrow Y$ is quadratic. Letting the limit as $n \rightarrow \infty$ in (3.18), we get (3.13).

The rest of the proof is similar to the proof of Theorem 3.1.

## References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2(1950), 64-66.
[3] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57(1951), 223-237.
[4] S.S. Chang, Y.J. Cho and S.M. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers Inc. New York, 2001.
[5] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984), 76-86.
[6] J.K. Chung and P.K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc. 40(2003), 565-576.
[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Semin. Univ. Hambg. 62(1992), 59-64.
[8] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14(1991), 431-434.
[9] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
[10] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48(1996), 217-235.
[11] O. Hadžić and E. Pap, Fixed Point Theory in PM Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
[12] O. Hadžić, E. Pap and M. Budincević, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetika 38(2002), 363-381.
[13] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27(1941), 222-224.
[14] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhaĕr, Basel, 1998.
[15] G. Isac and Th.M. Rassias, On the Hyers-Ulam stability of $\psi$-additive mappings, J. Approx. Theory $\mathbf{7 2}(1993)$, 131-137.
[16] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27(1995), 368-372.
[17] D. Mihet, The probabilistic stability for a functional equation in a single variable, Acta Math. Hungar. 123(2009), 249-256.
[18] D. Mihets, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 160(2009), 1663-1667.
[19] D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343(2008), 567-572.
[20] M. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159(2008), 730-738.
[21] A.K. Mirmostafee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159(2008), 720-729.
[22] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178(2008), 3791-3798.
[23] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
[24] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62(2000), 23-130.
[25] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251(2000), 264-284.
[26] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983.
[27] A.N. Sherstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR 149(1963), 280-283 (in Russian).
[28] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.
[29] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.

Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: maplemenia@naver.com
Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: wooki7098@naver.com
Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: jjwjjw9595@naver.com
Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: frigen@naver.com
Department of Mathematics Hanyang University
Seoul 133-791, Republic of Korea
E-mail: baak@hanyang.ac.kr

