A STUDY ON THE PRIME MODULES

SOUNG CHUL LEE

1. Introduction.

For any associative ring $R \neq 0$, R^1 is defined as $R^1 = R$ if $1 \in R$, otherwise $R^1 = \mathbf{Z} \times R$ is the ring with an identity (1,0), where \mathbf{Z} is the ring of integers and two operations in R^1 are defined as follows: for all $m, n \in \mathbf{Z}$ and $r, s \in R$,

$$(m,r) + (n,s) = (m+n,r+s)$$

 $(m,r) \cdot (n,s) = (mn,ms+nr+rs).$

NOTATION. In this paper $A \subset B$ means $A \subseteq B$ but $A \neq B$.

If we identify R with $\{0\} \times R$, then R is as (two-sided) ideal of R^1 . All R-module here will be right R-module unless explicitly stated otherwise. A submodule K < M of an R-module M is prime if for any $n \in M - K$ and $t \in R$ such that $mR^1t \subseteq K$, necessarily $t \in \operatorname{ann}_R(M/K)$ where $\operatorname{ann}_R(M/K) = \{r \in R \mid Mr \subseteq K\}$ is the annihilator ideal of M/K in R. The submodule K < M is semiprime if for any $m \in M$ and $s \in R$ such that $msR^1s \subseteq K$, $ms \in K$.

The purpose in this paper is to investigate characterization of prime module with some additional properties, and our main theorems are follows:

THEOREM 3.1. If M is a uniform module, then M is prime module if and only if every cyclic submodule of M is a prime module.

THEOREM 3.4. Let K be an irreducible submodule of an R-module M, then the following are all equivalent:

- (1) K < M is prime
- (2) K < M is semiprime
- (3) $ter(M/K) \subseteq (M/K)^2 = ann_R(M/K)$.

2. Definitions and preliminaries.

In this section, we discuss some definitions and preliminary results that need to prove our main theorems in section 3.

NOTATION. Right R-submoudles of an R-module are denoted by " \leq ", proper ones by "<", while " Δ " indicates two - sided ideals of R. For any right R - submoudle $V \leq M$, ann $RV = \{a \in R \mid V_r = 0\}\Delta R$. For $m \in M$ and $K \leq M$, $m^{-1}K = \{r \in R \mid mr \in K\}$ is the right ideal of R. If K = 0, then we denote $m^{-1}o = m^{-1}(0)$ as ann R(m).

DEFINITION 2.1. For any right R-moudle M, a submodule $K \leq M$ is a prime submodule if $\forall \beta \in M - K, t \in R, \beta R^1 t < K$ then t is an annihilator (M/K) in R. A R-module M is prime if (0) < M is a prime submodule.

PROPOSITION 2.2. Let K be a submodule of a right R-module M and let $\operatorname{ann}_R(M/K)$ be the annihilator ideal of M/K in R. Then the following are all equivalent:

- (1) K < M is prime submodule.
- (2) $\forall \beta \in M K, \forall t \in R, \beta R t \subseteq K \to t \in \operatorname{ann}_R(M/K).$
- (3) Every nonzero submodule of M/K has the same annihilator, i, e, $\operatorname{ann}_R(M/K)$.
- (4) $\forall V \leq M, \forall A \leq R, VA \subseteq K \rightarrow either V \subseteq K \text{ or } A \subseteq ann_R(M/K).$
- (5) $\forall K \subset W \leq M, \forall \operatorname{ann}_R(M/K) \subset B \leq R \to WB \not\subseteq K$.

Proof. (1) \Longrightarrow (2): Let $\beta \in M - K$, $t \in R$ with $\beta Rt \subseteq K$. If $\beta R^1 t \subseteq K$, then by(1), $t \in \operatorname{ann}_R(M/K)$. So assume that $\beta R^1 t \not\subseteq K$ and consequently $t \in \operatorname{ann}_R(M/K)$. Take a $\rho \in R^1$ with $\beta \rho t \notin K$. By (1), $(\beta \rho t)R^1 t \not\subseteq K$. Hence there exists an element $\partial \in R^1$ with $\beta \rho t \partial t \notin K$, which contradicts $\beta \rho t \partial t \in \beta Rt \subseteq K$ since $R\Delta R^1$. Thus $\beta R^1 t \subseteq K$, and by(1), $t \in \operatorname{ann}_R(M/K)$.

- $(2) \Longrightarrow (1)$: Let $\beta \in M K$, $t \in R$ with $\beta R^1 t \subseteq K$. Then since $\beta R t \in \beta R t$, $\beta R t \subseteq K \to t \in \operatorname{ann} R(M/K)$ by (2). Therefore K is a prime submodule.
- $(1) \Longrightarrow (3)$: It suffces to show that $\forall 0 \neq \beta + K \in (M/K)$ with $\beta \in M K$, $\operatorname{ann}_R((\beta + K)R) = \operatorname{ann}_R(M/K)$. But if $t \in \operatorname{ann}_R((\beta R^1 + K)R)$

- K)/K), then $\beta R^1t + K \subseteq K$ and so $\beta R^1t \subseteq K$. Hence by(1), $t \in \operatorname{ann}_R(m/k)$. ie, $\operatorname{ann}_R((\beta R^1 + K)/K) \subseteq \operatorname{ann}_R(M/K)$. Since we have $\operatorname{ann}_R(M/K) \subseteq \operatorname{ann}_R((\beta R^1 + K)/K)$, $\operatorname{ann}_R((\beta + K)R^1) = \operatorname{ann}_R(M/K)$.
- $(3) \Longrightarrow (1)$: Let $\beta R^1 t \subseteq K$ for some $\beta \in M K$ and $t \in R$. Then $(\beta R^1 + K)t \subseteq K \to t \in \operatorname{ann}_R(\beta R^1 + K)/K = \operatorname{ann}_R(M/K)$.
- $(1)\Longrightarrow (4):$ Let $V\leq M,\quad A\leq R$ and $VA\subseteq K.$ Then if $V\not\subseteq K,$ Then by (1) $VR^1A\subseteq K\to A\subseteq \mathrm{ann}R(M/K).$
- $(4) \Longrightarrow (1)$: Let $\beta R^1 t \subseteq K$ with $B \in M K$ and $t \in R$, set $V = \beta R^1$ and $A = tR^1$. Since $VA \subseteq K$, but $V \not\subseteq K$, it follows from (4) that $t \in A \subseteq \operatorname{ann}_R(M/K)$.
- $(4) \Longrightarrow (5)$: Let $K \leq W \leq M$ with $K \neq W$ and $\operatorname{ann}_R(M/K) \subset B \leq R$. If $WB \subseteq K$, then either $W \subseteq K$ or $B \subseteq \operatorname{ann}_R(M/K)$, which contradicts.
- $(5) \Longrightarrow (4):$ Let $V \leq M$ and $A \leq R$ with $VA \subseteq K$. Define W = V + K and $B = A + \operatorname{ann}_R(M/K)$. If $V \subseteq K$ then $W \subseteq K$; if $W \subseteq K$, then $V \subseteq K$ thus $V \not\subseteq K = W \not\subseteq K$ and $A \not\subseteq \operatorname{ann}_R(M/K) \leftrightarrow B \not\subseteq \operatorname{ann}_R(M/K)$. Hence $WB \subseteq K$ and so by(5), either $W \leq K$ or $B \subseteq \operatorname{ann}_R(M/K)$. Thus $V \subseteq K$ or $A \subseteq \operatorname{ann}_R(M/K)$. If K = M or $MR \subseteq K$ then $K \leq M$ is clearly prime submodule.
- COROLLARY 2.3. An R-module M is prime module if and only if for every nonzero submodule N, $\operatorname{ann}_R(M) = \operatorname{ann}_R(N)$.

PROPOSITION 2.4. If K is a prime submodule of a right R-module, then $\operatorname{ann}_R(M/K)$ is a prime ideal of R.

Proof. Let $M_sR_t \subseteq K$ with $ms \notin K$ for $m \in M, s, t \in R$. Set $\beta = ms$. Then since $\beta R_t \subseteq K$, by proposition 2.2.(2), $t \in \operatorname{ann}_R(M/K)$. Hence $\operatorname{ann}_r(m/k)$ is a prime ideal of R.

DEFINITION 2.5. [2] For a submodule $K \leq M$ of an R-module M, let $\beta \in M$ and $s \in R$ be arbitrary. Then $K \leq M$ is called (new) semiprime if $\beta s R^1 s \subseteq K \to \beta s \in K$.

PROPOSITION 2.6. For a submodule $K \leq M$ of an R - module M, the following are equivalent:

- (1) K is a semiprime submdule.
- (2) $\forall \beta \in M$, $\forall s \in R$, $\beta s R s \subseteq K \rightarrow \beta s \in K$.

Proof. (1) \Longrightarrow (2): Let $\beta sRs \subseteq K$, $\beta sR^1s \not\subseteq K$, and $\beta sts \notin K$ for $t \in R^1$. Then $\beta stsR^1sts \subseteq \beta sRs \subseteq K$. By(1), $\beta sts \in K$, which is a contradiction. Thus $\beta sR^1s \subseteq K$, and consequently $\beta s \in K$.

 $(2) \Longrightarrow (1)$: Since $\beta sRs \subseteq \beta sR^1s$, $(2) \to (1)$ is clear.

DEFINITION 2.7. An R-module $M(\neq 0)$ is called a uniform module if any two nonzero submodules of M have nonzero intersection.

PROPOSITION 2.8. An R - module $M \neq 0$ is a uniform if and only if every nonzero submodule N is essential in M, ie, for any nonzero submodule $K \leq M, N \cap K \neq (0)$.

Proof. The proof is clear.

Notation. $N \ll M$ meass that N is an essential submodule of an R - module M.

PROPOSITION 2.9. Let M be an R - module, and let $K_1 \subseteq N_1$ and $K_2 \subseteq N_2$ be four submodules of M.

- (1) If K_1 and K_2 are essential in M, then so is $K_1 \cap K_2$.
- (2) if K_1 is essential in M, then so is N_1 .
- (3) If K_1 is essential in N_1 and if N_1 is essential in M, then K_1 is essential in M.
- (4) If K_1 is essential in N_1 , N_2 is essential in N_2 and $N_1 \cap N_2 = 0$, then $K_1 \oplus K_2$ (direct sum) is essential in $N_1 \oplus N_2$.

Proof. Let X be a nonzero submoudle of M. Then (1),(2), and (3) follow immediately from the three observations $(K_1 \cap K_2) \cap X = K_1 \cap (K_2 \cap X), N_1 \cap X \supseteq K_1 \cap X$ and $K_1 \cap X = K_1 \cap (N_1 \cap X)$. For part (4) we may clearly suppose that $X \subseteq N_1 \oplus N_2$ but that $X \cap N_1 = X \cap N_2 = 0$. Let $x = x_1 + x_2$ with $x_i \in N_i$ be a nonzero element of X. Then $xR \cap K_1 \neq 0$ so that we can multiply x by a suitable element of R to obtain $y = e_1 + y_2 \in X, y \neq 0$ with $e_1 \in K_1, y_2 \in N_2$. Furthermore $y_2R \cap K_2 \neq 0$ so that multiplying Y by a suitable element of R shows

that $X \cap (K_1 \oplus K_2) \neq 0$. For examples, every simple R-module is uniform, and also and nonzero ideal in a commutative integral domain is a uniform module.

3. Main theorems.

In this section we will prove our main theorems .

THEOREM 3.1. Let R be a ring with identity. If M is a uniform R -module, then M is prime module if and only if every cyclic submodule N of M is a prime module.

Proof. (\Rightarrow): Since every nonzero submodule L of N is also a submodule of M, we have $\operatorname{ann}_R(L) = \operatorname{ann}_R(M) = \operatorname{ann}_R(N)$ and hence N is a prime module.

 (\Leftarrow) : By corollary 2.3, it suffices to show that for any $0 \neq V < M$, $\operatorname{ann}_R(V) = \operatorname{ann}_R(M)$ If not, then $\operatorname{ann}_R(M) \subseteq \operatorname{ann}_R(V)$ and hence for some $a \in R$ and $x \in M$, Va = 0 but $xa \neq 0$. Take any $0 \neq y \in V$ and any $0 \neq z \in xR \cap yR$. Since xR is a prime module and $zR \subseteq xR$, by cor, 2.3, $\operatorname{ann}_R(zR) = \operatorname{ann}_R(xR)$. But then $zR \subseteq yR \subseteq V$ implies that (zR)a = 0 and so (xR)a = 0. Thus $(xR)a \neq 0$ is a contradiction. Hence $\operatorname{ann}_R(V) = \operatorname{ann}_R(M)$ and so M is a prime module. For any R - module W, the tertiary radical of W[2,3] is the ideal ter $W = \{\operatorname{ann}_R V | V \text{is essential in } W\} \Delta R$. A submodule K < M is (meet) irreducible if for any submodule A, B < M such that $K = A \cap B$, either K = A or K = B.

LEMMA 3.2. Let M be an (right) R - module. Then

- (1) ter M is a two sided ideal of R.
- (2) If N is a submodule of M, then ter $N \supseteq ter M$.
- (3) If L is an essntial extension of M, then ter M = ter L.

In particular, if E(M) is an injective hull of M, then ter M = ter E(M).

Proof. (1) If $t, s \in \text{ter}M$, then Nt = 0 and N's = 0 for some essential submodule N and N' of M, respectively. Since $N \cap N'$ is also an essential submodule, we have $(N \cap N')(t-s) = (N \cap N')t - (N \cap N')s = 0 - 0 = 0$, and so $t-s \in \text{ter}M$. For any $r \in R$, $N(rt) \subseteq Nt = 0$ and N(te) = (Nt)r = 0r = 0, and hence tr and $rt \in \text{ter}M$. Thus terM is a two-sided ideal of R.

- (2) Let $r \in \text{ter } M$. Then Ar = 0 for some essential submodule A of M. Since $A \cap N$ is an essential submodle of N and $(A \cap N)r \subseteq Nr = 0$, we have $r \in \text{ter } N$. Thus ter $N \supseteq \text{ter } M$.
- (3) From(2), it remains to show that ter $M \subseteq \text{ter } L$. If $t \in \text{ter } M$, then Bt = 0 for some essential submodule B of M. Since M is essential submodule of L, B is also an essential submodule of L by proposition 2.9. Thus $t \in \text{ter } L$ for all $t \in \text{ter } M$. Hence ter M = ter L. If E(M) is an injective hull of M, then E(M) is an essential extension of M and so ter E(M) = ter M. Note that if $K \leq M$ is irreducible, then $\text{ter } (M/K) = \bigcup \{R^1 : \beta^1 K | \beta \in M K\}[5, p369]$. For any submodule $K \leq M$, it will be convenient to define $M : K \Delta R$ as the ideal $M : K = \{r \in R | Mr \subseteq K\}$, although $M : K = \text{ann}_R(M/K)$ and $M : (0) = \text{ann}_R(M)$.

LEMMA 3.3. A submodule K of an R - module M is a prime if and only if $M: K = R^1: \beta^{-1}K$ for any $\beta \in M - K$. Moreover, $\operatorname{ann}_R(M/K)$ is the tertiary radical of M/K.

Proof. If $t \in M : K$, then $Mt \subseteq K$ and so for any $\beta \in M$, $\beta R^1 t \subseteq Mt \subseteq K$. Thus $t \in R^1 : \beta^{-1}K$. Hence $M : K \subseteq R^1 : \beta^{-1}K$. $M : K \supseteq R^1 : \beta^{-1}K$ if and only if for all $r \in R$, $\beta R^1 r \subseteq K \to Mr \subseteq K$. This is so for all $\beta \neq K$ if and only if K is prime. Consequently, the first assertion is prooved. Finally, $\operatorname{ter}(M/K) = \bigcup \{B : K \mid B/K \text{ is essential submodule of } M/K \}$ and $B : K \subseteq R^1 : \beta^{-1}K$ for all $\beta \in B$ since for all $t \in B : K$, $\beta R^1 t \subseteq Bt \subseteq K \to t \in R^1 : \beta^{-1}K$. Thus $BR^1(B : K) \subseteq K$ and $B \not\subseteq K$. If K is prime, then $B : K \subseteq M : K$. Therefore, $\operatorname{ter}(M/K) \subseteq \operatorname{ann}_R(M/K)$, i.e., $\operatorname{ter}(M/K) = \operatorname{ann}_R(M/K)$ since M/K is essential submodule of M/K.

Theorem 3.4. Let R be an (meet) irreducible submodule of an R -module M. Then the following are all equiviaient:

- (1) K < M is prime submodule.
- (2) K < M is semiprime submodule.
- (3) $ter(M/K) \subseteq ann_R(M/K)$.

proof. (1) \Rightarrow (3): It follows from Lemma 3.3.

(3) \Rightarrow (1): If (3) holds, then $\operatorname{ter}(M/K) \subseteq \operatorname{ann}_R(M/K) = M : K$

implies that M: K contains $R^1: \beta^{-1}K$ for all $\beta \in M-K$, and so K is prime since $\beta R^1 t \leq K \to t \in \operatorname{ann}_R(M/K)$.

- $(1) \Rightarrow (2)$: Let $\beta_s R^1 s \leq K$. Then $s \in \operatorname{ann}_R(M/K)$, i.e., $Ms \leq K$ since K is prime. Hence $\beta_s \in K$.
- $(2)\Rightarrow (1)$: Assume that K is not prime. Then $\beta R^1t\leq K$ for some $\beta\in K$ and $t\in \operatorname{ann}_R(M/K)$. Since K is irreducible, $(\beta R^1+K)\cap (MtR^1+K)$ is not contained in K. Hence we can find $r\in R^1$ and $\alpha\in M$, such that $\alpha tr\in \beta R^1+K$ but $\alpha tr\notin K$. Now we have $\alpha trR^1tr\subseteq \beta R^1tr+K\leq K$ and hence K is not semiprime since $\alpha tr\in K$.

References

- 1. Burton, Addison-Wesley (1970), A first course in rings and ideals.
- 2. J. Dauns, prime modules, J. reine angew. Math 298 (1978).
- 3. J. Dauns, Prime modules and one-sided ideals, Proc. of the third Oklahoma conference (1980), 301-344.
- J. Lambek, Chelsea pubishing co. New York (1976), Lectures on ring and module.
- J. Lambek and G. Michler, The torsion theory at a prime ideal of a Noetherian ring, J. algebra 25 (1973), 364-389.
- 6. D. S. Passman, John wiley and Sons, New York (1977), The algebraic structure of group rings.

Samchok National University Samchok 245-080, Korea