AN EXTENDED JIANG SUBGROUP AND ITS REPRESENTATION

Moo Ha Woo and Song Ho Han*

0. Introduction.

F.Rhodes [4] introduced the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G) as a generalization of the fundamental group of a topological space X and showed that $\sigma(X, x_0, G)$ is isomorphic to $\pi_1(X, x_0) \times G$ if (G, G) admits a family of preferred paths at e. B.J. Jiang [3] introduced the Jiang subgroup $J(f, x_0)$ of the fundamental group of a topological space X.

In this paper, we introduce an extended Jiang subgroup $J(f, x_0, G)$ of the fundamental group of a transformation group as a generalization of the Jiang subgroup $J(f, x_0)$ and give a necessary and sufficent condition for $J(f, x_0, G)$ to be isomorphic to $J(f, x_0) \times G$.

1. Preliminaries and main results.

Let (X, G, π) be a transformation group, where X is a path connected space with x_0 as base point. Given any element g of G, a path f of order g with base point x_0 is a continuous map $f: I \longrightarrow X$ such that $f(0) = x_0$ and $f(1) = gx_0$. A path f_1 of order g_1 and a path f_2 of order g_2 give rise to a path $f_1 + g_1f_2$ of order g_1g_2 defined by the equations

$$(f_1 + g_1 f_2)(s) = \begin{cases} f_1(2s), & 0 \le s \le 1/2 \\ g_1 f_2(2s - 1), & 1/2 \le s \le 1. \end{cases}$$

^{*}This research is supported by The Korea Science and Engneering Foundation research grant .

Two paths f and f' of the same order g are said to be homotophic if there is a continuous map $F:I^2\longrightarrow X$ such that

$$F(s,0) = f(s),$$
 $0 \le s \le 1,$
 $F(s,1) = f'(s),$ $0 \le s \le 1,$
 $F(0,t) = x_0,$ $0 \le t \le 1,$
 $F(1,t) = gx_0,$ $0 \le t \le 1.$

The homotopy class of a path f of order g was denoted by [f:g]. Two homotopy classes of paths of different orders g_1 and g_2 are distinct, even if $g_1x_0 = g_2x_0$. F. Rhodes showed that the set of homotopy classes of paths of prescribed order with the rule of composition * is a group, where * is defined by $[f_1:g_1]*[f_2:g_2]=[f_1+g_1f_2:g_1g_2]$. This group was denoted by $\sigma(X,x_0,G)$, and was called the fundamental group of (X,G) with base point x_0 .

Let f be a self-map of X. A homotopy $H: X \times I \longrightarrow X$ is called an f- cyclic homotopy [3] if H(x,0) = H(x,1) = f(x). This concept of a topological space is generalized to that of a transformation group. A continuous map $H: X \times I \longrightarrow X$ is called an f-homotopy of order g if H(x,0) = f(x), H(x,1) = gf(x), where g is an element of G. If H is an f-homotopy of order g, then the path $\alpha: I \longrightarrow X$ given by $\alpha(t) = H(x_0, t)$ will be called the trace of H.

The trace subgroup of f-homotopies of prescribed order is defined by $J(f, x_0, g) = \{ [\alpha : g] \in \sigma(X, f(x_0), G) \mid \text{there exists an } f$ -homotopy of order g with trace $\alpha \}$.

In particular, $J(1_X, x_0, G)$ was defined by $E(X, x_0, G)$ in [5] and $J(f, x_0, \{e\})$ was also defined by $J(f, x_0)$ in [3]. From this fact, we say that $J(f, x_0, G)$ is an extended Jiang subgroup.

It is easy to show that an extended Jiang subgroup $J(f, x_0, G)$ is a

subgroup of $\sigma(X, f(x_0), G)$.

Let (X,G) be a transformation group and X^X be the space of all continuous mappings from X to X with compact-open topology. Let G act on X^X continuously by $\pi'(f,g)=gf$. Then (X^X,G,π') is a transformation group.

Let $P: X^X \longrightarrow X$ be the evaluation map given by $P(f) = f(x_0)$. If X is a locally compact, then the evaluation map P is continuous. Since $P(gf) = gf(x_0) = gP(f)$, where $g \in G$ and $f \in X^X$, $(P, 1_G)$:

 $(X^X,G)\longrightarrow (X,G)$ is a category mapping. Thus we know that $P_*:\sigma(X^X,1_X,G)\longrightarrow \sigma(X,x_0,G)$ defined by $P_*[\alpha:g]=[P\circ\alpha:g]$ is a homomorphism

There is a natural homeomorphism $\phi: (X^X)^I \longrightarrow X^{X \times I}$ given by $\phi(f)(x,s) = f(s)(x)$ for $x \in X$ and $s \in I$.

Note that $f \sim f'$ if and only if $\phi(f) \sim \phi(f')$. Motivated by the following theorem, we can consider $J(f, x_0, G)$ as a generalized evaluation subgroup of the fundamental group of a transformation group (X, G).

THEOREM 1. Let X be a pathwise connected CW-complex. Then $P_*\sigma(X^X,f,G)=J(f,x_0,G)$.

Proof. By the above remark, the path $\alpha: I \longrightarrow X^X$ of order g with base point f corresponds to the f-homotopy $\phi(\alpha): X \times I \longrightarrow X$ of order g.

For every element $[\alpha:g] \in \sigma(X^X,f,G)$, $P_*[\alpha:g] = [P \circ \alpha:g]$ and there exists an f-homotopy $\phi(\alpha)$ of order g with trace $P \circ \alpha$. Thus $P_*[\alpha:g] \in J(f,x_0,G)$.

Conversely, for each element $[\alpha:g]$ of $J(f,x_0,G)$, there exists an f-homotopy $F:X\times I\longrightarrow X$ of order g with trace α . Since $\phi:(X^X)^I\longrightarrow X^{X\times I}$ is a homeomorphism such that $\phi(f)(x,s)=(f(s))(x),\phi^{-1}(F)$ is a path of order g with base point f in X^X , for $\phi^{-1}(F):I\longrightarrow X^X$ such that $\phi^{-1}(F)(0)(x)=F(x,0)=f(x)$ and $\phi^{-1}(F)(1)(x)=F(x,1)=gf(x)$. Thus $[\phi^{-1}(F):g]$ belongs to $\sigma(X^X,f,G)$. Since $P\circ\phi^{-1}(F)(s)$ = $\phi^{-1}(F)(s)(x_0)$ = $F(x_0,s)=\alpha(s)$, we have $[\alpha:g]\in P_*\sigma(X^X,f,G)$. This completes the proof.

The Jiang's result ([3], Lemma 2.1) can be generalized as follows.

THEOREM 2. Let f and k be self maps of X.

(1) $J(k, f(x_0), G) \subset J(k \circ f, x_0, G)$.

(2) If k is a homomorphism of (X,G), i.e., kg(x) = gk(x) for any element g of G, then $k_{\pi}(J(f,x_0,G)) \subset J(k \circ f,x_0,G)$ where $k_{\pi}[\alpha:g] = [k\alpha:g]$ for any element $[\alpha:g]$ of $J(f,x_0,G)$.

Proof. (1). Let $[\alpha:g]$ be an element of $J(k, f(x_0), G)$. Then there exists an k-homotopy $H: X \times I \longrightarrow X$ of order g such that H(x,0) = k(x), H(x,1) = gk(x) and $H(f(x_0),t) = \alpha(t)$. Therefore there exists a homotopy $H' = H \circ (f \times 1_I) : X \times I$

 $I \longrightarrow X$ such that H'(x,0) = H(f(x),0) = kf(x), H'(x,1) = H(f(x),1) = gkf(x) and $H'(x_0,t) = H(f(x_0),t) = \alpha(t)$.

Thus $[\alpha : g]$ belongs to $J(k \circ f, x_0, G)$.

(2). Since $k:(X,G) \longrightarrow (X,G)$ is a homomorphism, k induces a homomorphism $k_{\sigma}: \sigma(X,f(x_0),G) \longrightarrow \sigma(X,kf(x_0),G)$. Let $[\alpha:g]$ be an element of $J(f,x_0,G)$. Then there exists an f-homotopy $H:X\times I\longrightarrow X$ of order g such that H(x,0)=f(x),H(x,1)=gf(x) and $H(x_0,t)=\alpha(t)$. Therefore there exists a homotopy $K=k\circ H:X\times I\longrightarrow X$ such that $K(x,0)=k\circ H(x,0)=kf(x), K(x,1)=k\circ H(x,1)=kgf(x)=gkf(x)$ and $K(x_0,t)=kH(x_0,t)=k\alpha(t)$.

Thus $k_{\sigma}[\alpha:g]$ belongs to $J(k \circ f, x_0, G)$. Therefore, we show that

$$k_{\sigma}(J(f,x_0,G)) \subset J(k \circ f,x_0,G).$$

COROLLARY 3 [3]. Let f and k be selfmaps of X. Then

 $(1) J(k, f(x_0)) \subset J(k \circ f, x_0),$

 $(2) k_{\pi}(J(f,x_0)) \subset J(k \circ f,x_0).$

If we take a map $i_*: J(f,x_0) \longrightarrow J(f,x_0,G)$ such that $i_*[\alpha] = [\alpha:e]$, then we can identify $J(f,x_0)$ as a subgroup of $J(f,x_0,G)$. In this case, $J(f,x_0)$ is a normal subgroup of $J(f,x_0,G)$.

In [4], F.Rhodes showed that if λ is a path from x_0 to x_1 , then λ induces an isomorphism $\lambda_* : \sigma(X, x_0, G) \longrightarrow \sigma(X, x_1, G)$ such that $\lambda_*[\alpha : g] = [\lambda \rho + \alpha + g\lambda : g]$.

THEOREM 4. Assume that X is a pathwise connected CWcomplex. Let (X,G) be a transformation group. If λ is a path
from x_0 to x_1 in X, then the induced homomorphism $(f\lambda)_*$ carries $J(f,x_0,G)$ isomorphically onto $J(f,x_1,G)$.

Proof. Since $(f\lambda)_*$: $\sigma(X, f(x_0), G) \longrightarrow \sigma(X, f(x_1), G)$ is an isomorphism, it is sufficient to show that $(f\lambda)_*(J(f, x_0, G))$ is a subset of $J(f, x_1, G)$.

Let $[\alpha:g]$ be any element of $J(f,x_0,G)$. Then there exists an f-homotopy $W:X\times I\longrightarrow X$ of order g with trace

 α . Consider a homotopy $H: X \times 0 \bigcup x_1 \times I \longrightarrow X$ given by H(x,0) = x and $H(x_1,t) = \lambda \rho(t)$. Then there exists a homotopy $\tilde{H}: X \times I \longrightarrow X$ such that $\tilde{H}(x,0) = x$ and $\tilde{H}(x_1,t) = H(x_1,t) = \lambda \rho(t)$. Define $K: X \times I \longrightarrow X$ by

$$K(x,t) = \begin{cases} f\tilde{H}(x,3t), & 0 \le t \le 1/3 \\ W(\tilde{H}(x,1),3t-1), & 1/3 \le t \le 2/3 \\ gf\tilde{H}(x,3(1-t)), & 2/3 \le t \le 1. \end{cases}$$

Then K is an f-homotopy of order g, for

$$K(x_1,t) = \begin{cases} f\tilde{H}(x_1,3t), & 0 \le t \le 1/3 \\ W(\tilde{H}(x_1,1),3t-1), & 1/3 \le t \le 2/3 \\ gf\tilde{H}(x_1,3(1-t)), & 2/3 \le t \le 1 \end{cases}$$

$$= \begin{cases} f\lambda\rho(3t), & 0 \le t \le 1/3 \\ \alpha(3t-1), & 1/3 \le t \le 2/3 \\ gf\lambda(3t-2), & 2/3 \le t \le 1 \end{cases}$$

$$= [f\lambda\rho + \alpha + gf\lambda](t).$$

Thus $(f\lambda)_*([\alpha:g]) = [f\lambda\rho + \alpha + gf\lambda:g]$ belongs to $J(f,x_1,G)$. So, the induced homomorphism $(f\lambda)_*$ is an isomorphism from $J(f,x_0,G)$ to $J(f,x_1,G)$.

THEOREM 5. If two functions $f, k : X \longrightarrow X$ are homotopic, then $J(f, x_0, G)$ and $J(k, x_0, G)$ are isomorphic.

Proof. Let $H: X \times I \longrightarrow X$ be a homotopy from f to k and $P(t) = H(x_0, t)$. Then P is a path from $f(x_0)$ to $k(x_0)$. It is sufficient to show that $P_{\sigma}(J(f, x_0, G)) \subset J(k, x_0, G)$.

Let $[\alpha:g]$ be any element of $J(f,x_0,G)$. Then there exists a homotopy $W:X\times I\longrightarrow X$ such that W(x,0)=f(x),W(x,1)=gf(x) and $W(x_0,t)=\alpha(t)$. If we define a homotopy $K:X\times I\longrightarrow X$ given by

$$K(x,t) = \begin{cases} H(x,1-3t), & 0 \le t \le 1/3 \\ W(x,3t-1), & 1/3 \le t \le 2/3 \\ gH(x,3t-2), & 2/3 \le t \le 1, \end{cases}$$

then K(x,0) = H(x,1) = k(x), K(x,1) = gH(x,1) = gk(x) and

$$K(x_0,t) = \begin{cases} H(x_0, 1-3t), & 0 \le t \le 1/3 \\ W(x_0, 3t-1), & 1/3 \le t \le 2/3 \\ gH(x_0, 3t-2), & 2/3 \le t \le 1. \end{cases}$$

Therefore $[P\rho + \alpha + gP : g]$ belongs to $J(k, x_0, G)$. Therefore $P_{\sigma}(J(f, x_0, G))$ is contained in $J(k, x_0, G)$.

COROLLARY 6. If $f, k : X \longrightarrow X$ are homotophic, then $J(f, x_0)$ and $J(k, x_0)$ are isomorphic.

THEOREM 7. If $f: X \longrightarrow X$ is a homeomorphism, k is a self map of X and $f(x_0) = k(x_0)$, then $J(f, x_0, G)$ is contained in $J(k, x_0, G)$.

Proof. Let $[\alpha:g]$ be any element of $J(f,x_0,G)$. Then there exists an f-homotopy $H:X\times I\longrightarrow X$ of order g with trace α . If we define $K:X\times I\longrightarrow X$ be a homotopy such that $K=H\circ (f^{-1}k\times 1_I)$, then

$$K(x,0) = H(f^{-1}k(x), 0) = k(x),$$

 $K(x,1) = H(f^{-1}k(x), 1) = gk(x)$

and

$$K(x_0,t) = H(f^{-1}k(x_0),t) = H(f^{-1}f(x_0),t)$$

= $H(x_0,t) = \alpha(t)$.

Therefore $[\alpha:g]$ belongs to $J(k, x_0, G)$.

COROLLARY 8.

- (1) If $f, k : X \longrightarrow X$ are homeomorphisms and $f(x_0) = k(x_0)$, then $J(f, x_0, G)$ is equal to $J(k, x_0, G)$. In particular, $J(f, x_0)$ is also equal to $J(k, x_0)$ for homeomorphisms f and k.
- (2) If $f: X \longrightarrow X$ is a homeomorphism and $f(x_0) = x_0$, then $J(f, x_0, G)$ is equal to $E(X, x_0, G)$.

77

In [4], a transformation group (X,G) is said to admit a family K of preferred paths at x_0 if it is possible to associate with every element g of G a path k_g from gx_0 to x_0 such that the path k_e associated with the identity element e of G is $\hat{x_0}$ which is the constant map such that $\hat{x_0}(t) = x_0$ for each $t \in I$ and for every pair of elements g, h, the path k_{gh} from ghx_0 to x_0 is homotopic to $gk_h + k_g$.

DEFINITION 1. A family K of preferred paths at $f(x_0)$ is called a family of preferred f-traces at x_0 if for every preferred path k_g in K, $k_g\rho$ is the trace of f-homotopy of order g.

THEOREM 9. Let (X, G, π) be a transformation group. If (G, G) admits a family of preferred paths at e, then (X, G) admits a family of preferred f-traces at x_0 for any self map f of X.

Proof. Let H be a family of preferred paths at e in (G,G). Define $K = \{k_g | k_g(t) = h_g(t)(f(x_0)), h_g \in H\}$. Let $F: X \times I \longrightarrow X$ be the map such that

$$F(x,t) = \pi(f(x), h_g \rho(t)), \ \rho(t) = 1 - t.$$

So,

$$F(x,0) = \pi(f(x), h_g(1)) = h_g(1)f(x) = f(x),$$

$$F(x,1) = \pi(f(x), h_g(0)) = h_g(0)f(x) = gf(x)$$

and

$$F(x_0, t) = \pi(f(x_0), h_a \rho(t)) = h_a \rho(t) f(x_0) = k_a \rho(t).$$

Thus, F is a f-homotopy of order g with trace $k_g \rho$. So, K is a family of preferred f-traces at x_0 .

LEMMA 10. Let (X,G) be a transformation group and let $f: X \longrightarrow X$ be a self map. If k is a trace of a f-homotopy of order g, then for every loop α at x_0 , $f\alpha$ is homotopic to

 $k + gf\alpha + k\rho$. In particular, if f is a homeomorphism and α is a loop at $f(x_0)$, α is homotopic to $k + g\alpha + k\rho$.

Proof. Let $H: X \times I \longrightarrow X$ be a f-homotopy of order g with trace k and α be a loop at x_0 . Define $F: I \times I \longrightarrow X$ by

$$F(s,t) = \begin{cases} k(4s), & 0 \le s \le t/4 \\ H(\alpha((4s-t)/(4-2t)),t), & t/4 \le s \le (4-t)/4 \\ k\rho(4s-3), & (4-t)/4 \le s \le 1. \end{cases}$$

Then F is well defined and

$$F(s,0) = H(\alpha(s),0) = (f\alpha)(s),$$

$$F(s,1) = (k + gf\alpha + k\rho)(s).$$

In particular, suppose that f is a homeomorphism. Define $F: X \times I \longrightarrow X$ by

$$F(s,t) = \begin{cases} k(4s), & 0 \le s \le t/4 \\ H(f^{-1}\alpha((4s-t)/(4-2t)),t), & t/4 \le s \le (4-t)/4 \\ k\rho(4s-3), & (4-t)/4 \le s \le 1. \end{cases}$$

Therefore $F(s,0) = H(f^{-1}\alpha(s),0) = f(f^{-1}\alpha(s)) = \alpha(s)$.

$$F(s,1) = \begin{cases} k(4s), & 0 \le s \le 1/4 \\ H(f^{-1}(\alpha((4s-1)/2)), 1), & 1/4 \le s \le 3/4 \\ k\rho(4s-3), & 3/4 \le s \le 1, \end{cases}$$

$$= \begin{cases} k(4s), & 0 \le s \le 1/4 \\ gff^{-1}(\alpha((4s-1)/2)), & 1/4 \le s \le 3/4 \\ k\rho(4s-3), & 3/4 \le s \le 1, \end{cases}$$

$$= \begin{cases} k(4s), & 0 \le s \le 1/4 \\ g\alpha((4s-1)/2), & 1/4 \le s \le 3/4 \\ k\rho(4s-3), & 3/4 \le s \le 1, \end{cases}$$

$$= (k+g\alpha+k\rho)(s).$$

So, α is homotopic to $k + g\alpha + k\rho$.

THEOREM 11. A transformation group (X,G) admits a family of preferred f-traces at x_0 if and only if $J(f,x_0,G)$ is a split extension of $J(f,x_0)$ by G.

Proof. Suppose (X,G) admits a family $K=\{k_g|g\in G\}$ of preferred f-traces at x_0 . Consider the sequence:

$$O \to J(f, x_0) \xrightarrow{i_G} J(f, x_0, G) \xrightarrow{j_G} G \to O,$$

where $i_G([\alpha]) = [\alpha : e]$ and $j_G[\alpha : g] = g$.

Since i_G is a monomorphism, j_G is a epimorphism and $Ker j_G = Im i_G$, the sequence is a short exact sequence. Define $\psi: G \longrightarrow J(f, x_0, G)$ by $\psi(g) = [k_g \rho: g]$. Then ψ is a homomorphism. Indeed,

$$\psi(g_1g_2) = [k_{g_1g_2}\rho : g_1g_2]$$

$$= [(g_1k_{g_2} + k_{g_1})\rho : g_1g_2]$$

$$= [k_{g_1}\rho + g_1k_{g_2}\rho : g_1g_2]$$

$$= [k_{g_1}\rho : g_1] * [k_{g_2}\rho : g_2]$$

$$= \psi(g_1) * \psi(g_2).$$

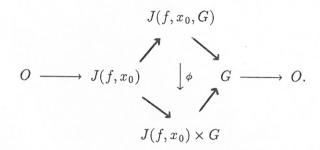
By definition of ψ , we have $j_G \circ \psi = 1_G$. Thus $J(f, x_0, G)$ is a split extension of $J(f, x_0)$ by G.

Conversely, suppose $J(f, x_0, G)$ is a split extension of $J(f, x_0)$ by G. Then there is a monomorphism $\psi: G \longrightarrow J(f, x_0, G)$ such that $j_G \circ \psi = 1_G$.

Let $H = \{\alpha_g | \alpha_g \rho \text{ is a representation path of } \psi(g)\}$. Since $\psi(e) = [\hat{f}(x_0) : e]$ and $\psi(g_1g_2) = \psi(g_1) * \psi(g_2)$, α_g is a path from $gf(x_0)$ to $f(x_0)$ for each element g of G and $\alpha_e = \hat{f}(x_0)$ and $\alpha_{g_1g_2}$ is homotopic to $g_1\alpha_{g_2} + \alpha_{g_1}$. So, H is a family of preferred f-traces at x_0 . Therefore, a transformation group (X, G) admits a family of preferred f-traces at x_0 .

THEOREM 12. Let $f: X \longrightarrow X$ be a homeomorphism. A transformation group (X, G) admits a family of preferred

f-traces at x_0 if and only if there exists an isomorphism ϕ : $J(f,x_0,G)\longrightarrow J(f,x_0)\times G$ such that the diagram commutes



Proof. Let $K=\{k_g|g\in G\}$ be a family of preferred f-trace at x_0 . Define $\phi:J(f,x_0,G)\longrightarrow J(f,x_0)\times G$ by $\phi([\alpha:g])=([\alpha+k_g],g)$. Let $[\alpha:g]$ be an element of $J(f,x_0,G)$. Then there exists a f-homotopy $H:X\times I\longrightarrow X$ such that H(x,0)=f(x),H(x,1)=gf(x) and $H(x_0,t)=\alpha(t)$, and $k_g\rho$ is a trace of f-homotopy $J:X\times I\longrightarrow X$ of order g.

Define $F: X \times I \longrightarrow X$ by

$$F(x,t) = \begin{cases} H(x,2t), & 0 \le t \le 1/2 \\ J(x,2(1-t)), & 1/2 \le t \le 1. \end{cases}$$

Then F is a cyclic homotopy with trace $\alpha + k_g$, for

$$F(x,0) = H(x,0) = f(x), \quad F(x,1) = J(x,0) = f(x),$$

$$F(x_0,t) = \begin{cases} H(x_0,t), & 0 \le t \le 1/2 \\ J(x_0,2(1-t)), & 1/2 \le t \le 1 \\ = (\alpha + k_g)(t). \end{cases}$$

Thus $[\alpha + k_g]$ belongs to $J(f, x_0)$. Let $[\alpha : g] = [\alpha' : g']$. Then α is homotopic to α' and $\alpha + k_g$ is also homotopic to $\alpha' + k_g$. Thus ϕ is well-defined. Suppose $\phi([\alpha : g]) = \phi([\alpha' : g])$. Then $\alpha + k_g$ is homotopic to $\alpha' + k_g$. This implies that $\alpha(=\alpha + k_g + k_g \rho)$ is homotopic to $\alpha'(=\alpha' + k_g + k_g \rho)$. Therefore ϕ is injective.

For any element $([\alpha], g) \in J(f, x_0) \times G$, there exists a cyclic homotopy $H: X \times I \longrightarrow X$ such that H(x, 0) = f(x) = H(x, 1) and $H(x_0, t) = \alpha(t)$.

Since $\{k_g|g\in G\}$ is a family of preferred f-traces at x_0 , there exists a f-homotopy $W:X\times I\longrightarrow X$ such that W(x,0)=f(x),W(x,1)=gf(x) and $W(x_0,t)=k_g\rho(t)$. Define

$$F(x,t) = \begin{cases} H(x,2t), & 0 \le t \le 1/2 \\ W(x,2t-1), & 1/2 \le t \le 1, \end{cases}$$

then $F(x_0,t) = (\alpha + k_g \rho)(t)$. So, there exists an element $[\alpha + k_g \rho : g]$ in $J(f,x_0,G)$ such that $\phi([\alpha + k_g \rho : g]) = ([\alpha + k_g \rho + k_g],g) = ([\alpha],g)$. Therefore, ϕ is surjective.

Next, we show that ϕ is a homomorphism. Let $[\alpha_1 : g_1]$ and $[\alpha_2 : g_2]$ be elements of $J(f, x_0, G)$. Then

$$\phi([\alpha_1 : g_1] * [\alpha_2 : g_2]) = \phi([\alpha_1 + g_1\alpha_2 : g_1g_2])$$

= $([\alpha_1 + g_1\alpha_2 + k_{g_1g_2}], g_1g_2).$

while

$$\phi([\alpha_1:g_1]) \circ \phi([\alpha_2:g_2]) = ([\alpha_1 + k_{g_1}], g_1) \circ ([\alpha_2 + k_{g_2}], g_2)$$
$$= ([\alpha_1 + k_{g_1} + \alpha_2 + k_{g_2}], g_1g_2).$$

Since $\alpha_2 + k_{g_2}$ is a loop at $f(x_0)$ and $k_{g_1}\rho$ is a trace of a f-homotopy of order g_1 , $\alpha_2 + k_{g_2}$ is homotopic to $k_{g_1}\rho + g_1(\alpha_2 + k_{g_2}) + k_{g_1}$ by Lemma 4-2.

Therefore, we have

$$\alpha_{1} + k_{g_{1}} + \alpha_{2} + k_{g_{2}} \sim \alpha_{1} + k_{g_{1}} + k_{g_{1}} \rho + g_{1}(\alpha_{2} + k_{g_{2}})$$

$$+ k_{g_{1}} \sim \alpha_{1} + g_{1}(\alpha_{2} + k_{g_{2}}) + k_{g_{1}} \sim \alpha_{1} + g_{1}\alpha_{2} + g_{1}k_{g_{2}}$$

$$+ k_{g_{1}} \sim \alpha_{1} + g_{1}\alpha_{2} + k_{g_{1}g_{2}}.$$

This implies that ϕ is a homomorphism.

Conversely, given a commutative diagram with exact rows and ϕ which is an isomorphism :

$$J(f, x_0, G)$$

$$i_G \longrightarrow j_G$$

$$\downarrow \phi \qquad G \longrightarrow O.$$

$$i_1 \longrightarrow \pi_2 / i_2$$

$$J(f, x_0) \times G$$

define $\psi: G \longrightarrow J(f, x_0, G)$ to be $\phi^{-1} \circ i_2$. Use the commutativity of the diagram to show $j_G \circ \psi = 1_G$. Then there is a monomorphism $\psi: G \longrightarrow J(X, x_0, G)$ such that $j_G \circ \psi = 1_G$. So, $J(f, x_0, G)$ is a split extension of $J(f, x_0)$ by G. By Theorem 11, (X, G) admits a family of preferred f-traces at x_0 .

COROLLARY 13. Let $f: X \longrightarrow X$ be a homeomorphism. A transformation group (X,G) admits of preferred f-traces at x_0 and G abelion if and only if $O \longrightarrow J(f,x_0) \longrightarrow J(f,x_0,G) \longrightarrow G \longrightarrow O$ is a split exact sequence of Z-module.

References

- D.H. Gottlieb, A certain subgroup of the fundamental group, Amer.J. Math. 87 (1965), 840-856.
- 2. ———,, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
- B.J. Jiang, Lectures on Nielsen fixed point theory, Contemp. Math. Providence: Amer. Math. Soc. 14 (1983).
- 3. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. So. 16(3) (1966), 635-650.
- M.H. Woo and Y.S. Yoon, Certain subgroups of homotopy groups of a transformation group, J. of Korean Math. Soc. 20-2 (1983), 223-233.
- 5. M.H. Woo, A representation of $E(X, x_0, G)$ in terms of $G(X, x_0)$, J. of Korean Math. Soc. 23 (1986), 101-108.

Moo Ha Woo Department of Mathematics Education Korea University

AN EXTENDED JIANG SUBGROUP AND ITS REPRESENTATION 83

Seoul 132-701, Korea

Song Ho Han Department of Mathematics Kangweon National University Chuncheon 200-701, Korea