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NONTRIVIAL SOLUTIONS FOR THE NONLINEAR

BIHARMONIC SYSTEM WITH DIRICHLET

BOUNDARY CONDITION

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the existence of multiple nontrivial so-
lutions (ξ, η) for perturbations g1, g2 of the harmonic system with
Dirichlet boundary condition

∆2ξ + c∆ξ = g1(2ξ + 3η) in Ω,

∆2η + c∆η = g2(2ξ + 3η) in Ω,

where we assume that λ1 < c < λ2, g′1(∞), g′2(∞) are finite. We
prove that the system has at least three solutions under some con-
dition on g.

1. Introduction

Let Ω be a smooth bounded region in Rn with smooth boundary ∂Ω.
Let λ1 < λ2 ≤ . . . ≤ λk ≤ . . . be the eigenvalues of −∆ with Dirichlet
boundary condition in Ω. In [8] Jung and Choi studied the multiplicity of
solutions of the nonlinear biharmonic equation with Dirichlet boundary
condition

∆2u + c∆u = g(u) in Ω,(1.1)

u = 0, ∆u = 0 on ∂Ω,
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where g is a differentiable function from R to R such that g(0) = 0,
c ∈ R and ∆2 denotes the biharmonic operator. Here we assume that

g′(∞) = lim|u|→∞
g(u)

u
∈ R.

In this paper we investigate the existence of multiple nontrivial solu-
tions (ξ, η) for perturbations g1, g2 of the harmonic system with Dirichlet
boundary condition

∆2ξ + c∆ξ = g1(2ξ + 3η) in Ω,(1.2)

∆2η + c∆η = g2(2ξ + 3η) in Ω,

ξ = 0, η = 0, ∆ξ = 0, ∆η = 0 on ∂Ω,

where we assume that λ1 < c < λ2, g′1(∞), g′2(∞) are finite.
Problem (1.1) was studied by Choi and Jung in [5], [6]. They showed

that problem (1.1) has at least three solutions. The authors proved that
(1.1) has at least two solutions by a variation of linking Theorem. The
authors also proved in [7] that the problem

∆2u + c∆u = bu+ + s in Ω,(1.3)

u = 0, ∆u = 0 on ∂Ω

has at least two solutions by a variational reduction method when λ1 <
c < λ2, b < λ1(λ1 − c) or c < λ1, λk(λk − c) < b < λk+1(λk+1 − c).
This type problem arises in the study of travelling waves in a suspension
bridge ([9,10,11]) or the study of the static deflection of an elastic plate
in a fluid ([1,2,3,4,12,13]).

In section 2 we define a Banach space H spanned by eigenfunctions
of ∆2 +c∆ with Dirichlet boundary condition. We recall a Linking Scale
Theorem which will play a crucial role in our argument. In section 3
we prove that problem (1.1) has at least three solutions under some
condition on g. In section 4 we investigate the existence of multiple
nontrivial solutions (ξ, η) for perturbations g1, g2 of harmonic system
(1.2).

2. Linking scale theorem

Let λk(k = 1, 2, . . .) denote the eigenvalues and φk(k = 1, 2, . . .) the
corresponding eigenfunctions, suitably normalized with respect to L2(Ω)
inner product, of the eigenvalue problem ∆u + λu = 0 in Ω, with the
Dirichlet boundary condition, where each eigenvalue λk is repeated as
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often as its multiplicity. We recall that 0 < λ1 < λ2 ≤ λ3 ≤ . . . , λi →
+∞ and that φ1(x) > 0 for x ∈ Ω. The eigenvalue problem ∆2u +
c∆u = µu in Ω with the Dirichlet boundary condition u = 0, ∆u = 0
on ∂Ω, has infinitely many eigenvalues λk(λk − c), k = 1, 2, . . ., and
corresponding eigenfunctions φk(x). The set of functions {φk} is an
orthogonal base for W 1,2

0 (Ω). Let us denote an element u of W 1,2
0 (Ω) as

u =
∑

hkφk,
∑

h2
k < ∞. Let c be not an eigenvalue of −∆ and define a

subspace E of W 1,2
0 (Ω) as follows

E = {u ∈ W 1,2
0 (Ω) :

∑
|λk(λk − c)|h2

k < ∞}.
Then this is a complete normed space with a norm

|‖u|‖ = [
∑

|λk(λk − c)|h2
k]

1
2 .

We need the following some properties which are proved in [6, 7]. Since
λk → +∞ and c is fixed, we have:
(i) (∆2u + c∆)u ∈ E implies u ∈ E.
(ii) |‖u|‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if |‖u|‖ = 0.

Definition 2.1. Let X be a Hilbert space, Y ⊂ X, ρ > 0 and
e ∈ X\Y , e 6= 0. Set:

Bρ(Y ) = {x ∈ Y |‖x‖X ≤ ρ},
Sρ(Y ) = {x ∈ Y |‖x‖X = ρ},

∆ρ(e, Y ) = {σe + v|σ ≥ 0, v ∈ Y, ‖σe + v‖X ≤ ρ},
Σρ(e, Y ) = {σe + v|σ ≥ 0, v ∈ Y, ‖σe + v‖X = ρ} ∪ {v|v ∈ Y, ‖v‖X ≤ ρ}.

Now we recall a theorem of existence of three solutions which is linking
scale theorem.

Theorem 2.1. (Linking Scale Theorem) Let X be an Hilbert space,
which is topological direct sum of the four subspaces X0, X1, X2 and
X3. Let F ∈ C1(X, R). Moreover assume:

(a) dimXi < +∞ for i = 0, 1, 2;
(b) there exist ρ > 0, R > 0 and e ∈ X2, e 6= 0 such that;

ρ < R and sup
Sρ(X0⊕X1⊕X2)

F < inf
ΣR(e,X3)

F ;
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(c) there exist ρ′ > 0, R′ > 0 and e′ ∈ X1, e′ 6= 0 such that:

ρ′ < R′ and sup
Sρ′ (X0⊕X1)

F ≤ inf
ΣR′ (e′,X2⊕X3)

F ;

(d) R ≤ R′(⇒ ∆R(e,X3) ⊂ ΣR′(e
′, X2 ⊕X3));

(e) −∞ < a = inf∆R′ (e,X2⊕X3) F ;
(f) (P.S.)c holds for any c ∈ [a, b] where b = supBρ(X0⊕X1⊕X2) F .

Then there exist three critical levels c1, c2 and c3 for the functional
F such that:

a ≤ c3 ≤ sup
Sρ′ (X0⊕X1)

F < inf
ΣR′ (e′,X2⊕X3)

F ≤ inf
∆R(e,X3)

F ≤ c2

≤ sup
Sρ(X0⊕X1⊕X2)

F < inf
ΣR(e.X3)

F ≤ c1 ≤ b.

Proposition 2.1. Assume that g : E → R satisfies the assumptions
of Theorem 1.1. Then all solutions in L2(Ω) of

∆2u + c∆u = g(u) in L2(Ω)

belong to E.

With the aid of Proposition 2.1 it is enough that we investigate the
existence of solutions of (1.1) in the subspace E of L2(Ω). Let I : E → R
be the functional defined by,

I(u) =

∫

Ω

1

2
|∆u|2 − c

2
|∇u|2 −G(u),(2.1)

where G(s) =
∫ s

0
g(σ)dσ. Under the assumptions of Theorem 1.1, I(u)

is well defined. By the following Proposition, I is of class C1 and the
weak solutions of (1.1) coincide with the critical points of I(u).

Proposition 2.2. Assume that g(u) satisfies the assumptions of The-
orem 1.1. Then I(u) is continuous and Frèchet differentiable in E and

DI(u)(h) =

∫

Ω

∆u ·∆h− c∇u · ∇h− g(u)h(2.2)

for h ∈ X. Moreover
∫
Ω

G(u)dx is C1 with respect to u. Thus I ∈ C1.

Let Z2 act on E orthogonally. Then E has two invariant orthogonal
subspaces FixZ2 and Fix⊥Z2

. Let us set

H = Fix⊥Z2
.
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The Z2 action has the representation u 7→ −u, ∀u ∈ H. Thus Z2

acts freely on the invariant subspace H. We note that H is a closed
invariant linear subspace of E compactly embedded in L2(Ω). It is easily
checked that ∆2 + c∆ and g are equivariant on H, so I is invariant on
H. Moreover (∆2 + c∆)(H) ⊆ H, ∆2 + c∆ : H → H is an isomorphism
and DI(H) ⊆ H. Therefore critical points on H are critical points on
E.

3. A single biharmonic equation

In this section we prove the existence of multiple solutions of the a
nonlinear biharmonic equation.

Theorem 3.1. Assume that λ1 < c < λ2, λk(λk − c) < g′(∞) <
λk+1(λk+1 − c), λk+m(λk+m − c) < g′(0) < λk+m+1(λk+m+1 − c) and
g′(t) ≤ γ < λk+m+1(λk+m+1 − c), where m ≥ 1, k > 2 and γ ∈ R. Then
problem (1.1) has at least three solutions.

Let Hk be the subspace of H spanned by φ1, . . . , φk whose eigenvalues
are λ1(λ1− c), . . . , λk(λk− c). Let H⊥

k be the orthogonal complement of
Hk in H. Let r = 1

2
{λk(λk − c) + λk+1(λk+1− c)} and let L : H → H be

the linear continuous operator such that

(Lu, v) =

∫

Ω

(∆2u + c∆u) · vdx− r

∫

Ω

uvdx.

Then L is symmetric, bijective and equivariant. The spaces Hk, H⊥
k are

the negative space of L and the positive space of L. Moreover, there
exists ν > 0 such that

∀u ∈ Hk : (Lu, u) ≤ (λk(λk − r))

∫

Ω

u2dx ≤ −ν|‖u|‖2,

∀u ∈ H⊥
k : (Lu, u) ≥ (λk+1(λk+1 − c))

∫

Ω

u2dx ≥ ν|‖u|‖2.

We can write

I(u) =
1

2
(Lu, u)− ψ(u),

where

ψ(u) =

∫

Ω

[G(u)− 1

2
ru2]dx.

Since H is compactly embedded in L2, the map Dψ : X → X is compact.
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Lemma 3.1. Assume that g(u) satisfies the assumptions of Theorem
3.1. Then I(u) satisfies the (P.S.)M condition for any M ∈ R.

For the proof see [8].

Lemma 3.2. Under the same assumptions of Theorem 3.1, The func-
tion I(u) is bounded from above on Hk;

sup
u∈Hk

I(u) < 0,(3.1)

and from below on H⊥
k ; there exists Rk > 0 such that

inf
u∈H⊥

k
|‖u|‖=Rk

I(u) > 0(3.2)

and

inf
u∈H⊥

k
|‖u|‖<Rk

I(u) > −∞.(3.3)

Proof. For some constant d ≥ 0, we have Gr(s) ≥ 1
2
αs2 + d, where

Gr(s) =
∫ s

0
gr(σ)dσ. For u ∈ Hk,

(Lu, u) ≤ (λk(λk − c)− r)

∫

Ω

u2dx

=
λk(λk − c)− λk+1(λk+1 − c)

2

∫

Ω

u2,

∫

Ω

Gr(u) ≥ α

2

∫

Ω

u2 + d|Ω|,

so that

I(u) ≤ 1

2
· λk(λk − c)− λk+1(λk+1 − c)

2

∫

Ω

u2 − α

2

∫

Ω

u2 − d|Ω| < 0,

since λk(λk−c)−λk+1(λk+1−c)

2
< α. Thus the functional I is bounded from

above on Hk. Next we will prove that (3.2) and (3.3) hold. To get our
claim (3.2), it is enough to prove that:

lim
u∈H⊥

|‖u|‖→+∞

I(u) = +∞.
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We have

lim
u∈H⊥

k
|‖u|‖→+∞

I(u)

≥ lim
u∈H⊥

k
|‖u|‖→∞

1

2
(1− r

λk+1(λk+1 − c)
)|‖u|‖2 − lim

u∈H⊥
k

|‖u|‖→+∞

∫

Ω

Gr(u)dx

≥ lim
u∈H⊥

k
|‖u|‖→+∞

1

2
(1− r

λk+1(λk+1 − c)
)|‖u|‖2 − lim

u∈H⊥
k

|‖u|‖→+∞

1

2
β

∫

Ω

u2 − b̄|Ω|

≥ lim
u∈H⊥

k
|‖u|‖→+∞

1

2
(1− r

λk+1(λk+1 − c)
− β

λk+1(λk+1 − c)
)|‖u|‖2 − b̄|Ω|

−→ +∞,

since there exists b̄ ∈ R such that

Gr(u) <
1

2
βu2 + b̄,

and

β <
λk+1(λk+1 − c)− λk(λk − c)

2
.

Now we will prove (3.3). Since

λk+m(λk+m − c) < g′(0) < λk+m+1(λk+m+1 − c)

and

g′(t) ≤ γ < λk+m+1(λk+m+1 − c),

there exists

λk+m(λk+m − c) < γ̄ < λk+m+1(λk+m+1 − c)

and d̄ ≥ 0 such that G(u) < γ̄
2
u2 + d̄. Thus

inf
u∈H⊥

k
|‖u|‖<R

I(u)

= inf
u∈H⊥

k
|‖u|‖<R

{1

2
|‖u|‖ −

∫

Ω

G(u)}

> inf
u∈H⊥

k
|‖u|‖<R

{1

2
(1− γ̄

λk+1(λk+1 − c)
)|‖u|‖2 − d̄|Ω|} > −∞.
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Lemma 3.3. Under the same assumptions of Theorem 1.1, there exists
ρk > 0 such that

sup
u∈Hk

|‖u|‖=ρk

I(u) < 0.

Proof. Let L∞ : H → H be the linear operator defined by

(L∞u, v) = (∆2u + c∆u)v − g′(∞)

∫

Ω

uvdx,

where λi+1(λi+1 − c) < λk(λk − c) < g′(∞) < λk+1(λk+1 − c), k > i + 1.
Then L∞ is an isomorphism. The spaces Hk, and H⊥

k are the negative
space of L∞ and the positive space of L∞ respectively, and

H = Hk ⊕H⊥
k .

Set G∞(s) = G(s)− 1
2
g′(∞)s2. Then

I(u) =
1

2
(L∞u, u)−

∫

Ω

G∞(s)dx.

Thus, by Lemma 4.2, limu∈H
u→0

1
|‖u|‖2

∫
Ω

G∞(u)dx ≥ 0. Then

lim
u∈Hk
u→0

I(u)

|‖u|‖2
< lim

u∈Hk
u→0

1

2|‖u|‖2
[λk(λk − c)− g′(∞)]

∫

Ω

u2

− lim
u∈Hk
u→0

1

|‖u|‖2

∫

Ω

G∞(u)dx < 0.

thus there exists ρk > 0 such that

sup
u∈Hk

|‖u|‖=ρk

< 0.

Lemma 3.4. Under the same assumptions of Theorem 1.1,

inf
z∈H⊥

k
,σ≥0

|‖z−σe1|‖=Rk

I(z − σe1) ≥ 0.

Proof. By Lemma 3.2, there exists Rk > 0 such that

inf
u∈H⊥

k
|‖u|‖=Rk

I(u) > 0.



Nontrivial solutions for the nonlinear biharmonic system 481

To get our claim, it is enough to prove that

lim
z∈H⊥

k
,σ≥0,

|‖z−σe1|‖→+∞

I(z − σe1) = +∞.(3.4)

To prove (3.4), we need to show that

max
z∈H⊥

k
|‖z|‖=1

∫
z2 = max

z∈H⊥
k

,σ≥0,

|‖z−σe1|‖=1

∫
(z − σe1)

2.(3.5)

In fact, we have immediately max z∈H⊥
k

|‖z|‖=1

∫
z2 ≤ max z∈H⊥

k
,σ≥0

|‖z−σe1|‖=1

∫
(z−σe1)

2.

Now we prove that max z∈H⊥
k

|‖z|‖=1

∫
z2 ≥ max z∈H⊥

k
,σ≥0

|‖z−σe1|‖=1

∫
(z − σe1)

2.

If σ > 0, then

2

∫
(z − σe1)v = ν(z − σe1, v), ∀v ∈ H1 ⊕H⊥

k .

Taking v = z − σe1 we get ν = 2
∫

(z − σe1)
2 and taking v = e1 we also

get

0 ≤ 2

∫
(z − σe1)e1 = 2

∫
(z − σe1)

2(z − σe1, e1)

= −2σ

∫
(z − σe1)

2 < 0

which gives a contradiction. Then z − σe1 = z ∈ H⊥
k and so

max z∈H⊥
k

|‖z−σe1|‖=1

∫
(z − σe1)

2 = max z∈H⊥
k

|‖z|‖=1

∫
z2.

Thus we proved (3.5). Now we prove (3.4). For some constant β,
b ≥ 0, we have G∞(s) ≥ 1

2
βs2 + b, where G∞(s) =

∫ s

0
g∞(σ)dσ, g∞(s) =
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g(s)− g′(∞)s. For z ∈ H⊥
k and σ ≥ 0, by (4.5) we get

I (z − σe1)

≥ 1

2
|‖z − σe1|‖2 − 1

2
g′(∞)

∫

Ω

(z − σe1)
2 − 1

2
β

∫

Ω

(z − σe1)
2 − b|Ω|

=
1

2
|‖z − σe1|‖2(1− g′(∞)

∫
(z − σe1)

2

|‖z − σe1|‖2
− β

∫
(z − σe1)

2

|‖z − σe1|‖2
)− b|Ω|

≥ 1

2
|‖z − σe1|‖2(1− (g′(∞) + β) max

z∈H⊥
k ,σ≥0

∫
(z − σe1)

2

|‖z − σe1|‖2
)− b|Ω|

≥ 1

2
|‖z − σe1|‖2(1− (g′(∞) + β) max

z∈H⊥
k

|‖z|‖=1

∫
z2)− b|Ω| −→ ∞.

as |‖z − σe1|‖ → +∞. Thus we proved the lemma.

From Lemma 3.3 and Lemma 3.4 we have

Lemma 3.5. Under the same assumptions of Theorem 1.1, there exists
ρk > 0 such that

sup
u∈Hk

|‖u|‖=ρk

I(u) ≤ inf
z∈Σ(−e1,H⊥

k )
I(z − σe1),

where

Σ(−e1, H
⊥
k )

= {z ∈ H⊥
k ||‖z|‖ ≤ Rk} ∪ {z − σe1|z ∈ H⊥

k , σ ≥ 0, |‖z − σe1|‖ = Rk},
w4ith Rk > ρk.

Lemma 3.6. Let G0 : R → R be a continuous function such that

inf
s∈R

G0(s)

1 + s2
> −∞, lim

s→0

G0(s)

s2
≥ 0.

Then

lim
u→0
u∈H

1

|‖u|‖2

∫

Ω

G0(u)dx ≥ 0.

Proof. Let

h(s) =

{
(Go(s)

s2 )− if s 6= 0,

0 if s = 0.
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Then h : R → R is bounded, continuous, with h(0) = 0 and G0(s) ≥
−h(s)s2. If (un) is a sequence in H with un → 0, then up to a subse-
quence, un → 0 a.e., and vn = un

|‖un|‖ is strongly convergent in L2(Ω).

Since

1

|‖un|‖2

∫

Ω

G0(un)dx ≥ −
∫

Ω

h(un)v2
ndx,

the claim follows.

Lemma 3.7. Under the same assumptions of Theorem 1.1, there exists
ρk+m > 0 such that

sup
u∈Hk+m

|‖u|‖=ρk+m

I(u) < inf
z∈Σ(ek+m,H⊥

k+m)
I(z),

where Σ(ek+m, H⊥
k+m) = {w ∈ H⊥

k+m||‖w|‖ ≤ Rk+m} ∪ {w + σek+m|w ∈
H⊥

k+m, σ ≥ 0, |‖w + σek+m|‖ = Rk+m} with Rk+m > ρk+m.

Proof. First we will prove that

sup
u∈Hk+m

|‖u|‖=ρk+m,ρ→0

I(u) < 0.(3.6)

From the assumptions of Theorem 1.1, λk+m(λk+m − c) < g′(0) <
λk+m+1(λk+m+1 − c), m ≥ 1. Let L0 : H → H be the linear opera-
tor defined by

(L0u, v) = (∆2u + c∆u)v − g′(0)

∫

Ω

uvdx.

Then L0 is an isomorphism. The space Hk+m, H⊥
k+m are the negative

space of L0 and the positive space of L0, respectively, and

H = Hk+m ⊕H⊥
k+m.

Set G0(s) = G(s)− 1
2
g′(0)s2. Then

I(u) =
1

2
(L0u, u)−

∫

Ω

G0(u)dx.
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Note that inf G0(s)
1+s2 > −∞, lims→0

G0(s)
s2 ≥ 0. Thus by Lemma 3.1,

lim u→0
u∈H

1
|‖u|‖2

∫
Ω

G0(u)dx ≥ 0. Then

lim
u→0

u∈Hk+m

I(u)

|‖u|‖2
< lim

u→0
u∈Hk+m

1

2|‖u|‖2
[λk+m(λk+m − c)− g′(0)]

∫

Ω

u2

− lim
u→0

u∈Hk+m

1

|‖u|‖2

∫

Ω

G0(u)dx < 0.

Thus ther exists ρk+m > 0 such that sup u∈Hk+m
|‖u|‖=ρk+m,ρ→0

I(u) < 0. By

Lemma 4.2, inf u∈H⊥
k

|‖u|‖=Rk

I(u) > 0. Thus we have

sup
u∈Hk+m

|‖u|‖=ρk+m,ρk+m→0

I(u) < inf
u∈H⊥

k
|‖u|‖=Rk

I(u)

with Rk > ρk+m. In other words, there exists ek+m ∈ Span{φk+1, . . . , φk+m}
such that

sup
u∈Hk+m

|‖u|‖=ρk+m,ρk+m→0

I(u) < inf
u∈H⊥

k+m
⊕ek+m

ek+m∈Span{φk+1,...,φk+n},|‖u|‖=Rk+m

I(u).

Proof of Theorem 3.1. By Lemma 3.5, there exists ρk > 0 such
that

sup
u∈Hk

|‖u|‖=ρk

I(u) ≤ inf
z∈Σ(−e1,H⊥

k )
I(z − σe1),

where Σ(−e1, H
⊥
k ) = {z ∈ H⊥

k ||‖z|‖ ≤ Rk} ∪ {z − σe1|z ∈ H⊥
k , σ ≥

0, |‖z−σe1|‖ = Rk}, with Rk > ρk. By Lemma 3.7, there exists ρk+m > 0
such that

sup
u∈Hk+m

|‖u|‖=ρk+m

I(u) < inf
z∈Σ(ek+m,H⊥

k+m)
I(z),

where Σ(ek+m, H⊥
k+m) = {w ∈ H⊥

k+m||‖w|‖ ≤ Rk+m} ∪ {w + σek+m|w ∈
H⊥

k+m, σ ≥ 0, |‖w + σek+m|‖ = Rk+m} with Rk+m > ρk+m and Rk >
Rk+m.Thus by Linking Scale Theorem 2.1., (1.1) has at least three solu-
tions.
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4. Nontrivial solutions of biharmonic systems

In this section we investigate the existence of multiple nontrivial solu-
tions (ξ, η) for perturbations g1, g2 of the harmonic system with Dirichlet
boundary condition

∆2ξ + c∆ξ = g1(2ξ + 3η) in Ω,(4.1)

∆2η + c∆η = g2(2ξ + 3η) in Ω,

ξ = 0, η = 0, ∆ξ = 0, ∆η = 0 on ∂Ω,

where we assume that λ1 < c < λ2, g′1(∞), g′2(∞) are finite.

Theorem 4.1. Assume that λ1 < c < λ2,

λk(λk − c) < 2g′1(∞) + 3g′2(∞) < λk+1(λk+1 − c),

λk+m(λk+m − c) < 2g′1(0) + 3g′2(0) < λk+m+1(λk+m+1 − c).

Assume that 2g′1(t)+3g′2(t) ≤ γ < λk+m+1(λk+m+1−c), where m ≥ 1,
k > 2 and γ ∈ R. Then system (4.1) has at least three solutions.

Proof. Let L = ∆2 + c∆. From problem (4.1) we get the equation

L(2ξ + 3η) = g(2ξ + 3η + 2) in Ω,(4.2)

ξ = 0, η = 0, ∆ξ = 0, ∆η = 0 on ∂Ω,

where the nonlinearity g(u) = 2g1(u) + 3g2(u).
Let w = 2ξ + 3η. Then the above equation is equivalent to

L(u) = g(u) in Ω,(4.3)

u = 0, ∆u = 0 on ∂Ω.

With the condition of the theorem, the above equation has at least
three solutions , two of which are nontrivial solutions, say w1, w2. Hence
we get the solutions (ξ, η) of problem (4.1) from the following systems:

Lξ = g1(wi) in Ω,(4.4)

Lη = g2(wi) in Ω,

ξ = 0, η = 0, ∆ξ = 0, ∆η = 0 on ∂Ω,
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where i = 0, 1, 2 and w0 = 0. When i = 0, from the above equation we
get the trivial solution (ξ, η) = (0, 0). When i = 1, 2, from the above
equation we get the nontrivial solutions (ξ1, η1), (ξ2, η2).

Therefore system(4.1) has at least three solutions (ξ, η), two of which
are nontrivial solutions.

Theorem 4.2. Assume that λ1 < c < λ2,

2g′1(∞) + 3g′2(∞) < λ1(λ1 − c),

2g′1(0) + 3g′2(0) < λ1(λ1 − c).

Assume that 2g′1(t) + 3g′2(t) ≤ γ < λ1(λ1 − c), where γ ∈ R. Then
system (4.1) has only the trivial solution (ξ, η) = (0, 0).

Proof. Let L = ∆2 + c∆. From problem (4.1) we get the equation

L(2ξ + 3η) = g(2ξ + 3η + 2) in Ω,(4.5)

ξ = 0, η = 0, ∆ξ = 0, ∆η = 0 on ∂Ω,

where the nonlinearity g(u) = 2g1(u) + 3g2(u).

Let w = 2ξ + 3η. Then the above equation is equivalent to

L(u) = g(u) in Ω,(4.6)

u = 0, ∆u = 0 on ∂Ω.

With the condition of the theorem, by Theorem 2.1 the above equa-
tion has the trivial solution. Hence we have the trivial solution (ξ, η =
(0, 0) of problem (4.1) from the following system:

Lξ = 0 in Ω,(4.7)

Lη = 0 in Ω,

ξ = 0, η = 0, ∆ξ = 0, ∆η = 0 on ∂Ω.

From (4.7) we get the trivial solution (ξ, η) = (0, 0).
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