ON THE SIZE OF THE SET WHERE A MEROMORPHIC FUNCTION IS LARGE

Ki-Ho Kwon

Abstract

In this paper, we investigate the extent of the set on which the modulus of a meromorphic function is lower bounded by a term related to some Nevanlinna Theory functionals. A. I. Shcherba estimate the size of the set on which the modulus of an entire function is lower bounded by 1 . Our theorem in this paper shows that the same result holds in the case that the lower bound is replaced by $l T(r, f), 0 \leq l<1$, which improves Shcherba's result. We also give a similar estimation for meromorphic functions.

1. Introduction and statements of results

Let f be a nonconstant meromorphic function on $|z| \leq \alpha r$ for some $\alpha>1$ and $0<r<\infty$. In this paper, for $0 \leq l<1$, we investigate the set
$E(r, l, f)=\left\{\theta \in[0,2 \pi): \log \left|f\left(r e^{i \theta}\right)\right| \geq l[m(r, f)-(1+\log \alpha) n(\alpha r, \infty, f)]\right\}$
where $m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta$ and $n(t, \infty, f)$ denote the number of poles of f in $|z| \leq t$ (see [6]). If f is analytic in $|z| \leq r$, then we rewrite

$$
E(r, l, f)=\left\{\theta \in[0,2 \pi): \log \left|f\left(r e^{i \theta}\right)\right| \geq l T(r, f)\right\}
$$

where $T(r, f)=m(r, f)$ is the Nevanlinna characteristic of $f(z)$. In particular, if f is analytic in $|z| \leq r$ and $l=0$, we denote

$$
E(r, f)=E(r, 0, f)=\left\{\theta \in[0,2 \pi):\left|f\left(r e^{i \theta}\right)\right| \geq 1\right\}
$$

Received November 16, 2010. Revised December 8, 2010. Accepted December 11, 2010.

2000 Mathematics Subject Classification: 30D35.
Key words and phrases: meromorphic function, lower bound, spread.
Supported by the Wharangdae Research Institute, Korea Military Academy, 2008.

Many results related to the lower bounds of $\lim _{\sup _{r \rightarrow \infty}}|E(r, l, f)|$, called "the spread of f ", can be found in [1], [2], [3] and [4] etc., where $|E|$ denotes the Lebesgue measure of the set E.

On the other hand, less attention have been given to obtain the lower bound for $\liminf _{r \rightarrow \infty}|E(r, l, f)|$. A. A. Gol'dberg [5] has constructed examples of entire functions $f(z)$ of order $\rho, \frac{1}{2}<\rho<\infty$, such that $\liminf _{r \rightarrow \infty}|E(r, f)|=0$.

In 1990 , A. I. Shcherba established a sharp lower bound for the size of the set $E(r, f)$ in the following

Theorem 1.1 (Shcherba [8]). Let $f(z)$ be a nonconstant entire function of a finite order ρ. Then

$$
\liminf _{r \rightarrow \infty} \frac{\log |E(r, f)|}{\log r} \geq-\frac{\rho}{2} .
$$

This inequality is best possible in the following sense:
Theorem 1.2 (Shcherba [8]). Let $\rho \in[0, \infty)$ be an arbitrary number. Then there exists an entire function $f(z)$ of order ρ for which

$$
\liminf _{r \rightarrow \infty} \frac{\log |E(r, f)|}{\log r}=-\frac{\rho}{2} .
$$

We improve Theorem 1.1 by proving
Theorem 1.3. Let $f(z)$ be a nonconstant entire function of a finite order ρ. Then

$$
\liminf _{r \rightarrow \infty} \frac{\log |E(r, l, f)|}{\log r} \geq-\frac{\rho}{2}
$$

for all $l, 0 \leq l<1$.
Note that if $l=0$ in Theorem 1.3, then the result of Theorem 1.3 is same as that of Theorem 1.1. Theorem 1.3 is easily deduced from the following

TheOrem 1.4. Let $f(z)$ be a nonconstant meromorphic function in $|z| \leq \alpha r$ for $1<\alpha<e^{2}$ and $0<r<\infty$. Suppose that

$$
m(r, f)-(1+\log \alpha) n(\alpha r, \infty, f) \geq 1
$$

Then

$$
|E(r, l, f)| \geq \frac{2 \pi(1-l)}{d_{\alpha}(1+\log 2) \sqrt{m(\alpha r, f)}+1-l}
$$

for all $l, 0 \leq l<1$, where $d_{\alpha}=\frac{4 \sqrt{3} \alpha(\sqrt{\alpha}+1)}{\alpha-1}$.

2. Proofs of Theorems

Let $f(z)$ be an analytic function in $|z| \leq r$. Then the maximum modulus of $f(z)$ on $|z|=r$ is denoted by $M(r, f)$.

Lemma 2.1. Let $f(z)$ be a nonconstant analytic function in $|z| \leq r$. Then

$$
|E(r, l, f)| \geq 2 \pi\left[\frac{1-l}{\frac{\log M(r, f)}{m(r, f)}-l}\right],
$$

for all $l, 0 \leq l<1$.
Proof. Suppose that $f(z)$ is a nonconstant analytic function in $|z| \leq r$. Set $E=E(r, l, f)$ and $E^{c}=[0,2 \pi)-E$. Then

$$
\begin{aligned}
m(r, f) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta \\
& =\frac{1}{2 \pi}\left[\int_{E} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta+\int_{E^{c}} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta\right] \\
& \leq \frac{1}{2 \pi}[|E| \log M(r, f)+(2 \pi-|E|) \operatorname{lm}(r, f)]
\end{aligned}
$$

Hence

$$
|E| \geq \frac{2 \pi(1-l) m(r, f)}{\log M(r, f)-\operatorname{lm}(r, f)}=2 \pi\left[\frac{1-l}{\frac{\log M(r, f)}{m(r, f)}-l}\right] .
$$

Lemma 2.2 (Kwon [7]). Let $f(z)$ be a nonconstant analytic function in $|z| \leq \alpha r, 1<\alpha<e^{2}$, and let $|f(0)| \geq 1$. Then

$$
\log M(r, f) \leq d_{\alpha} \sqrt{m(r, f) m(\alpha r, f)}
$$

where $d_{\alpha}=\frac{4 \sqrt{3 \alpha}(\sqrt{\alpha}+1)}{\alpha-1}$.
Lemma 2.3. Let $\left\{b_{n}\right\}$ be the set of poles of a meromorphic function f, and let

$$
B(z)=\prod_{\left|b_{n}\right| \leq R} \frac{R^{2}-\overline{b_{n}} z}{R\left(z-b_{n}\right)}
$$

with $R=\alpha r$ and $z=r e^{i \theta}$. Then we have

$$
m(r, B)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|B\left(r e^{i \theta}\right)\right| d \theta \leq(1+\log \alpha) n(\alpha r, \infty, f)
$$

Proof. Let $b \in(0, R]$ be a real number and let $0<\theta \leq \pi$. Then

$$
\begin{aligned}
\left|\frac{R^{2}-\bar{b} z}{R(z-b)}\right|^{2} & =\left|\frac{\left(\alpha r-\frac{b}{\alpha} \cos \theta\right)-i \frac{b}{\alpha} \sin \theta}{(r \cos \theta-b)+i r \sin \theta}\right|^{2} \\
& =\frac{\left(\alpha r-\frac{b}{\alpha} \cos \theta\right)^{2}+\left(\frac{b}{\alpha} \sin \theta\right)^{2}}{(r \cos \theta-b)^{2}+(r \sin \theta)^{2}}=\frac{(\alpha r)^{2}+\left(\frac{b}{\alpha}\right)^{2}-2 b r \cos \theta}{r^{2}+b^{2}-2 b r \cos \theta} \\
& =\frac{\left(\alpha r+\frac{b}{\alpha}\right)^{2}-2 b r(1+\cos \theta)}{(r+b)^{2}-2 b r(1+\cos \theta)} \leq \frac{\left(\alpha r+\frac{b}{\alpha}\right)^{2}}{(r+b)^{2}-4 b r \cos ^{2} \frac{\theta}{2}} \\
& \leq \frac{\left(\alpha r+\frac{b}{\alpha}\right)^{2}}{(r+b)\left(r+b-2 \sqrt{b r} \cos \frac{\theta}{2}\right)} \leq \frac{\alpha^{2}}{1-\frac{2 \sqrt{b r}}{r+b} \cos \frac{\theta}{2}} \\
& \leq \frac{\alpha^{2}}{1-\cos \frac{\theta}{2}}=\frac{\alpha^{2}}{2 \sin ^{2} \frac{\theta}{4}} .
\end{aligned}
$$

Hence we deduce that, for $0<\theta \leq \pi$,

$$
\left|\frac{R^{2}-\bar{b} z}{R(z-b)}\right| \leq \frac{\alpha}{\sqrt{2} \sin \frac{\theta}{4}} \leq \frac{\alpha \pi}{\theta} .
$$

Therefore we obtain

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{R^{2}-\bar{b} z}{R(z-b)}\right| d \theta \leq \frac{1}{\pi} \int_{0}^{\pi} \log ^{+} \frac{\alpha \pi}{\theta} d \theta=1+\log \alpha
$$

If b_{n} is a complex number satisfying $\left|b_{n}\right|=b$, then we claim that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{R^{2}-\overline{b_{n}} z}{R\left(z-b_{n}\right)}\right| d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{R^{2}-\bar{b} z}{R(z-b)}\right| d \theta
$$

In fact, if $b_{n}=b e^{i \theta_{0}}$ and $z=r e^{i \theta}$, then we have

$$
\left|\frac{R^{2}-\overline{b_{n}} z}{R\left(z-b_{n}\right)}\right|=\left|\frac{\alpha r-\frac{b}{\alpha} e^{-i \theta_{0}} e^{i \theta}}{r e^{i \theta}-b e^{i \theta_{0}}}\right|=\left|\frac{\alpha r-\frac{b}{\alpha} e^{i\left(\theta-\theta_{0}\right)}}{r e^{i\left(\theta-\theta_{0}\right)}-b}\right| .
$$

Recall that

$$
\left|\frac{R^{2}-\bar{b} z}{R(z-b)}\right|=\left|\frac{\alpha r-\frac{b}{\alpha} e^{i \theta}}{r e^{i \theta}-b}\right| .
$$

Hence our claim is proved by a change of variable in the integration. Thus we conclude that

$$
m(r, B)=\sum_{\left|b_{n}\right| \leq R} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{R^{2}-\overline{b_{n}} z}{R\left(z-b_{n}\right)}\right| d \theta \leq(1+\log \alpha) n(\alpha r, \infty, f) .
$$

Proof of Theorem 1.4. Let $f(z)$ be a nonconstant meromorphic function in $|z| \leq \alpha r$ for $1<\alpha<e^{2}$. Suppose that

$$
\begin{equation*}
m(r, f)-(1+\log \alpha) n(\alpha r, \infty, f) \geq 1 \tag{1}
\end{equation*}
$$

Let b_{n} be the set of poles of f. Now we define functions $B(z)$ and $g(z)$ as

$$
B(z)=\prod_{\left|b_{n}\right| \leq R} \frac{R^{2}-\overline{b_{n}} z}{R\left(z-b_{n}\right)}
$$

with $R=\alpha r$, and

$$
g(z)=\frac{f(z)}{B(z)}
$$

Note that $g(z)$ is analytic in $|z| \leq R$, and

$$
\begin{equation*}
m(r, g) \geq m(r, f)-(1+\log \alpha) n(\alpha r, \infty, f) \tag{2}
\end{equation*}
$$

by Lemma 2.3. Hence it follows from (1), (2) and Lemma 2.1 that

$$
\begin{equation*}
m(r, g) \geq 1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
|E(r, l, g)| \geq 2 \pi\left[\frac{1-l}{\frac{\log M(r, g)}{m(r, g)}-l}\right] \tag{4}
\end{equation*}
$$

If $|g(0)| \geq 1$, then we deduce from (4) and Lemma 2.2 that

$$
\begin{equation*}
|E(r, l, g)| \geq \frac{2 \pi(1-l)}{d_{\alpha}\left[\frac{m(\alpha r, g)}{m(r, g)}\right]^{\frac{1}{2}}-l} \tag{5}
\end{equation*}
$$

for all $l, 0 \leq l<1$, where $d_{\alpha}=\frac{4 \sqrt{3 \alpha}(\sqrt{\alpha}+1)}{\alpha-1}$.
Now, suppose that $|g(0)|<1$. Then we can choose a number c with $|c| \leq 1$ such that $|g(0)+c|=1$. We set $h(z)=g(z)+c$, so that $h(z)$ satisfies all the hypotheses of Lemma 2.2. Therefore we get

$$
\begin{equation*}
\log M(r, h) \leq d_{\alpha} \sqrt{m(r, h) m(\alpha r, h)}, \tag{6}
\end{equation*}
$$

where $d_{\alpha}=\frac{4 \sqrt{3 \alpha}(\sqrt{\alpha}+1)}{\alpha-1}$. It follows from (3) and (6) that

$$
\begin{aligned}
\log M(r, g)-1 & \leq \log M(r, g+c) \leq d_{\alpha} \sqrt{m(r, g+c) m(\alpha r, g+c)} \\
& \leq d_{\alpha} \sqrt{[m(r, g)+\log 2][m(\alpha r, g)+\log 2]} \\
& \leq d_{\alpha} \sqrt{(1+\log 2)^{2} m(r, g) m(\alpha r, g)},
\end{aligned}
$$

since $m(r, g) \geq 1$. Hence we have

$$
\begin{equation*}
\log M(r, g) \leq d_{\alpha}(1+\log 2) \sqrt{m(r, g) m(\alpha r, g)}+1 \tag{7}
\end{equation*}
$$

It follows from (4) and (7) that

$$
\begin{equation*}
|E(r, l, g)| \geq \frac{2 \pi(1-l)}{d_{\alpha}(1+\log 2)\left[\frac{m(\alpha r, g)}{m(r, g)}\right]^{1 / 2}+1-l}, \tag{8}
\end{equation*}
$$

for all $l, 0 \leq l<1$. By comparing (5) and (8), it is easy to see that (8) is always valid regardless of the value of $|g(0)|$.

In addition, since $|f(z)|=|g(z)|$ on $|z|=R$, and $|f(z)|>|g(z)|$ on $|z|=r<R$,

$$
\begin{equation*}
m(\alpha r, f)=m(\alpha r, g), \tag{9}
\end{equation*}
$$

and
$\left\{\theta \in[0,2 \pi): \log \mid f\left(r e^{i \theta} \mid \geq \operatorname{lm}(r, g)\right\} \supseteq\left\{\theta \in[0,2 \pi): \log \mid g\left(r e^{i \theta} \mid \geq \operatorname{lm}(r, g)\right\}\right.\right.$, which implies that

$$
\begin{equation*}
|E(r, l, f)| \geq|E(r, l, g)| . \tag{10}
\end{equation*}
$$

Thus we conclude from (3), (8), (9) and (10) that

$$
|E(r, l, f)| \geq \frac{2 \pi(1-l)}{d_{\alpha}(1+\log 2) \sqrt{m(\alpha r, f)}+1-l}
$$

which proves the theorem.
Proof of Theorem 1.3. If $f(z)$ is a polynomial, then the proof is trivial. Hence we assume that $f(z)$ is a transcendental entire function of order ρ. Then $f(z)$ satisfies all the hypotheses of Theorem 1.4, since $n(\alpha r, \infty, f)=0$ and $m(r, f) \rightarrow \infty$ as $r \rightarrow \infty$. Thus we have

$$
|E(r, l, f)| \geq \frac{2 \pi(1-l)}{d_{\alpha}(1+\log 2) \sqrt{m(\alpha r, f)}+1-l}
$$

for all $l, 0 \leq l<1$.

Furthermore, if $\varepsilon>0$ is given, then the definition of order gives

$$
m(\alpha r, f)<r^{\rho+\varepsilon}
$$

for all sufficiently large r. Therefore we finally get that

$$
\liminf _{r \rightarrow \infty} \frac{\log |E(r, l, f)|}{\log r} \geq-\frac{\rho}{2}
$$

which proves the theorem.

3. Example

Let $f(z)$ be a meromorphic function in the complex plane of order ρ and lower order $\lambda>0$. Suppose that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log n(r, \infty, f)}{\log r}<\lambda \tag{11}
\end{equation*}
$$

Then we have

$$
\liminf _{r \rightarrow \infty} \frac{\log |E(r, l, f)|}{\log r} \geq-\frac{\rho}{2}
$$

for all $l, 0 \leq l<1$.
Proof. Let $f(z)$ have lower order $\lambda>0$ and let its poles satisfy (11). Then we can choose $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} such that $0<\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}<\lambda$ and

$$
\begin{gather*}
n(r, \infty, f) \leq r^{\lambda-\varepsilon_{3}} \tag{12}\\
T(r, f)=m(r, f)+N(r, f) \geq r^{\lambda-\varepsilon_{1}}
\end{gather*}
$$

and hence

$$
\begin{equation*}
m(r, f) \geq r^{\lambda-\varepsilon_{2}} \tag{13}
\end{equation*}
$$

for all sufficiently large r, since $N(r, f) \leq n(r, \infty, f) \log r$. Thus we deduce from (12) and (13) that, for given $\alpha>1$,

$$
m(r, f)-(1+\log \alpha) n(\alpha r, \infty, f) \geq 1
$$

for all sufficiently large r. Therefore it follows from Theorem 1.3 that

$$
\liminf _{r \rightarrow \infty} \frac{\log |E(r, l, f)|}{\log r} \geq-\frac{\rho}{2}
$$

for all $l, 0 \leq l<1$.

References

[1] J. M. Anderson and A. Baernstein II, The size of the set on which a meromorphic function is large, Proc. Lond. Math. Soc., 36(3)(1978), 518-539.
[2] K. Arima, On maximum modulus of integral functions, J. Math. Soc. Japan, 4(1952), 62-66.
[3] A. Baernstein, Proof of Edrei's conjecture, Proc. Lond. Math. Soc., 25(3)(1973), 418-434.
[4] A. Edrei, Sums of deficiencies of meromorphic functions, J. Anal. Math., 14(1965) 79-107.
[5] A.A. Gol'dberg, On the relationship between a defect and a deviations of a meromorphic function, Teoriya Funktsii, Funkts. Analiz I Ikh Prilozh., 29(1978), 31-35.
[6] W. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[7] K. Kwon, On the growth of entire functions, Israel J. Math., 86(1994), 409-427.
[8] A.I. Shcherba, On a set on which an entire function is lower bounded, Russian Math. Izvestiya VUZ. Matematika, 34(9)(1990), 75-81.

Department of Mathematics
Korea Military Academy
Seoul 139-799, Republic of Korea
E-mail: kkwon@kma.ac.kr

