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REMOVAL OF HYPERSINGULARITY IN A DIRECT
BEM FORMULATION

LEE, BoNGJU

ABSTRACT. Using Green’s theorem, elliptic boundary value prob-
lems can be converted to boundary integral equations. A numerical
methods for boundary integral equations are boundary elementary
method(BEM). BEM has advantages over finite element method(FEM)
whenever the fundamental solutions are known. Helmholtz type
equations arise naturally in many physical applications. In a bound-
ary integral formulation for the exterior Neumann there occurs a hy-
persingular operator which exhibits a strong singularity like ﬁ
and hence is not an integrable function. In this paper we are going
to remove this hypersingularity by reducing the regularity of test
functions.

1. Introduction

The unique radial fundamental solution of the Helmholtz equation in
R3
—AE—kE =4
which satisfies the Sommerfeld radiation condition( or outgoing wave
condition)

ou . ful < c
or 2
at infinity is
eikr
E(r) = . r=A/x? 4y + 22
( ) 4rr y
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The derivatives of E are

ikr
ag—g} - 4?77"2 <Zk a %)x, .
= i - -
o= (78)m = (k= e
or -] |
(9nx(x —¥) = 47f|x— y|? (Zk a |x—y|>(X —y) s
etklx—y| 1

1
— ik——) X —y) - Dy.
Tyl O ) ()

We see that gTEx(X —y) blows up like ﬁ in a neighborhood of y

and hence it is an integrable function. The function E(x —y) may be
interpreted as a composition of the following two functions:

6 (xy)—x—y 5,3 z—E(|z])
Rix.y) R, R

With this in mind, we have

a(E(x - y))

ony

USRI o

0 (0FE 0*FE r( O°E
<8nx (x = y)) N _8nx8ny (x—y) = —ny (82,02]- <X B y))ny.
Let u be a function satisfying outgoing radiation condition. Then, in
[4] , it was shown that

ony

v Vv

v
H = — —ikv € L*(Q,
we =l g gy ar e L)

Au+k*w =0in Q,,
Au+ k> =0in Q,,

[u] = Uint — Uext,

ou _ Ou ou

[%] - %‘int - %|ext'

Therefore

u(Y) = fr E(X - Y> [g_;ﬂ (X)dsx —Jr gTEx(X - Y) [u} (X)dsm
y &1 =00
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0E

T anx

Uins (Y) + Ut (¥)

5 = /FE(X -y) [Z—Z] (x)dsx
y € ' =090.

(x — y) [u] (x)dsx.

Let’s consider u(y) = [ E(x—y)q(x)dsyx, ¢ € C°(T'). Then u is contin-
uous on R3. The normal derivative is discontinuous on I'. In fact

Valy) = [ Vo(Blx—)alxds,
= — [V x =)o)

Let’s focus on a fixed point yg € I'. We introduce two symmetric points
Y+ =Yo + pnyoa
y- =Yo — pnyo'

Then, with ny, = n,,

Vu(ys) -ng+ Vu(y-) - ng

- _ /F [(VZE) (x—y4) ng+ (VZE) (x—y_)- no} q(x)dsx

z/r[emx—ﬂ(zk ;>(y+—><)~n0q(><)d8x

- x =y

Arlx =y |?
/ () ) - mgg(x)d
* [—(2 _—> Y- —X) Npq(X)asx
rldrlx —y_|? x—y_| 0
eik’|x7y+‘ . 1 ]
= _ (k- —88— —X)-n X)dSy
/F[47T|X_Y+’2( |X—y+|>(y0 ) og(x)
6ik|x7y_| . 1 ;
ey (= )0 =0 oty
6ik‘x—y+| 1
e )
r lmlx =y ? Ix —y.]|
67Lk|x—y_|

oy P (e e

2 67;]€|X—y0| k 1 d O
el (2 e —T —X) - ngq(x)dsg +
-~ /r |:47T|X—y0‘2< x — y0|)(}’o ) - Mo q(x)

= -2 [ G x - ylax)ds
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Note also that

oF 0E(x —y
R
y y
On the other hand
ou
Vu(y_) -ng— Vu(y,) -ng— [a—no} = q(yo).

Therefore we have a system of relations

{wm g+ Va(y-) ng = =2 [ B2 (x — y)g(x)dss
Vu(y-) -ng — Vu(ys+) -ng — [53—,1‘0} = q(¥o)

which implies that

du ~ q(y) / OF

ol T T2 . On, (x —y)a(x)dsx, y €T
du  aqly) OF

811 ext y o 2 r any (X Y)Q(X)dSX, Yy erl.

If we take u = 0 on £;, then

uy) = - [ Bx-v)5

X

FE
(x)dsx —|—/ a@ (x — y)u(x)dsy, y €
r

Ny

# = _/FE(x—y) Ou (x)dsyx —|—/F oL (x —y)u(x)dsx, y € I' = 0Q

ony ony
Now
ou OF ou 0’FE
_ _ _ — Q..
oy ). omy (x—y) 15 | Fnny (x — y)u(x)dsx, y € Qe
Using the boundary condition
ou .
oY) =)= lm Vuly) - mo
we get
1 ) 0*F
a(30) = 5000) + [ St = ¥)adss — | G x— yulxhdss
Therefore
OE q(y) 2
[ 0~ s = 10 4 [ S - v,
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up(x) = Zui¢i(x)v q(x) = quﬂk(x)

S { [0 (- b+ [ 2 e s o

on,

or

S { [ [ 2% s, b

i—1 r r 8nx0ny

- f{ Lostn(Gu+ [ FomYimds)is, b

The distribution V2E is not an integrable function. Actually

0 (8E ( >) 0’FE ( )
— x — - X —
Ony \Ony Y OnyOny Y
blows up like ﬁ , a hypersingularity. However the limit
O’FE

(x —y)¢(x)ds, asy—T, ¢ €C’(I), I =00

T 8nx0ny

exists.

2. The integral [.¢;(y) J; al?j—aEw(x — ¥)di(x)dsxdsy

Singular integrals occur on the diagonal of the BEM influence matri-
ces. The fundamental solution of 2D Laplace equation is proportional
to Inr and this type of singularity is frequently to be integrated over
[0,1]. However singular integrals arising in BEM applications are not

certainly limited to logarithmic singularity. Singularities of type %, %2

also frequently arise [1], [2]. Hypersingularities of type -5 appear in a
dual boundary integral formulation( [3], [4]).

The double layer potential

uly) = [ o= ¥)6dss, 6 < D)
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solves
Au+k*u =0in Q; UQ,,
[u] (¥) = Uint (Y) — Uext(y) = —(¥),
2]») =0
Consider a vector field
(1)
Then v satisfies the radiation condition at infinity. Note also that

[Vu-n}r =0.

| Vuon Q,
V=) Vuon Q..

LEMMA 2.1. Let v be the vector field defined by (1), then
divv + k*u = 0.
Proof. Let Y be a domain with C' boundary. Then
dixy = n;dS

where Yy is the characteristic function for the set Y, n is the unit out-

ward normal vector to the boundary of Y and dS is the surface measure
of Y. Hence

O;(uxy) = (Oju) xy + un;ds.
Remember that v is defined on R3\ T' = Q, U Q.. Thus
vV = VXxq, + VXa.

as a distribution on R®. Let v;, j = 1,2,3, be the j-the component of v.
Then

Ov; = 0j(vixe:) +95(vjxa.)
= (3]'1)]')(91. + vjnde> + (aj’UjXQe - vjnde).
Therefore
divv = (divv)xe, + (divv)xe, + [v-n]
(divv)xe, + (divv)xe,, [v-n]=[Vu-n] =0

= (—K*u)xa + (—k*u)xaq
= —ku.
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This proves that the distribution divv is in fact a function in L*(R?)
and that in the sense of distribution in R3,

divv + k*u

0.

Similarly the gradient of the distribution u = uxq, + uxq, in R? is

(Vu)xo, + (Vu
(Vu)xe: + (V
v — ndl’,

[ }ndF
)XQ — ndl’
= (Vu)xq, + (Vu)xa..

((@u)xgi + umdf) + ((@u)xge + u(—nj)dF>
<(ajU)XQi + (ajU)Xm) + (uint - uext>dr

((@-u)xgi + (@-u)xge) + [u] n;dl’

We see that Vu, as distribution on R3, is not a function. We finally have

the following system of equations in R3:

(2)

In matrix form

k?2

0

8

0
0

divv + k%u

0 k?

o)
5 0

—pndl.
divv + k2u
divv + k%u
divv + k%u
9u _
0z 3

0

0

0
—pndl’
—pnadl’
—pnzdl’

The right hand side of the above equation has compact support. There-
fore if we know the fundamental solution of the above system, we can
express the solution as a convolution of the fundamental solution with
the right hand side. The fundamental solution of the above 6 x 6 system
is a 6 x 6 matrix of distributions. And if we take into account the right
hand side which has 0 in the first half part, we only have to decide the
second half of the fundamental solution. However just for convenience
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we give the whole one:

OE OE OE
Y~ " =
o TE T T
0 0 -F -4 9= _oz

F: _a_E _d_E _B_E oz By 0z
8 Bk G >
) ) )

_9oE _9FE _9F
0z 0z 0z
where
P eikr
Arr
Y = —curl curl (El3) + k*Els.

I3 is the 3 x 3 identity matrix.

§ 00000
060000
0034000 §I; O
AF:0005002(0513)
000060
0000039
where 20 o 2 2 2
20 0 -1 0 0
0 & 0 0 -1 0
00 2 0 0 -1

Let’s take a look at the second part of F'. If we adopt the notation
U= —VE, then
div(FI3) = VE

and hence
div¥ = div < — curl cwl (ELy)) + div (K°EI)
= k*div (Els) = k*VE = —k*U.

Thus
divYy + k*U = O.
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On the other hand, if we apply
A = Vdiv — curl curl
we have
VU = —Vdiv(EI)

— —(A+ cul Curl>(E]3)

= —(AE)I;+ ( — curl curl (E13) + kQElg) — kK*FEI,

= (“AE-FKE);+X

= 03+ X%

VU - ¥ =01s.

3. Some differential geometry

Let T' be a regular surface in R3. Its tubular neighborhood T, is
defined by

Fe=A{y|dly) <€}
where
d(y) := inf [ly — z].

If I is a regular orientable surface and e is sufficiently small, for each
y € I'. there is a unique P(y) € T such that

d(y) = lly =PIl
Therefore every point y € I'. has the following expression
y =P(y) +s(y)n(P(y)).

Here n is unit normal vector field on I and

~Jdy), ye
W= {—d(y), y € Qs

Clearly n can be extended to a unit normal vector filed n on I'. by
n(y) =Vs(y), y € I'..
We introduce a family of surfaces I'y:

I's={y|y=x+sn(x),xel}.
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Note that n is still normal to the surface I's, —¢ < s < €. Moreover
a function w defined on I' can be extended to a function on a tubular
neighborhood T',:

uy) = u(P(y))-

By using this extension. we define a tangential gradient, tangential
rotation of a function u defined on I' as the following:

Vru = (Vﬂ) }r
_—
curlpru = curl (ﬂn) |r
= (VﬂAn+ﬁcurl (n))‘r

— <Vﬂ/\ n) ‘r’ curl (n) = curl (Vs) = 0
- (Vru) An.

The rate of change of unit normal vector in the direction v € T,I' is
denoted by
d

S(v):=Vyn= En(c(t))

cis a curve in I'. Since n = Vs,

Slv) = (822(;@)‘,

where ( 832;) is the Hessian matrix of s. Note also that
10Tj

Ven=(v:-V)n.

Now surfacic divergence, surfacic rotational of a vector field v defined
on I' is defined by

divpv = (div?)’ , V(y) =v(x) = s(y)S(v(x))

r

curlpv = (cuer . n) ‘r‘
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Therefore

divpeurlru = (div ( curl (ﬂn)))
0

B r
curl /'Vru = (curl (Vﬂ) . n) ‘r
= 0
din(v/\n) = (le V/\n)‘
= (curl n—v- curl(n )>)F
= (curl > ‘
= curlpv.

If uis a functlon defined of I'. and v is a vector field on I'., then
Vu = Vr,u+ $n and v = v, + (v - n)n, where vp, is the tangential
component of V to the surface I';. Thus

vr. = nA (V N n)

divv = div <Vp5 + (v - n)n)
= divvp, + div ((v-n)n).
Observe that

div((v-n)n) = V(v-n)-n+(v-n)divn
~ 9d(v-n)
— e + (v-n)Tr(9)
~ 9d(v-n)

where H(s) = 1705 is the mean curvature of I's.

LEMMA 3.1. The restriction of surfacic divergence to Iy is the surfacic
divergence on I'y of the restriction of the vector field to I'.

<d1'vvrs) .

= djVFSVFS-

S
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Proof. 1t suffices to prove the case s = 0. Thus we have only to prove
divvp, = div ({/\f) when s = 0.
For C! vector field v, vr_(y) — vr(x) vanishes like s of I'. More precisely

vr, (y) — vr(x) = s(y)w(s,y), w(s,y) € TT.

Now
vi(y) = Vily) = vi(y) = (ve(x) = s(y)S)vr(x))
= (vr.) = vi(0) + s3)S¥Ive()
= s(y)(wis,y) + S)ve(x)
= s(y)t(s,y), t € TT,.
Finally,
div(s(y)t) = Vs-t+sdivt
= sdivt
= 0, when s = 0.
Therefore

divvp, = div (vr), when s =0.
O]

Let’s consider the expression of the curlv. Since v = vp, + (v-n)n, we
have

curlv = curl(vr,) + curl (v n)n)
= curl(nA(vAn))+ curl ((v-n)n).

Now

curl (v-m)n) = V(v-n)An+ (v-n)curln

= V(v:-n)An+0
= mps (v-n).
On the other hand, upon using the identity,
V x (ax b)=adivb—bdiva+ (b-V)a— (a-V)b,
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we have

curl (n A (v An))
= div(vAn)n— (divn)(v An) + <(V/\n) : V)n— (n-V)(v/\n)

= div(vr, An)n —2H(s)(vAn) +S(vAn)— W

= (curlpSst)n —2H(s)(vAn)+ S(vAn)— W
Therefore

curlv = (curlp,vr,)n —2H(s)(v An) + S(v An)

a(v A
_%+mrs(v.n)

= (curl FSVFS)H + tangential vector to I'.

4. Removal of hypersingularity

The solution (u, V) of equation (2) on page 431 can be expressed as a
convolution of the right hand side with the fundamental solution of the
equation.

u(ly) = Usx*(—¢n)dl
OF

= [ b~ e,

v = Y (—¢n)dl

= curl curl (EI3) * (¢n)dl’ — k? / E(x — y)p(x)ngdsx
r

= cuwrl (EI3) * curl (on)dl’ — k2 / E(x —y)o(x)ngdsx
r

—
curl (gpndI‘) = (curlmp)dF. In fact
(curl (¢ndl),w) = (pdl, curlw)

= /gp(n- Curlw)dsx.
r
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Note that

curl w

—
= (curlpwr)n + curl p(w - n) + Ry(w A n)
0
—2H,(wAn)— —(wA
(wAm) = = (w An)

= ( curl FWF) n + tangential component.

Therefore
n-w = curlrwr.

Hence

(curl (pndl'),w) = (pdl, curlw)

= /gp(n- curlw)dsx
r

= /gp(curlpvvpdsx
r

—_—

= /Curlpgo-WpdsX

r

—_—
= / curl ry - wdsy
LN
= (curlppdl’, w).
Let’s consider the expression for

v = curl (EI) * curl ppdl — k2 / E(x — y)e(x)nydsy.
r

From the double layer potential

uy) = [ g x = ¥)plx)ds,

we have
[u] = U — Uext = —¢,
Valy) = [V S (x = ¥)) s, ¥ € 0
v-n = lim Vu(y) -n

y—r
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Therefore
/F (v-n)p(y)dsy

= (curl (E13) * curlpedl, ¢ndl)

—k? /F /F E(x —y)e(x)(y) (nx - ny)dsxdsy

= (E13 * curlpedl’, curl pipdl)

42 / [ Bl ¥ty (o my s
//Ex y) curlpgo( ) curlpw( ))dsxdsy

2 [ Box =yl 3) (me -y sy,

On the other hand

Jomutmis, = [ [ v 8—E<x—y>)-mo<x>w<y>dsxdsy

B / / anxany = ¥) (X)) (y)dsxdsy.

We have finally replaced the hyper-singular integral with a logarithmic
sigularity.

/r 4 (x —y)e(x)¢(y)dsxdsy

r anxany

1 [ [ B y)o(u(y) (e my s,
_/F/FE(X - y)(curlpgo(x)- curlpw(y))dsxdsy.
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