AUTOMORPHIC FORMS ON ORTHOGONAL GROUPS ATTACHED TO QUADRATIC EXTENSIONS

Young Ho Park

§1. NOTATIONS

Let F be a number field, and E/F be a quadratic extension of F. We choose a $\beta \in E$ such that $E = F(\beta)$, and let $q(x) = x^2 - \beta^2$ be the irreducible polynomial of β over F. Then the Galois group of E/F is generated by the automorphism σ of order 2, where

$$(a+b\beta)^{\sigma}=a-b\beta$$
, for $a,b\in F$.

Let $Tr(x) = x + x^{\sigma}$, $N(x) = xx^{\sigma}$ be the usual trace and norm of E/F. Define a bilinear form (,) on E by

$$(x,y) = \frac{1}{2} Tr(xy^{\sigma}).$$

Note that (x,x) = N(x). Let O be the isometry group of E, (,), viewed as an algebraic group defined over F. We also let

$$E^1 = \{ x \in E \mid N(x) = 1 \}.$$

For each place v of F, let F_v be the completion of F at v, and let $E_v = F_v \otimes_F E$. Then $E_v = F_v[\bar{\beta}]$, where $1, \bar{\beta}$ are linearly independent over F_v and $q(\bar{\beta}) = 0$. Define $\sigma_v : E_v \to E_v$ by $(a + b\bar{\beta})^{\sigma} = a - b\bar{\beta}$. Via the usual imbedding $E \hookrightarrow E_v$, $a + b\beta \mapsto a + b\bar{\beta}$, σ_v is an automorphism of E_v of order 2 extending σ .

If q is irreducible over F_v (i.e. v is *inert*.), then $E_v = F_v(\beta)$ is a field. If q is reducible over F_v (i.e. v splits), then $E_v \simeq F_v \oplus F_v$, via $a + b\bar{\beta} \mapsto (a + b\beta, a - b\beta)$. Note that F_v is imbedded into $F_v \oplus F_v \simeq E_v$ diagonally, and σ_v on $F_v \oplus F_v$ is given by $(a, b)^{\sigma} = (b, a)$.

Let Tr_v , and N_v be the trace and norm on E_v/F_v . Then $(x,y)_v = \frac{1}{2}Tr_v(xy^{\sigma})$ and $O_v = O(E_v)$ is the isometry group of E_v , $(,,)_v$. Note that when v splits, $(x,y)_v = (xy,xy) \in F_v$, for $(x,y) \in F_v \oplus F_v$.

Received May 2, 1994.

$\S 2$. Structure of O.

For any anisotropic $y \in E$, let τ_y be the symmetry defined by

$$\tau_y(x) = x - \frac{2(x,y)}{(y,y)}y.$$

Then O is generated by τ_y , where y runs over the anisotropic vectors [O]. We have

 $\tau_y(x) = -\frac{y}{y^{\sigma}}x^{\sigma}.$

For $u \in E^1$, let $m_u : E \to E$ be the automorphism defined by $m_u(x) =$ ux. Then $m_u \in O$, and $\sigma m_u \sigma^{-1} = m_{u\sigma}$. By the Hilbert theorem 90, we see that O is generated by $m_u(u \in E^1)$, and σ . In other words,

Proposition 2.1. $O(E) \simeq E^1 \rtimes \langle \sigma \rangle$

Note that $O_v \simeq E_v^1 \rtimes \langle \sigma \rangle$, and that if v splits, so that $E_v = F_v \oplus F_v$, then $E_v^1 = \{(x, y) \mid xy = 1\} \simeq F_v^{\times}$.

For a finite place v of F, let \mathcal{O}_v , \mathcal{U}_v be the ring of integers, ring of units of F_v , respectively. Then $L_v = \mathcal{O}_v + \beta \mathcal{O}_v$ is a maximal compact subring of E_v . Let.

$$K_v = \begin{cases} (E_v^1 \cap L_v) \rtimes \langle \sigma_v \rangle & \text{if } v \text{ is inert,} \\ \mathcal{U}_v \rtimes \langle \sigma_v \rangle & \text{if } v \text{ splits.} \end{cases}$$

Then K_v is a maximal compact subgroup of O_v . Now suppose v is an archimedian place. We have

$$O_v = \begin{cases} \mathbb{R}^{\times} \rtimes \langle \sigma_v \rangle & \text{if } v \text{ is real and splits,} \\ \mathbb{C}^1 \rtimes \langle \sigma_v \rangle \simeq O(2) & \text{if } v \text{ is real and inert,} \\ \mathbb{C}^{\times} \rtimes \langle \sigma_v \rangle & \text{if } v \text{ is complex.} \end{cases}$$

So we let

$$K_v = \begin{cases} \{\pm 1\} \rtimes \langle \sigma_v \rangle & \text{if } v \text{ is real and splits} \\ O(2) & \text{if } v \text{ is real and inert} \\ \mathbb{C}^1 \rtimes \langle \sigma_v \rangle \simeq O(2) & \text{if } v \text{ is complex} \end{cases}$$

and $K_{\infty} = \prod_{v \text{ archimedian}} K_v$, $K = \prod_v K_v$. Let \mathbb{A} denote the adele ring of F as usual. Then $O(\mathbb{A}) = \prod_v O_v$, restricted direct product with respect to K_v . Since (,) is anisotropic over F, we see that $O(F)\backslash O(\mathbb{A})$ and $E^1(F)\backslash E^1(\mathbb{A})$ are compact.

§3. Automorphic representations of O.

Since O_v is a semidirect product of commutative E_v^1 and finite $\langle \sigma_v \rangle$, we may apply a Mackey's result to obtain the following [L]

PROPOSITION 3.1. Let τ_v be an irreducible representation of O_v . Then there is an associated character χ_v of E_v^1 such that τ_v is one of the following representations:

- (1) Ind $_{E_{v}^{1}}^{O_{v}}\chi_{v}$, where $\chi_{v}^{2}\neq1$,
- (2) χ_v ⊗ 1, where χ_v² = 1 and 1 is the trivial representation of ⟨σ_v⟩,
 (3) χ ⊗ det, where χ_v² = 1 and det is the nontrivial representation of $\langle \sigma_n \rangle$.

To be more precise, let $f_1, f_2 \in \tau_v = \operatorname{Ind}_{E^1}^{O_v} \chi_v$ be defined by

$$f_1(g) = \begin{cases} \chi(x) & \text{if } g = x \in E_v^1, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$f_2(g) = \begin{cases} \chi(x) & \text{if } g = x\sigma_v \in E_v^1 \sigma_v, \\ 0 & \text{otherwise,} \end{cases}$$

Then τ_v is generated by f_1 and f_2 and $\tau_v(\sigma_v)f_1 = f_2$. Thus $f_1 + f_2$ is fixed by $\widehat{\sigma}_v$, while $f_1 - f_2$ changes the sign. It is not difficult to show that Ind $C_v \chi_v$ are irreducible if and only if $\chi_v^2 = 1$, and that if $\chi^2 = 1$, then $\tau_v = (\chi_v \otimes 1) \oplus (\chi_v \otimes \det)$, with the basis $f_1 + f_2$ and $f_1 - f_2$, respectively.

DEFINITION 3.2. Suppose v is a finite pace of F, which splits. We say that a character χ_v of E_v^1 is unramified if it is trivial on $E_v^1 \cap L_v$.

Recall that a representation τ_v of O_v is unramified if it contains a K_v -fixed vector. Thus τ_v is unramified if and only if its associated character χ_v is unramified, and $\tau_v \neq \chi_v \otimes \det$.

Now let τ be an admissible irreducible representation of $O(\mathbb{A})$. Then $\tau = \otimes_v \tau_v$, where τ_v is irreducible representation of O_v such that almost all τ_v are unramified [F]. We recall the Langlands characterization of automorphic representations of a reductive group G [La].

PROPOSITION 3.3. A representation τ of $G(\mathbb{A})$ is an automorphic representation if and only if τ is a constituent of $\operatorname{Ind}_{P(\mathbb{A})}^{O(\mathbb{A})}\lambda$ for some parabolic subgroup P of G with Levi factor M and some cuspidal representation $\lambda = \bigotimes_v \lambda_v$ of $M(\mathbb{A})$. \square

In our case, the only nontrivial parabolic subgroup of O is E^1 . Note that the Levi factor of E^1 is itself. Since the constituents of Ind λ are the representations $\tau = \otimes_v \tau_v$, where τ_v is a constituent of Ind $\frac{O_v}{E_v^1} \lambda_v$ and almost all λ_v are unramified, we obtain

THEOREM 3.4. $\tau = \otimes \tau_v$ is an irreducible automorphic representation of $O(\mathbb{A})$ if and only if there is a character $\chi = \otimes \chi_v$ of $E^1(F) \setminus E^1(\mathbb{A})$ such that τ_v is one of the 3 types given in Proposition 3.1 with associated character χ_v and the number of v's such that $\tau_v = \chi_v \otimes \det$ is even. \square

References

[B] A. Borel, Linear algebraic groups, Proc. Symp. Pure Math. 9 (1966), 3-19.

[B-J] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Symp. Pure Math. 33 no. Part I, (1979), 189-202.

[Ca] P. Cartier, Representations of p-adic groups: A survey, Proc. Symp. Pure Math. 33 no. Part I, (1989), 111-155.

[F] D. Flath, Decompositions of representations into tensor products, Proc. Symp. Pure Math. 33 no. Part I, (1979), 179-183.

[H-PS] R. Howe and I. Piatetski-Shapiro, Some examples of automorphic forms on Sp_4 ., Duke. Math. J 50, 55-106.

 [L] R. Lipsman, Group representations, Lec. Note. Math. No.388, Springer-Verlag, Berlin, Heildelberg, New York, 1974.

[La] R. Langlands, On the notion of an automorphic representation. A supplement to the preceding paper, Proc. Symp. Pure Math. 33 no. Part I, (1979), 203-207.

[O] T. O'Meara, Introduction to Quadratic Forms, vol. 117, Springer-Verlag, Berlin, Heidelberg, New York, 1973.

[We1] A. Weil, Basic Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

[We2] A. Weil, Adeles and Algebraic Groups, Progress in Math., Birkhäuser, 1982.

Department of Mathematics Yonsei University Seoul, 120-749, Korea