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AN COMPLETION OF SPACE OF
FUZZY RANDOM VARIABLES
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1. Introduction

Fuzzy random variables generalize random sets which is an extension
of random variables and random vectors. Kwakernaak[5] introduced
the notion of a fuzzy random variable as a function F : Q — F(R)
subject to certain measurability conditions,where(Q, 3, P) is a prob-
ability space, and _f_(R) denotes all piecewise continuous functions
u: R — [0,1]. Puri and Ralescu[7] defined a fuzzy random variable by
a function X : @ — F,(R"™) subject to certain measurability require-
ments, where F,(R™) denotes all functions u : R* — [0, 1] such that
{z € R™ : u(z) > a} is nonempty and compact for each 0 < a < 1,
and proved an completion of F,(R"™) with respect to an appropriate
metric. Stojakovic[9] defined the notion of a fuzzy random variable
slightly different than that in [5] and [7], and proved that the space of
integrably bounded fuzzy random variables is complete with repect to
a new metric.

In this paper, we adopt the notoin of a fuzzy random variable in
Puri and Ralescu[7], and the space of integrably bounded fuzzy ran-
dom variables is complete with respect to the metric introduced in
Stojakovic[9].

2. Preliminaries

Throughout this paper, let (2, T, P) be a probability space and A
a real separable Banach space with norm || ||. Let K(A) denotes the
family of all nonempty, compact subsets of A and K <(A) the family of

all nonempty, compact, and convex subsets of A. A linear structure in
K(A) is defined via the operations

A+B={a+b:a€ A be B}
A ={)a:a€ A}
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for A, B € K(A), A € R. However, note that (A) is not a vector space
since A+ (—A) # {0}.
The topology in X(A) is introduced through the Hausdorff metric

H(A,B)= inf [|la — b]|, sup inf |la — b
(& )=mazieup il o=l auptmiile 5.8}

We denote the Hausdorff semimetric by

(A, B) = sup inf lla — b
(A,B) i‘éﬁ;&;”a I

It is well-known that K(A) is a complete and separable metric space,
and that X (A) is a closed subspace.
Let L(R2,Z, P,A) = L denotes the Banach space of (equivalence classes
of) measurable functions f : @ — A such that the norm ||f|i =
Jo 1 f(w)|| dP is finite.
A random set is defined as a Borel measurable function F': @ — K(A),
and a measurable function f: £ — A is called a measurable selection
of F if f(w) € F(w) for all w € Q. For a random set F', define the set
Sr={f €L: fw) € F(w)a.e.} then , Sr is a closed subset of L.
If F:Q — K(A) is a random set, the expectation of F' is defined by
fQ FdP= {fﬂ fdP: f € Sp} where fﬂ f dP is the Bochner-integral.
A random set F' : £ — K(A) is called integrably bounded if there
exists integrable function ¢ : & — R such that sup |z|| £ ¢(w) for

z€F(w)

all w € Q. Let L(Q,E,P,A) = L denote the space of all integably
bounded random sets, where F,G € L are considered to be identical if

F(w) = G(w) a.s.. For F,G € L, we define
A(F,G):/ﬂH{F(w),G(w)}dP
5(F,G):sz{p(w),c(w)}dp

Then A is a metric and ¢ 1s a semimertic on L. If we define

LB PA)y=L, ={FcL;:Flw)eKfA)as.}
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then £ is a complete metric space with respect to the metric A and £,
is a closed subspace of £ [3].

3. Fuzzy random variables

A Fuzzy set in A is a function u : A — [0, 1]. Denote by Lou = {z €
Alu(z) 2 a} for 0 < o < 1, the a-level set of u. An extension of K(A)
is obtained by defining the space F(A) of all fuzzy sets u : A — [0,1]
with the properties

(a) u is upper semicontinuous

(b) supp u is compact

(©) {z € Au(z) = 1} #0

The space F.(A) denotes the family of all fuzzy sets in F(A) which
are also fuzzy convex. It is clear that A € K(A) implies x4 € F(A),
while 4 € F.(A) implies x4 € F.(A), where x4 is the indicator func-
tion of A.

A linear structure in F(A) is defined by the operation

(u+v)(z) = sup min[u(y),v(z)]
y+z=z

sul(gy = | HEALIEAZD
e {X{O}(m),if)\zo.

where u,v € F(A) and X € R.

A fuzzy random variable is defined as a function X : Q — F (A)
such that Lo X : @ — K(X), LoX(w) = {z € A : X(w)(z) > a} is
a random set for all & € [0,1]. A fuzzy random variable X is called
mtegrably bounded if L, X is integrably bounded for all a € [0,1]. Let
®(02,2,P,A) = ® be the set of all integrably bounded fuzzy random
variables. With &, we denote the set of all fuzzy random variables
X € @ such that L,X € £, for all « € (0,1].

4. Main Result

For X,Y € @, we define D(X,Y) = supA(L X, L,Y). Two fuzzy
a>0
random variables X,Y € & are considered to be identical if L X =

LoY as. for all a € [0,1]. It is obvious that D is a metric in ® and if
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F.,G are integrably bounded random set then D(F,G) = A(F,G).

To prove the main result, we need the following lemma.

Lemma 4.1. Let {F, : a € [0,1]} be a family of random sets such
that

(a) Fo(w) = A for all w € ©2

(b) a < § implies Fjg & F,a.s.

- . oo
(c) oy < @y <...,lima, = « implies Fp = anan a.s.
n—

Then the fuzzy random variable X : @ — F(X') defined by X(w)(z) =
sup{a € [0,1] : ¢ € Fo(w)} has the property that L.X = F, for every
a € [0,1].

Proof. It follows immediately from an application of lemma 1 [9].

Theorem 4.2. @ is a complete metric space with repect to the
metric D, and ®, is a closed subspace of ®.

Proof. Let {X,,n > 1} be a Cachy sequence in ®. Consider a fixed
o > 0. Then {La(X,),n > 1} is a Cachy sequence in L. Since L is
complete with respect to 4, it follows that

oK) e L

Actually, it is easy to see that Lo(Xn) 2, F, uniformly in « € [0,1].
Consider now the family {Fu : @ € [0,1]}, where Fo(w) = A for all
w € Q.

Let € > 0 and o < 3. Then

6(F3=Fa) = 6(Fﬁ&L3(Xﬂ) o 6(Lﬁ(X")vLﬂ(‘Xﬂ)) + 6(L0(Xn)a Fa)

Since Lg(X,) C La(Xy), it follows that §(Lp(Xyn), La(X2)) =0.
Thus, 6(Fg, Fs) < 8(Fg, Lg(Xy)) + 8(La(Xy), Fo) < € if n is large
enough. Hence §(Fg, Fy) = 0 and since Fy(w), Fo(w) are closed, we
have Fig(w) C Fa(w)a.s.

Now take o > 0, an T a. We have to show that

oo
Fy=ii [V, a:3.
n=1
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It is clear that F, C %OIFC," a8,
n=

Using again the semimetric § , we get for fixed j,

8,0, Faus Fa) < 6( 8 Fay B La (X))

1

8§03

+8( 0 Lan(X;): La(X;)) + 6(La(X;), Fa)

But 6( ?ian(Xj),La(Xj)) = 0. Consegently, for every ¢ > 0, there
exits IV, such that for j > N,

6( 2 FaniFa) S+ 8( A Fory N Lan(X;)
Now, for any k£ > 1,

:1 5

+ 6(F0!k ’ LO’k (‘Xj)) + 6(Lﬂk (‘Xj)v nglLan (‘XJ))

oo
Since ﬂlFQ’n C F,,, we obtain
e

88 Four B Lo (X)) S 8(May, Las(X;)+8(Lay (X), B Lo, (X5))

; Now 8(Fy,,Lq,(X;)) < ¢ for j > Ng. Note that Ny does not de-
pend on k since the convergence Lo(X;) — F, is uniform. On the

other hand, since {L,, (X;)} decrease to %_OILQ" (X;), it follows that

0l B (X 5)s ?W_OILQ,,%(XJ-)) < ¢ for some m (depending on j). Thus, if 5
is large,
5 F}:Faﬂ, ?j’lLan(Xj)) &e

Finally by taking j.large enough, we obtain

8( OriFan,Fa) < 3¢
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i.e.,
o0
anan C F,a.s.
n=

Hence we obtain ﬂ F = F,a.s. Thus lemmad.1 is applicable and

there exists X € & w1th La( X) = F, for every a € [0,1]. It remains to
show that X, — X with respect to D. Let ¢ > 0. Then since {X,} is
Cauchy, there exists N, such that n,m > N, implies DXy Xl <8
Let n > N, be fixed. Then

D(La(*Xn)»LO(X)) . "%i_IinooD(La(Xn)ach(Xm))
< m SupD(La(X")’La(Xm))

m—00 a>0

=TmD(Xp, X ) <€

Thus,
D(Xy,X) = sup D(La(Xn), La(X)) <€
a>0

forn > N..

This completes the proof of the first statement and the second state-

ment is trivial.
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