ON SOME FUZZY QUOTIENT GROUPS

HEE CHAN CHOI

I. Introduction.

Let G be a group and μ a fuzzy subgroup of G. For any $x \in G$, consider a map $\hat{\mu}_x : G \to [0, 1]$ defined by $\hat{\mu}_x(g) = \mu(gx^{-1})$ for all $g \in G$. In this case, $\hat{\mu}_x$ is called the fuzzy coset of G determined by x and μ . We put $K = \{x \in G | \mu(x) = \mu(e)\}$, where e is the identity of G, and N denotes a normal subgroup of G. Suppose \Im is the set of all the fuzzy cosets of G by μ , and define a map. $\bar{\mu} : \Im \to [0, 1]$ by $\bar{\mu}(\hat{\mu}_x) = \sup_{n \in N} \hat{\mu}_x(n)$.

The concepts of fuzzy subsets was introduced by L.A. Zadeh [9], after then fuzzy subgroups were first defined by A. Rosenfeld [8]. P.S. Das [5] studied level subgroups. The basic notions, some results of fuzzy cosets and fuzzy quotient groups were first studied by N.P. Mukherjee and P. Bhattacharya [7].

In this paper, by using the properties of fuzzy(normal) subgroups, fuzzy cosets and basic group theory, we will investigate another kind of fuzzy quotient groups $\hat{\mu}$, $\bar{\mu}$ defined by

$$\begin{split} \hat{\mu}(Kx) &= \sup_{k \in K} \mu(kx) \ \forall x \in G \ (\text{Theorem 3.1}) \ , \\ \bar{\mu}(\hat{\mu}_x) &= \sup_{n \in N} \hat{\mu}_x(n) \ \forall x \in G \ (\text{Theorem 3.3}) \end{split}$$

respectively.

II. Preliminaries and Some Basic Results.

We review some basic definitions and results. For details, see P.S. Das [5], N.P.Mukherjee and P. Bhattacharya [3,7], A. Rosenfeld [8] and L.A. Zadeh [9].

Received September 22, 1994.

DEFINITION 2.1. Let G be a set. A mapping $\mu: G \to [0, 1]$ is called a fuzzy subset of G.

DEFINITION 2.2. If μ is a fuzzy subset of a set G, then for any $t \in [0, 1]$, the set

$$\mu_t = \{ x \in G | \mu(x) \ge t \}$$

is called a level subset of μ .

DEFINITION 2.3. Let G be a group. A mapping $\mu: G \to [0, 1]$ is called a fuzzy subgroup of G if

(1)
$$\mu(xy) \ge \min\{\mu(x), \, \mu(y)\} \, \, \forall x, \, y \in G,$$

(2)
$$\mu(x^{-1}) = \mu(x) \ \forall x \in G.$$

It is easy to see that if μ is a fuzzy subgroup of a group G whose identity is denoted by e, then we have $\mu(x) \leq \mu(e)$ for all $x \in G$.

If μ is a fuzzy subgroup of G, then for any $t \in [0 1]$ with $t \leq \mu(e)$, the level subset μ_t is a subgroup of G in the usual sense. In this situation, the level set μ_t is called a *level subgroup* of μ .

 $N \triangleleft G$ denotes that N is a normal subgroup of the group G.

LEMMA 2.4[7]. Let μ be a fuzzy subgroup of a group G. Let $x \in G$. Then

$$\mu(xy) = \mu(y) \ \forall y \in G \iff \mu(x) = \mu(e).$$

Proof. Suppose that $\mu(xy) = \mu(y) \ \forall y \in G$. Then, by choosing y = e, we get $\mu(x) = \mu(e)$.

Conversely, suppose that $\mu(x) = \mu(e)$. Then, since $\mu(y) \leq \mu(e)$ for all $y \in G$, we have $\mu(y) \leq \mu(x)$.

Now $\mu(xy) \ge \min\{\mu(x), \mu(y)\}\$. Therefore, we have

$$\mu(xy) \ge \mu(y) \ \forall y \in G.$$

But $\mu(y) = \mu(x^{-1}xy) \ge \min\{\mu(x), \mu(xy)\}$. Since $\mu(x) \ge \mu(xy) \ \forall y \in G$, the following holds:

$$\min\{\mu(x),\,\mu(xy)\}=\mu(xy)\leqq\mu(y).$$

Therefore, we get

$$\mu(y) \ge \mu(xy) \ \forall y \in G.$$

Hence the result follows.

DEFINITION 2.5. A fuzzy subgroup μ of a group G is called a fuzzy normal subgroup of G if $\mu(xy) = \mu(yx) \ \forall x, y \in G$.

THEOREM 2.6 [7]. A fuzzy subgroup μ of a group G is a fuzzy normal subgroup if and only if μ is constant on the conjugate classes of G.

Proof. Suppose that μ is a fuzzy normal subgroup of G. Then

$$\mu(y^{-1}xy) = \mu(xyy^{-1}) = \mu(x) \ \forall x, y \in G.$$

Conversely, suppose that μ is constant on each conjugate class of G. Then

$$\mu(xy) = \mu(xyxx^{-1}) = \mu(x(yx)x^{-1}) = \mu(yx) \ \forall x, y \in G.$$

Hence, μ is a fuzzy normal subgroup of G. \square

THEOREM 2.7 [1]. Suppose that μ is a fuzzy normal subgroup of a group G. Let $t \in [0, 1]$ such that $t \leq \mu(e)$, where e denotes the identity of G. Then the set

$$\mu_t = \{ x \in G | \mu(x) \ge t \}$$

is a normal subgroup of G.

Proof. We have already mentioned that μ_t is a subgroup of G in usual sense(P.S. Das [5]). We now show that μ_t is a normal subgroup. Let $x \in \mu_t$ and $y \in G$. Since μ is a fuzzy normal subgroup, we have by Theorem 2.6 that $\mu(y^{-1}xy) = \mu(x)$. So, we get that $\mu(y^{-1}xy) \geq t$, implying that $y^{-1}xy \in \mu_t$. Therefore, $y^{-1}xy \in \mu_t \ \forall x \in \mu_t$ and $y \in G$. Hence $\mu_t \triangleleft G$. \square

III. Fuzzy Quotient Groups.

In this section, we treat main results (Theorem 3.1, Proposition 3.2, Theorem 3.4).

THEOREM 3.1. Suppose μ is a fuzzy normal subgroup of a group G with the identity e. Let

$$K = \{x \in G | \mu(x) = \mu(e)\}.$$

Then $K \triangleleft G$. Consider a map $\hat{\mu}: G/K \rightarrow [0, 1]$ defined by

$$\hat{\mu}(Kx) = \sup_{k \in K} \mu(kx) \ \forall x \in G.$$

Then $\hat{\mu}$ is well-defined and $\hat{\mu}$ is a fuzzy subgroup of G/K. In this case, $\hat{\mu}$ is called the fuzzy quotient group of μ by K.

Proof. Since μ is a fuzzy normal subgroup, it follows from Theorem 2.7 that $K \triangleleft G$. Further, if Kx = Ky for some $x, y \in G$, then $xy^{-1} \in K$ and so $\mu(xy^{-1}) = \mu(e)$. By Lemma 2.4, this give us that $\mu(kx) = \mu(ky)$ for $k \in K$, that is, $\hat{\mu}(Kx) = \hat{\mu}(Ky)$. Therefore, $\hat{\mu}$ is a well-defined map.

It is easy to check the followings:

$$\hat{\mu}(KxKy) = \hat{\mu}(Kxy) = \sup_{k \in K} \mu(kxy)$$

$$\geq \sup_{k_1, k_2 \in K} \min\{\mu(k_1x), \mu(k_2y)\}$$

$$\geq \min\{\sup_{k_1 \in K} \mu(k_1x), \sup_{k_2 \in K} \mu(k_2y)\}$$

$$= \min\{\hat{\mu}(Kx), \hat{\mu}(Ky)\},$$

$$\hat{\mu}((Kx)^{-1}) = \hat{\mu}(Kx^{-1}) = \sup_{k \in K} \mu(kx^{-1})$$

$$= \sup_{k \in K} \mu(xk) = \sup_{k \in K} \mu(kx) = \hat{\mu}(Kx).$$

Hence $\hat{\mu}$ is a fuzzy subgroup of G/K. However, $\hat{\mu}$ is not fuzzy normal, since

$$\hat{\mu}(KxKy) \neq \hat{\mu}(KyKx)$$
. \square

REMARK. It is easy to see that if we define as $\hat{\mu}(Kx) = \mu(x) \ \forall x \in G$ in the above Theorem 3.1, then $\hat{\mu}$ is a fuzzy normal subgroup of G/K.

PROPOSITION 3.2. Suppose that $f: G \to G'$ is an onto group homomorphism with kernel K, and let μ be a fuzzy subgroup of G. Then, for each $t \in [0, 1)$

$$(\hat{\mu})_t = K\mu_t/K.$$

Proof. For $Kx \in (\hat{\mu})_t$, it holds that if $\hat{\mu}(Kx) \geq t$ for all $x \in G$ then $\sup_{k \in K} \mu(kx) \geq t$. So that, $\mu(k_0x) \geq t$ for some $k_0 \in K$. This implies

 $k_0x \in \mu_t$, and hence $k_0x \in K\mu_t$. Therefore $Kk_0x = Kx \in K\mu_t/K$. Consequently, $(\hat{\mu})_t \subseteq K\mu_t/K$.

For the reverse inclusion, let $Kx \in K\mu_t/K$. Then $Kx = Kx_0$ for some $x_0 \in \mu_t$. So that

$$\hat{\mu}(Kx) = \hat{\mu}(Kx_0) = \sup_{k \in K} \mu(kx_0) \ge t.$$

Therefore, $Kx \in (\hat{\mu})_t$ and hence $K\mu_t/K \subseteq (\hat{\mu})_t$. \square

DEFINITION 3.3 [7]. Let μ be a fuzzy subgroup of a group G. For any $x \in G$, define a map

$$\hat{\mu}_x:G\to[0,\,1]$$

by

$$\hat{\mu}_x(g) = \mu(gx^{-1}) \ \forall g \in G.$$

In this case, $\hat{\mu}_x$ is called the fuzzy coset of G determined by x and μ .

THEOREM 3.4. Let N be a normal subgroup of a group G. Suppose that μ is a fuzzy normal subgroup of G. Let \Im be the set of all the fuzzy cosets of G by μ . Then \Im is a group under the composition defined by

$$\hat{\mu}_x \circ \hat{\mu}_y = \hat{\mu}_{xy} \ \forall x, y \in G.$$

Define a map $\bar{\mu}: \Im \to [0, 1]$ by

(3)
$$\bar{\mu}(\hat{\mu}_x) = \sup_{n \in N} \hat{\mu}_x(n) = \sup_{n \in N} \mu(nx^{-1}) \ \forall x \in G.$$

Then $\bar{\mu}$ is a fuzzy subgroup of \Im . In this case, $\bar{\mu}$ is called the fuzzy quotient group determined by μ and N.

Proof. First, we show that the composition (2) is well-defined. Let $x, y, x_0, y_0 \in G$ such that

$$\hat{\mu}_x = \hat{\mu}_{x_0} \text{ and } \hat{\mu}_y = \hat{\mu}_{y_0}.$$

Then we must show that

$$\hat{\mu}_x \circ \hat{\mu}_y = \hat{\mu}_{x_0} \circ \hat{\mu}_{y_0},$$

that is, $\hat{\mu}_{xy} = \hat{\mu}_{x_0y_0}$.

We have, by definition,

$$\hat{\mu}_{xy}(g) = \mu(gy^{-1}x^{-1}) \ \forall g \in G,$$
$$\hat{\mu}_{x_0y_0}(g) = \mu(gy_0^{-1}x_0^{-1}) \ \forall g \in G.$$

Now,

(5)
$$\mu(gy^{-1}x^{-1}) = \mu(gy_0^{-1}y_0y^{-1}x^{-1}) = \mu(gy_0^{-1}x_0^{-1}x_0y_0y^{-1}x^{-1})$$
$$\geq \min \{\mu(gy_0^{-1}x_0^{-1}), \ \mu(x_0y_0y^{-1}x^{-1})\}.$$

Again, from (4) we have

(6)
$$\mu(gx^{-1}) = \mu(gx_0^{-1}) \ \forall g \in G,$$

(7)
$$\mu(gy^{-1}) = \mu(gy_0^{-1}) \ \forall g \in G.$$

Now, in (6), substituting $x_0y_0y^{-1}$ for g, we have

$$\begin{split} \mu(x_0y_0y^{-1}x^{-1}) &= \mu(x_0y_0y^{-1}x_0^{-1}) \\ &= \mu(y_0y^{-1}) \quad \text{(since μ is fuzzy normal)} \\ &= \mu(e) \quad \text{(by Lemma 2.4)} \; . \end{split}$$

But $\mu(e) \ge \mu(gy_0^{-1}x_0^{-1})$, since for any fuzzy group μ , $\mu(e) \ge \mu(x) \ \forall x \in G$. Thus, from (5) we get

$$\mu(gy^{-1}x^{-1}) \ge \mu(gy_0^{-1}x_0^{-1}).$$

Similarly, substituting xyy_0^{-1} for g in (6) and using μ being fuzzy normal, it follows that

$$\mu(xyy_0^{-1}x_0^{-1}) = \mu(xyy_0^{-1}x^{-1}) = \mu(yy_0^{-1}) = \mu(e).$$

So, we have

$$\begin{split} \mu(gy_0^{-1}x_0^{-1}) &= \mu(gy^{-1}yy_0^{-1}x_0^{-1}) = \mu(gy^{-1}x^{-1}xyy_0^{-1}x_0^{-1}) \\ &\geq \min\{\mu(gy^{-1}x^{-1}), \ \mu(xyy_0^{-1}x_0^{-1})\} \\ &= \mu(gy^{-1}x^{-1}). \end{split}$$

Hence, we have $\mu(gy_0^{-1}x_0^{-1}) = \mu(gy^{-1}x^{-1})$, that is $\hat{\mu}_{x_0y_0} = \hat{\mu}_{xy}$, and therefore we have established that the composition (2) is well-defined. The composition defined in (2) is clearly associative. Since $\hat{\mu}_x \circ \hat{\mu}_{x^{-1}} = \hat{\mu}_{x^{-1}} \circ \hat{\mu}_x = \hat{\mu}_e$ for $x \in G$, we have that the inverse of $\hat{\mu}_x$ is $\hat{\mu}_{x^{-1}}$ for $x \in G$. Hence it follows that \Im is a group.

Now, let $x, y \in G$. Then we have that

$$\bar{\mu}(\hat{\mu}_{x} \circ \hat{\mu}_{y}) = \bar{\mu}(\hat{\mu}_{xy}) = \sup_{n \in N} \hat{\mu}_{xy}(n)$$

$$= \sup_{n \in N} \mu(ny^{-1}x^{-1})$$

$$\geq \sup_{n_{1}, n_{2} \in N} \min\{\mu(n_{1}y^{-1}), \mu(n_{2}x^{-1})\}$$

$$\geq \min\{\sup_{n_{1} \in N} \mu(n_{1}y^{-1}), \sup_{n_{2} \in N} \mu(n_{2}x^{-1})\}$$

$$= \min\{\sup_{n_{1} \in N} \hat{\mu}_{y}(n_{1}), \sup_{n_{2} \in N} \hat{\mu}_{x}(n_{2})\}$$

$$= \min\{\bar{\mu}(\hat{\mu}_{y}), \bar{\mu}(\hat{\mu}_{x})\}.$$

Further, we have

$$\begin{split} \bar{\mu}(\hat{\mu}_x^{-1}) &= \bar{\mu}(\hat{\mu}_{x^{-1}}) = \sup_{n \in N} \hat{\mu}_{x^{-1}}(n) = \sup_{n \in N} \mu(nx) \\ &= \sup_{n \in N} \mu(x^{-1}n) = \sup_{n \in N} \mu(nx^{-1}) \\ &= \sup_{n \in N} \hat{\mu}_x(n) = \bar{\mu}(\hat{\mu}_x). \end{split}$$

Hence, it follows that $\bar{\mu}$ is a fuzzy subgroup of \Im .

However, $\bar{\mu}$ is not fuzzy normal, since $\bar{\mu}(\hat{\mu}_x \circ \hat{\mu}_y) \neq \bar{\mu}(\hat{\mu}_y \circ \hat{\mu}_x)$. \square

REMARK. It is easy to see that if we define as $\bar{\mu}(\hat{\mu}_x) = \mu(x) \ \forall x \in G$ in the above Theorem 3.4, then $\bar{\mu}$ is a fuzzy normal subgroup of \Im .

COROLLARY 3.5. With the same notations as in Definition 3.3 and Theorem 3.4, consider a map

$$\theta: G \to \Im$$
 defined by $\theta(x) = \hat{\mu}_x$.

Then θ is a homomorphism with kernel given by

$$K = \{x \in G | \mu(x) = \mu(e)\},\$$

where e is the identity of G.

Proof. Let $x, y \in G$. Then

$$\theta(xy) = \hat{\mu}_{xy} = \hat{\mu}_x \circ \hat{\mu}_y = \theta(x) \circ \theta(y).$$

Hence θ is a homomorphism.

Further, the kernel K of θ is as follows:

$$K = \{x \in G | \theta(x) = \hat{\mu}_e\} = \{x \in G | \hat{\mu}_x = \hat{\mu}_e\}$$

$$= \{x \in G | \mu(yx^{-1}) = \mu(y) \text{ for all } y \in G\}$$

$$= \{x \in G | \mu(x^{-1}) = \mu(e)\}$$

$$= \{x \in G | \mu(x) = \mu(e)\}. \quad \Box$$

References

- [1] N. Ajmal and A.S. Prajapati, Fuzzy cosets and fuzzy normal subgroups, Inform. Sci., 64 (1992), 17-25.
- [2] M. Akgul, Some properties of fuzzy groups, J. Math. Anal. Appl., 133 (1988), 93-100.
- [3] P. Bhattacharya, Fuzzy subgroups: Some Characterizations, J. Math. Anal. Appl., 128 (1987), 241-252.
- [4] F.P. Choudhury, A.B. Chakraborty and S.S. Khare, A note on fuzzy subgroups and fuzzy homomorphism, J. Math. Anal. Appl., 131 (1988), 537-553.
- [5] P.S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264-269.
- [6] V.N. Dixit, R. Kumar and N. Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy sets and systems, 37 (1990), 359-371.

- [7] N.P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci., 34 (1984), 225-239.
- [8] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
- [9] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.

Department of Mathematics Kyung Hee University Yongin-Kun, Kyungi-Do, 449 - 701 Korea