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ON THE SIZE OF THE SET WHERE A

MEROMORPHIC FUNCTION IS LARGE

Ki-Ho Kwon

Abstract. In this paper, we investigate the extent of the set on
which the modulus of a meromorphic function is lower bounded by a
term related to some Nevanlinna Theory functionals. A. I. Shcherba
estimate the size of the set on which the modulus of an entire func-
tion is lower bounded by 1. Our theorem in this paper shows that
the same result holds in the case that the lower bound is replaced
by lT (r, f), 0 ≤ l < 1 , which improves Shcherba’s result. We also
give a similar estimation for meromorphic functions.

1. Introduction and statements of results

Let f be a nonconstant meromorphic function on |z| ≤ αr for some
α > 1 and 0 < r < ∞. In this paper, for 0 ≤ l < 1, we investigate the
set

E(r, l, f) = {θ ∈ [0, 2π) : log |f(reiθ)| ≥ l[m(r, f)−(1+log α) n(αr,∞, f)]}
where m(r, f) = 1

2π

∫ 2π

0
log+ |f(reiθ)|dθ and n(t,∞, f) denote the num-

ber of poles of f in |z| ≤ t(see [6]). If f is analytic in |z| ≤ r, then we
rewrite

E(r, l, f) = {θ ∈ [0, 2π) : log |f(reiθ)| ≥ lT (r, f)}
where T (r, f) = m(r, f) is the Nevanlinna characteristic of f(z). In
particular, if f is analytic in |z| ≤ r and l = 0, we denote

E(r, f) = E(r, 0, f) = {θ ∈ [0, 2π) : |f(reiθ)| ≥ 1}.
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Many results related to the lower bounds of lim supr→∞ |E(r, l, f)|, called
“the spread of f”, can be found in [1], [2], [3] and [4] etc., where |E|
denotes the Lebesgue measure of the set E.

On the other hand, less attention have been given to obtain the lower
bound for lim infr→∞ |E(r, l, f)|. A. A. Gol’dberg [5] has constructed
examples of entire functions f(z) of order ρ, 1

2
< ρ < ∞, such that

lim infr→∞ |E(r, f)| = 0.
In 1990, A. I. Shcherba established a sharp lower bound for the size

of the set E(r, f) in the following

Theorem 1.1 (Shcherba [8]). Let f(z) be a nonconstant entire func-
tion of a finite order ρ. Then

lim inf
r→∞

log |E(r, f)|
log r

≥ −ρ

2
.

This inequality is best possible in the following sense:

Theorem 1.2 (Shcherba [8]). Let ρ ∈ [0,∞) be an arbitrary number.
Then there exists an entire function f(z) of order ρ for which

lim inf
r→∞

log |E(r, f)|
log r

= −ρ

2
.

We improve Theorem 1.1 by proving

Theorem 1.3. Let f(z) be a nonconstant entire function of a finite
order ρ. Then

lim inf
r→∞

log |E(r, l, f)|
log r

≥ −ρ

2
for all l, 0 ≤ l < 1.

Note that if l = 0 in Theorem 1.3, then the result of Theorem 1.3 is
same as that of Theorem 1.1. Theorem 1.3 is easily deduced from the
following

Theorem 1.4. Let f(z) be a nonconstant meromorphic function in
|z| ≤ αr for 1 < α < e2 and 0 < r < ∞. Suppose that

m(r, f)− (1 + log α) n(αr,∞, f) ≥ 1.

Then

|E(r, l, f)| ≥ 2π(1− l)

dα(1 + log 2)
√

m(αr, f) + 1− l

for all l, 0 ≤ l < 1, where dα = 4
√

3α(
√

α+1)
α−1

.
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2. Proofs of Theorems

Let f(z) be an analytic function in |z| ≤ r. Then the maximum
modulus of f(z) on |z| = r is denoted by M(r, f).

Lemma 2.1. Let f(z) be a nonconstant analytic function in |z| ≤ r.
Then

|E(r, l, f)| ≥ 2π

[
1− l

log M(r,f)
m(r,f)

− l

]
,

for all l, 0 ≤ l < 1.

Proof. Suppose that f(z) is a nonconstant analytic function in |z| ≤ r.
Set E = E(r, l, f) and Ec = [0, 2π)− E. Then

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ

=
1

2π

[∫

E

log+ |f(reiθ)|dθ +

∫

Ec

log+ |f(reiθ)|dθ
]

≤ 1

2π
[|E| log M(r, f) + (2π − |E|)lm(r, f)].

Hence

|E| ≥ 2π(1− l)m(r, f)

log M(r, f)− lm(r, f)
= 2π

[
1− l

log M(r,f)
m(r,f)

− l

]
.

Lemma 2.2 (Kwon [7]). Let f(z) be a nonconstant analytic function
in |z| ≤ αr, 1 < α < e2, and let |f(0)| ≥ 1. Then

log M(r, f) ≤ dα

√
m(r, f)m(αr, f)

where dα = 4
√

3α(
√

α+1)
α−1

.

Lemma 2.3. Let {bn} be the set of poles of a meromorphic function
f , and let

B(z) =
∏

|bn|≤R

R2 − bnz

R(z − bn)

with R = αr and z = reiθ. Then we have

m(r, B) =
1

2π

∫ 2π

0

log+ |B(reiθ)|dθ ≤ (1 + log α) n(αr,∞, f).
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Proof. Let b ∈ (0, R] be a real number and let 0 < θ ≤ π. Then

∣∣∣∣∣
R2 − bz

R(z − b)

∣∣∣∣∣

2

=

∣∣∣∣∣
(αr − b

α
cos θ)− i b

α
sin θ

(r cos θ − b) + ir sin θ

∣∣∣∣∣

2

=
(αr − b

α
cos θ)2 + ( b

α
sin θ)2

(r cos θ − b)2 + (r sin θ)2
=

(αr)2 + ( b
α
)2 − 2br cos θ

r2 + b2 − 2br cos θ

=
(αr + b

α
)2 − 2br(1 + cos θ)

(r + b)2 − 2br(1 + cos θ)
≤ (αr + b

α
)2

(r + b)2 − 4br cos2 θ
2

≤ (αr + b
α
)2

(r + b)(r + b− 2
√

br cos θ
2
)
≤ α2

1− 2
√

br
r+b

cos θ
2

≤ α2

1− cos θ
2

=
α2

2 sin2 θ
4

.

Hence we deduce that, for 0 < θ ≤ π,
∣∣∣∣∣
R2 − bz

R(z − b)

∣∣∣∣∣ ≤
α√

2 sin θ
4

≤ απ

θ
.

Therefore we obtain

1

2π

∫ 2π

0

log+

∣∣∣∣∣
R2 − bz

R(z − b)

∣∣∣∣∣dθ ≤ 1

π

∫ π

0

log+ απ

θ
dθ = 1 + log α.

If bn is a complex number satisfying |bn| = b, then we claim that

1

2π

∫ 2π

0

log+

∣∣∣∣∣
R2 − bnz

R(z − bn)

∣∣∣∣∣dθ =
1

2π

∫ 2π

0

log+

∣∣∣∣∣
R2 − bz

R(z − b)

∣∣∣∣∣dθ.

In fact, if bn = beiθ0 and z = reiθ, then we have
∣∣∣∣∣
R2 − bnz

R(z − bn)

∣∣∣∣∣ =

∣∣∣∣∣
αr − b

α
e−iθ0eiθ

reiθ − beiθ0

∣∣∣∣∣ =

∣∣∣∣∣
αr − b

α
ei(θ−θ0)

rei(θ−θ0) − b

∣∣∣∣∣.

Recall that ∣∣∣∣∣
R2 − bz

R(z − b)

∣∣∣∣∣ =

∣∣∣∣∣
αr − b

α
eiθ

reiθ − b

∣∣∣∣∣.
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Hence our claim is proved by a change of variable in the integration.
Thus we conclude that

m(r,B) =
∑

|bn|≤R

1

2π

∫ 2π

0

log+

∣∣∣∣∣
R2 − bnz

R(z − bn)

∣∣∣∣∣dθ ≤ (1 + log α) n(αr,∞, f).

Proof of Theorem 1.4. Let f(z) be a nonconstant meromorphic func-
tion in |z| ≤ αr for 1 < α < e2. Suppose that

(1) m(r, f)− (1 + log α) n(αr,∞, f) ≥ 1.

Let bn be the set of poles of f . Now we define functions B(z) and g(z)
as

B(z) =
∏

|bn|≤R

R2 − bnz

R(z − bn)

with R = αr, and

g(z) =
f(z)

B(z)
.

Note that g(z) is analytic in |z| ≤ R, and

(2) m(r, g) ≥ m(r, f)− (1 + log α) n(αr,∞, f)

by Lemma 2.3. Hence it follows from (1), (2) and Lemma 2.1 that

(3) m(r, g) ≥ 1

and

(4) |E(r, l, g)| ≥ 2π

[
1− l

log M(r,g)
m(r,g)

− l

]
.

If |g(0)| ≥ 1, then we deduce from (4) and Lemma 2.2 that

(5) |E(r, l, g)| ≥ 2π(1− l)

dα

[
m(αr,g)
m(r,g)

] 1
2 − l

for all l, 0 ≤ l < 1, where dα = 4
√

3α(
√

α+1)
α−1

.

Now, suppose that |g(0)| < 1. Then we can choose a number c with
|c| ≤ 1 such that |g(0) + c| = 1. We set h(z) = g(z) + c, so that h(z)
satisfies all the hypotheses of Lemma 2.2. Therefore we get

(6) log M(r, h) ≤ dα

√
m(r, h)m(αr, h),
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where dα = 4
√

3α(
√

α+1)
α−1

. It follows from (3) and (6) that

log M(r, g)− 1 ≤ log M(r, g + c) ≤ dα

√
m(r, g + c)m(αr, g + c)

≤ dα

√
[m(r, g) + log 2][m(αr, g) + log 2]

≤ dα

√
(1 + log 2)2m(r, g)m(αr, g),

since m(r, g) ≥ 1. Hence we have

(7) log M(r, g) ≤ dα(1 + log 2)
√

m(r, g)m(αr, g) + 1.

It follows from (4) and (7) that

(8) |E(r, l, g)| ≥ 2π(1− l)

dα(1 + log 2)[m(αr,g)
m(r,g)

]1/2 + 1− l
,

for all l, 0 ≤ l < 1. By comparing (5) and (8), it is easy to see that (8)
is always valid regardless of the value of |g(0)|.

In addition, since |f(z)| = |g(z)| on |z| = R, and |f(z)| > |g(z)| on
|z| = r < R,

(9) m(αr, f) = m(αr, g),

and

{θ ∈ [0, 2π) : log |f(reiθ| ≥ lm(r, g)} ⊇ {θ ∈ [0, 2π) : log |g(reiθ| ≥ lm(r, g)},
which implies that

(10) |E(r, l, f)| ≥ |E(r, l, g)|.
Thus we conclude from (3), (8), (9) and (10) that

|E(r, l, f)| ≥ 2π(1− l)

dα(1 + log 2)
√

m(αr, f) + 1− l

which proves the theorem.

Proof of Theorem 1.3. If f(z) is a polynomial, then the proof is triv-
ial. Hence we assume that f(z) is a transcendental entire function of
order ρ. Then f(z) satisfies all the hypotheses of Theorem 1.4, since
n(αr,∞, f) = 0 and m(r, f) →∞ as r →∞. Thus we have

|E(r, l, f)| ≥ 2π(1− l)

dα(1 + log 2)
√

m(αr, f) + 1− l

for all l, 0 ≤ l < 1.
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Furthermore, if ε > 0 is given, then the definition of order gives

m(αr, f) < rρ+ε

for all sufficiently large r. Therefore we finally get that

lim inf
r→∞

log |E(r, l, f)|
log r

≥ −ρ

2
,

which proves the theorem.

3. Example

Let f(z) be a meromorphic function in the complex plane of order ρ
and lower order λ > 0. Suppose that

(11) lim sup
r→∞

log n(r,∞, f)

log r
< λ.

Then we have

lim inf
r→∞

log |E(r, l, f)|
log r

≥ −ρ

2

for all l, 0 ≤ l < 1.

Proof. Let f(z) have lower order λ > 0 and let its poles satisfy (11).
Then we can choose ε1, ε2 and ε3 such that 0 < ε1 < ε2 < ε3 < λ and

(12) n(r,∞, f) ≤ rλ−ε3 ,

T (r, f) = m(r, f) + N(r, f) ≥ rλ−ε1 ,

and hence

(13) m(r, f) ≥ rλ−ε2 ,

for all sufficiently large r, since N(r, f) ≤ n(r,∞, f) log r. Thus we
deduce from (12) and (13) that, for given α > 1,

m(r, f)− (1 + log α) n(αr,∞, f) ≥ 1

for all sufficiently large r. Therefore it follows from Theorem 1.3 that

lim inf
r→∞

log |E(r, l, f)|
log r

≥ −ρ

2

for all l, 0 ≤ l < 1.
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